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Abstract: In many research fields, statistical probability models are often used to analyze real-world
data. However, data from many fields, such as the environment, economics, and health care, do not
necessarily fit traditional models. New empirical models need to be developed to improve the fit.
In this study, we investigated a further extension of the quasi-Lindley model. This extension was
asymmetrically distributed on the positive real number line. Maximum likelihood, least square error,
Anderson–Darling, and expectation maximization algorithms were used to estimate the parameters
studied. All techniques provided accurate and reliable estimates of the parameters. However, the
mean square error of the expectation-maximization approach was lower. The usefulness of the
proposed model was demonstrated by analyzing a reliability data set, and the analysis showed that it
outperformed all other alternative models.

Keywords: quasi-Lindley model; maximum likelihood estimator; expectation maximization algorithm

1. Introduction

Probability models can be classified as symmetric and asymmetric models. An asym-
metric model is a type of model in which the probability density or mass function is
symmetric about its mean. The shape of the asymmetric model is not symmetric. Both
symmetric and asymmetric models have received considerable attention in the probability
and statistics literature. A Lindley model, which is simple and remarkably flexible in appli-
cation, was proposed by [1]. It is characterized by the probability density function (pdf):

f (x) =
ξ2

ξ + 1
(1 + x)e−ξx, ξ > 0, x ≥ 0 (1)

which is a mixture of two gamma models G(1, ξ) and G(2, ξ) with weights ξ/ξ + 1 and
1/ξ + 1, respectively. Numerous studies have been conducted on the Lindley model. For
example, many properties, extensions, and applications of the model have been studied
in [2–21]. A scale-invariant version of the Lindley model, namely the quasi-Lindley (QL),
with the pdf:

f (x) =
ξ

α + 1
(α + ξx)e−ξx, α > 0 , ξ > 0, x ≥ 0, (2)

was proposed by [22]. It is a mixture of two gamma models G(1, ξ) and G(2, ξ) with
weights α/α + 1 and 1/α + 1, respectively.

A family of models characterized by fθ(x) is said to be scale-invariant if the transfor-
mation from x to kx lies within the family. In other words, fθ(kx) = J f∼

θ
(x) for every x

where J is the transformation Jacobian. Thus, if you change the scale of measurement or
the unit of x, the fit remains invariant. For instance, a lifetime can be measured in days,
hours, or minutes, and the unit of measurement does not affect inferences about lifetimes.
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Since scale invariance is an essential property of lifetime models, this model has attracted
considerable interest. A comparison of the maximum likelihood estimator (MLE) and
the expectation-maximization (EM) algorithm for estimating the parameters of the QL
model was studied by [23] and new scale-invariant extensions of the Lindley model were
proposed by [24,25].

Many data sets are composed of multiple populations or sources, and the subpopu-
lation associated with each data point is usually unknown or not recorded. For example,
the lifetime of a device or system may be available, but the manufacturer is unknown
or an event associated with a living being lacks its geographic location. Such data sets
are mixtures because information about some covariates, such as the manufacturer or
geographic location, that significantly affect the observations is unknown. For detailed
information on mixture models, see [26,27]. The Lindley model and its extensions are
examples of mixture models of the gamma distribution that can be useful for describing
many real-world applications.

The various needs for mixture models motivate us to propose a new extension of
the scaled-invariant QL model, a mixture of three gamma models. Some statistical and
reliability properties, such as failure rate (FR), mean residual life (MRL), and p-quantile
residual life (p-QRL) functions, are discussed. The problem of estimating the parameters
are discussed using the maximum likelihood (ML) method, the least-squares error (LSE)
method, the weighted LSE method, and one innovative (EM) algorithm. It is examined that
all methods provide consistent and efficient estimates of the parameters. However, the EM
algorithm yields a lower mean square error.

The rest of this article is organized as follows. The scaled-invariant extended quasi-
Lindley (EQL) model is explained in Section 2 along with some of its basic properties. In
Section 3, an innovative EM algorithm is presented for estimating the model parameters,
along with ML, LSE, and weighted LSE methods. In Section 4, a simulation study is con-
ducted to investigate and compare the behavior of the estimators. In Section 5, the proposed
model is fitted to a reliability data set of intervals between successive air conditioning
failures in a Boeing 720 aircraft to demonstrate the usefulness of the model in practice.
Finally, Section 6 concludes this paper.

2. Scaled-Invariant Extended QL Model

In this section, a new model is proposed and some of its basic statistical properties are
examined. A random variable X follows from EQL(α, ξ) if its PDF is

f (x) =
ξ

1 + α + α2

(
1 + αξx +

1
2

α2ξ2x2
)

e−ξx, α ≥ 0, ξ > 0, x ≥ 0. (3)

It is a mixture of G(1, ξ), G(2, ξ), and G(3, ξ) with weights 1/
(
1 + α + α2),

α/
(
1 + α + α2), and α2/

(
1 + α + α2), respectively, and presents an asymmetric form on the

positive real line. When α = 0, it reduces to the exponential model. The reliability function
is an important yet very simple measure in reliability theory and survival analysis. For the
EQL model, it is

R(x) =
1

1 + α + α2

(
1 + α + α2 + αξx + α2ξx +

1
2

α2ξ2x2
)

e−ξx. (4)

The distribution function is simply related to the reliability function by F(x) = 1− R(x)
and the quantile function, which is in fact the inverse of the distribution function:

q(p) = F−1(p) = min{x : F(x) = p}, 0 < p < 1.

The quantile function could be used for simulating random samples, estimating the
parameters, and computing the skewness of the model.
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In addition, for the EQL, the k-th moment is finite and equal to

E(Xk) =
1

1 + α + α2
1
ξk

[
Γ(k + 1) + αΓ(k + 2) +

α2

2
Γ(k + 3)

]
. (5)

Reliability Properties

The proposed model represents a lifetime model. Thus, it is important to study the
main reliability measures, such as the FR, MRL, and p-QRL functions, for the proposed
model. The FR function at time x expresses the instantaneous risk of fail at x given survival
up to x. Mathematically, it is defined by

λ(x) = lim
δ→0

P(x < X < x + δ | X > x) =
f (x)
R(x)

.

For more information about the FR function, refer to Lai and Xie [28]. In the case of
the EQL model, we have

λ(x) =
1 + αξx + 1

2 α2ξ2x2

1 + α + α2 + αξx + α2ξx + 1
2 α2ξ2x2

ξ. (6)

Using simple algebra, we can see that the FR function increases from λ(0) = ξ/
(
1 + α + α2)

to limx→∞λ(x) = ξ. Figure 1 shows the shape of the pdf and the FR function for some
parameter values.
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Figure 1. The PDF (left) and FR (right) of EQL for some parameter values.

Two other useful and well-known measures in reliability theory and survival analysis
are the MRL and p-QRL functions. At time x, they describe the mean and p-quantile of the
remaining life for survival to x. In practice, the MRL function is an attractive alternative to
the survival or hazard function of survival. It provides the remaining life expectancy of a
subject surviving up to time x. For EQL, the MRL is obtained by

m(x) =
1 + 2α + 3α2 +

(
αξ + 2α2ξ

)
x + 1

2 α2ξ2x2

1 + α + α2 + (αξ + α2ξ)x + 1
2 α2ξ2x2

1
ξ

. (7)

Since the FR function is increasing, it follows that the MRL function decreases from

m(0) =
1 + 2α + 3α2

1 + α + α2
1
ξ

to
1
ξ

at infinity.

The p-QRL reads
qp(x) = R−1((1− p)R(x))− x, (8)
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which can be calculated numerically (refer to Lai and Xie [28] for more details). Like the
MRL, this measure is a decreasing function of x. When p = 0.5, it is called the median
residual life, which is a good alternative to the MRL. In Figure 2, the MRL and the median
residual lifetime are plotted for some parameter values and show their similar behavior.
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An important concept in reliability theory and survival analysis is orderings between
lifetimes. For two lifetimes X1 and X2 following reliability functions R1 and R2, respectively,
we say that X2 is greater than X1, X2 ≥ X1, in stochastic if R2(x) ≥ R1(x) for every x (refer
to Lai and Xie [28] for more details about lifetime orderings). Equivalently, we may write
R2 ≥ R1 in stochastic. There are other useful orderings, e.g., by means of the FR function,
X2 ≥ X1 in FR if h1(x) ≥ h2(x) for every x. Moreover, X2 ≥ X1 in MRL and p-QRL if
m2(x) ≥ m1(x) and qp,2(x) ≥ qp,1(x) for every x, respectively. The following result shows
that EQL is internally ordered in terms of α.

Proposition 1. Let Xi, i = 1, 2 follow from EQL(α, ξ) and α2 ≥ α1; then, X2 ≥ X1 in stochastic,
FR, MRL, and p-QRL.

Proof. See Appendix A. �

3. Estimation

In this section, to estimate the model parameters, three well-known methods, ML, LSE,
and weighted LSE, are first discussed. Then, an innovative EM algorithm for this purpose
is presented.

3.1. ML Method

Let x1, x2, . . . , xn represent independent and identically distributed (iid) instances
from EQL(α, ξ). Then, the log-likelihood function is

l(α, ξ; x) = nlnξ − nln(1 + α + α2) + ∑n
i=1 ln(1 + αξxi +

1
2

α2ξ2x2
i )− ξ∑n

i=1 xi. (9)

The ML estimator of (α, ξ) denoted by
(
α̂, ξ̂
)

maximizes the log-likelihood func-
tion and can be computed directly using numerical methods or by solving the following
likelihood equations.

∂

∂α
l(α, ξ; x) = −n

1 + 2α

1 + α + α2 +
n

∑
i=1

ξxi + αξ2x2
i

1 + αξxi +
1
2 α2xξ2x2

i
= 0,
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and
∂

∂ξ
l(α, ξ; x) =

n
ξ
+

n

∑
i=1

αxi + α2ξx2
i

1 + αξxi +
1
2 α2ξ2x2

i
−

n

∑
i=1

xi = 0.

The observed Fisher information matrix can be calculated by replacing α̂ and ξ̂ for α
and ξ in the following Fisher information matrix.

O =

[
− ∂2

∂α2 − ∂2

∂α∂ξ

− ∂2

∂ξ∂α − ∂2

∂ξ2

]
l(α, ξ; x). (10)

Then, the asymptotic distribution of
(
α̂, ξ̂
)

is approximately the bivariate normal
distribution with mean (α, ξ) and variance-covariance matrix O−1.

3.2. LSE Method

Suppose that x1 ≤ x2 ≤ . . . ≤ xn represents the ordered sample. In this approach,
we search for parameter values that minimize the sum of squared distances between
the empirical distribution and the estimated distribution functions. More precisely, we
minimize the following expression in terms of the parameters.

S2 =
n

∑
i=1

(F(xi)− F̂(xi))
2,

where F̂(xi) =
i
n is the well-known empirical distribution function at xi and provides a

common estimate of F(xi). By substituting the distribution function, we have

S2 =
n

∑
i=1

(
1

(1 + α + α2)

(
1 + α + α2 + αξxi + α2ξxi +

1
2

α2ξ2x2
i

)
e−ξxi − i

n

)2
.

Then, the estimates could be computed as follows:

(α̂, ξ̂) = arg min
(α,β,λ)

n

∑
i=1

(
1

1 + α + α2

(
1 + α + α2 + αξxi + α2ξxi +

1
2

α2ξ2x2
i

)
e−ξxi − i

n

)2
.

3.3. Weighted LSE Method

A well-known weight that could improve the LSE estimate is 1
F(xi)(1−F(xi))

. With this
idea, the weighted LSE estimate is computed by minimizing the following expression in
terms of the parameters.

S2 =
n

∑
i=1

1
F(xi)(1− F(xi))

(
F(xi)− F̂(xi))

2.

This method is well known as the Anderson–Darling (AD) method.

3.4. EM Algorithm

The EM algorithm takes advantage of the fact that we have a mixed model and creates
a more informative likelihood function. The parameters are then estimated iteratively.
Suppose that Xi, i = 1, 2, . . . , n is an iid sample from EQL(α, ξ). For a short exposition,
take θ = (α, ξ). Since EQL is a mixture of three gamma models G(j, ξ), j = 1, 2, 3, we
consider a latent random variable Vi such that Vi = j when Xi comes from G(j, ξ). Thus,
(Xi|Vi = j, θ) ∼ G(j, ξ) and P(Vi = j|θ) = αj−1

1+α+α2 , j = 1, 2, 3. However, the latent variable
Vi will not be observed, but applying it helps to improve the estimation of the parameters
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in an iterative process. With the evidence Xi and Vi, i = 1, 2, . . . , n, the likelihood function
can be written as follows:

L(θ; x, v) = ∏n
i=1 ∏3

j=1 (g(xi|θ)P(Vi = j|θ))I(vi=j), (11)

where I(vi = j) equals 1 when vi = j and 0 otherwise, and gj(xi|θ) represents the PDF of
gamma G(j, ξ). Then, the log-likelihood function is

l(θ; x, v) = ∑n
i=1 ∑3

j=1 I(Vi = j)ln

(
ξ jxj−1

i
Γ(j)

e−ξxi
αj−1

1 + α + α2

)
. (12)

Since this function depends on the unobserved random variable Vi, we cannot estimate
the parameters by maximizing them directly. One approach is to implement an iterative
process with expectation (E) and maximization (M) steps. In the E step, the expected
log-likelihood function is constructed with respect to the conditional latent variable. In the
M step, the expected log-likelihood function is maximized to estimate the parameters. See
Appendix B for the implementations of the E-step and M-step.

4. Simulations

The goal of this section is to investigate and compare the behavior of the discussed
estimators through simulations. To this end, we calculate the empirical bias (B) and mean
square error (MSE) of the estimators. We generate a random sample of EQL(α, ξ) using the
following steps:

1. First, drive one random instance from a multinomial model with parameters (p1, p2, p3, n),
where p1 = 1/

(
1 + α + α2), p2 = α/

(
1 + α + α2), and p3 = 1− p1 − p2. Assume the

derived instance is (k1, k2, k3).
2. Generate and mix three identical and independent (iid) random samples from G(1, ξ),

G(2, ξ), and G(3, ξ) with sizes k1, k2, and k3 respectively.

In each simulation run, r = 1000 samples are generated with a size of n = 80 or
150. Then, the parameters are estimated for each instance using the ML, LSE, and AD
methods or EM algorithm. For the calculation of the optimum values of the parameters,
the integrated function “optim” of R is used. The initial values needed for computing all
estimators are randomly generated from a uniform distribution, e.g., the initial values for α
are randomly and uniformly derived from the interval (0.9α, 1.1α). Table 1 shows the bias
(B) and mean square error (MSE) for estimators and for some parameter values calculated
using the following relations:

Bα =
1
r

n

∑
i=1

(α̂i − α),

and

MSEα =
1
r

n

∑
i=1

(α̂i − α)2,

with a similar approach for ξ. Small values of MSE reported in Table 1 show that all
estimators are consistent and sufficiently efficient but the EM algorithm outperforms others
for all selected parameters.
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Table 1. Simulation results for ML, LSE, AD, and EM algorithm. The first and second lines of every
cell correspond to α and ξ.

n

Method 80 150

α,ξ B MSE B MSE

MLE

0.1, 0.1 0.2093
0.0221

0.1413
0.0015

0.1486
0.0166

0.0853
0.0010

0.3, 0.5 0.1009
0.0415

0.1222
0.0209

0.0466
0.0168

0.0771
0.0133

0.8, 1 0.0598
0.0029

0.1716
0.0326

0.0273
−0.0043

0.0948
0.0201

EM

0.1, 0.1 0.0833
0.0097

0.0377
0.0004

0.0463
0.0054

0.0126
0.0002

0.3, 0.5 0.1346
0.0530

0.1095
0.0181

0.0807
0.0329

0.0554
0.0100

0.8, 1 0.1023
0.0223

0.1856
0.0299

0.0281
0.0015

0.0728
0.0156

LSE

0.1, 0.1 0.2350
0.0306

0.1970
0.0026

0.1734
0.0230

0.1185
0.0016

0.3, 0.5 0.0906
0.0523

0.1726
0.0315

0.0466
0.0287

0.1083
0.0206

0.8, 1 0.0609
0.0075

0.2960
0.0500

0.0143
−0.0038

0.1085
0.0270

Weighted LSE (AD)

0.1, 0.1 0.0283
0.0097

0.0592
0.0009

0.0249
0.0084

0.0392
0.0006

0.3, 0.5 −0.1116
−0.0233

0.1157
0.0211

−0.1373
−0.0367

0.0778
0.0121

0.8, 1 −0.3220
−0.1497

0.2795
0.0700

−0.2426
−0.1230

0.1963
0.0466

5. Application

In this section, the EQL and some alternative models are fitted to a data set of air
conditioning systems of a Boeing 720 aircraft to verify the usefulness of the proposed model.
Alternative models include gamma, exponentiated gamma (EG), Lehmann gamma (LG),
Marshal–Olkin gamma (MOG), and QL.

Table 2 shows 29 time intervals, in terms of hours, between successive air conditioning
failures in a Boeing 720 aircraft. For more details about the experiment and the data, see
Proschan [29].

Table 2. Time interval, in terms of hours, between successive failures of air conditioner system of
Boeing 720 aircraft.

59 20 68 67 25 13 5 79 76
127 117 100 52 189 398 60 117 263
143 39 194 128 160 88 74 66 199
180 156

For this data set, the total time on test (TTT) is plotted in Figure 3 (left), which shows
an increasing FR function. The TTT plot is really a nonparametric plot, which is very useful
for determining the FR form of the data. Figure 3 (right) draws the histogram of the data
and the calculated PDF of the EQL and gives a graphical investigation.
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failures of air conditioning system. The red plus in the left figure shows calculated TTT for each
data entry.

For each model, parameters were estimated using ML. In addition, the parameters
of the EQL were estimated using the ML method and the EM algorithm, and because
the results were approximately the same, only the EM estimates are reported in Table 3.
The Akaike information criterion (AIC), Cramer–von Mises (CVM) statistics, Anderson–
Darling (AD) statistics, and Kolmogorov–Smirnov (KS) statistics were also calculated and
are summarized in Table 3.

Table 3. Fitting the successive times between failures.

Model ^
α

^
β

^
ξ AIC CVM AD KS

p-Value p-Value p-Value

EQL 1.9668 — 0.0215 331.22 0.0278
0.9843

0.1833
0.9944

0.0801
0.9923

Gamma 1.7195 — 0.0153 331.55 0.0363
0.9539

0.2399
0.9754

0.1028
0.9190

EG 2.8250 0.0823 0.1459 334.57 0.0647
0.7882

0.3836
0.8638

0.1308
0.7037

LG 1.4504 1.1997 0.0142 333.59 0.0373
0.9682

0.2454
0.9727

0.1041
0.9120

MOG 1.6439 1.2563 0.0161 333.37 0.0322
0.9705

0.2169
0.9851

0.0965
0.9498

QL 0.1382 — 0.0167 331.35 0.0320
0.9712

0.2057
0.9888

0.0965
0.9499

In Figure 4, the empirical and fitted distribution functions for EQL and some alterna-
tives are plotted, providing a graphical investigation.

Considering Table 3, a smaller AIC indicates a better fit to the data. Here, the AIC of
the proposed EQL model is smaller than that of all other selected models, indicating that it
is preferred over the other models. In addition, the model with a smaller CVM (AD and KS)
statistic better describes the data. Fortunately, the value of the CVM (AD and KS) statistic
for EQL is smallest among all the selected models. This shows that EQL is preferred in
terms of CVM, AD, and KS statistics.
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6. Conclusions

For data modeling and analysis, an appropriate statistical model must be used to draw
more accurate conclusions. The EQL model, which combines three gamma distributions,
is an extension of QL, which can be used in various scientific disciplines. In the context
of reliability theory and survival analysis, it could be useful for data with increasing FR
and decreasing MRL functions, for example, for modeling the lifetime of devices subject
to depletion. The model can be useful in practice, as shown by the analysis of a data set
consisting of the intervals between successive failures of the air conditioning system of a
Boeing 720 aircraft. Based on the simulation results, the ML and EM algorithms provide
accurate and consistent parameter estimates. However, the EM algorithm provides a more
accurate approximation than the MLE. Some future research related to this study can be
considered as follows:

• Estimate the unknown parameters of the proposed model, along with the reliabil-
ity and hazard rate functions under different types of censoring schemes, such as
progressive type II, hybrid, general progressive, and adaptive censoring schemes.

• Consider the maximum likelihood and maximum product-of-spacing methods to
determine the point estimates and approximate confidence intervals of the various
model parameters.

• Provide Bayesian estimates based on the likelihood function and product of the
distance function of the unknown parameters using the quadratic error loss function
with independent gamma priors.

• The methods investigated in this study can be extended to study estimation problems
in more complex cases.
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Appendix A

Proof of Proposition 1. To show the FR ordering, the derivative of the FR function in terms
of α is proportional to

dλ

dα
∝ −

(
1
2

α2ξ2x2 + α2ξx + 2αξx + 2α + 1
)
< 0.

So, the FR ordering follows. The stochastic, MRL, and p-QRL orderings follow from
the FR ordering. See Lai and Xie [28] for the relationship between orderings. �

Appendix B. E Step and M Step of EM Algorithm

E step:
Assume that the estimate of the parameters at iteration t, θt = (αt, ξt) is known. Then,

through the well-known Bayes formula, the conditional probability of Vi is

pij,t = P(Vi = j | Xi = xi, θt) =
f (Xi=xi | Vi=j,θt)P(Vi=j | θt)

f (Xi=xi |θt)

=

ξ
j
t

Γ(j) xj−1
i e−ξt xi α

j−1
t

3
∑

j=1

ξ
j
t

Γ(j) xj−1
i e−ξt xi α

j−1
t

, i = 1, 2, . . . , n, j = 1, 2, 3.
(A1)

So,

pi1,t =
1

1 + αtξxi +
1
2 α2

t + ξ2
t x2

i
, (A2)

pi2,t =
αtξtxi

1 + αtξtxi +
1
2 α2

t + ξ2
t x2

i
, (A3)

and
pi3,t = 1− pi1,t + pi2,t

Now, applying these probabilities, we can write the expected log-likelihood function
at iteration t.

Q(θ|θt) = EV|X,θt
(l(θ; x, V)) =

n

∑
i=1

EVi |Xi ,θt

3

∑
j=1

I(Vi = j)ln

(
ξ jxj−1

i
Γ(j)

e−ξxi
αj−1

1 + α + α2

)

= ∑n
i=1 P(Vi = 1|Xi = xi, θt)ln

(
ξ

1 + α + α2 e−ξxi

)
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+
n
∑

i=1
P(Vi = 2|Xi = xi, θt)ln

(
αξ2xi

1+α+α2 e−ξxi
)

+
n
∑

i=1
P(Vi = 3|Xi = xi, θt)ln

(
1
2

α2ξ3x2
i

1+α+α2 e−ξxi

)
=

n
∑

i=1
(1 + pi2,t + 2pi3,t)lnξ − ξ

n
∑

i=1
xi

+
n
∑

i=1
(pi2,t + 2pi3,t)ln(αxi)− nln(1 + α + α2)

+
n
∑

i=1
pi3,tln 1

2 .

(A4)

Clearly, Q(θ|θt) consists of three expressions:

Q1(ξ) =
n

∑
i=1

(1 + pi2,t + 2pi3,t)lnξ − ξ
n

∑
i=1

xi,

Q2(α) = ∑n
i=1 (pi2,t + 2pi3,t)ln(αxi)− nln(1 + α + α2), (A5)

depending solely on ξ and α, respectively, and Q3 = ln 1
2 ∑n

i=1 pi3,t, which does not depend
on ξ or α.

M step:
To estimate the parameters at iteration t + 1, we should maximize Q(θ|θt) in terms of

θ = (α, ξ). Thus, for estimating ξ at iteration t + 1, we could simply solve the likelihood
equation ∂Q1(ξ)

∂ξ = 0, which gives ξ̂t+1 as follows:

ξ̂t+1 =
∑n

i=1 1 + pi2,t + pi3,t

∑n
i=1 xi

.

Similarly, by solving the likelihood equation ∂Q2(α)
∂α = 0, we could check that α̂t+1 is

the positive solution of the following quadratic equation in terms of α:

α2(c− 2n) + α(c− n) + c = 0,

where c = ∑n
i=1 pi2,t + 2pi3,t. The sequence θt converges to θ and we could stop the

iterations when Q(θ|θt) does not improve significantly, i.e., for a predefined small value
ε > 0, Q(θ|θt+1) < Q(θ|θt) + ε. See Wu [30] for more information about convergence of
the EM algorithm.
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