
Citation: Wang, K.; Guo, L.; Zhang,

Q.; Ning, H.; Lu, C.; Wang, S.; Gong,

Y. High-Field Nonresonant Response

of Zundel Cations to Intense

Terahertz Radiation. Symmetry 2023,

15, 1798. https://doi.org/10.3390/

sym15091798

Academic Editor: Sergei D. Odintsov

Received: 15 August 2023

Revised: 13 September 2023

Accepted: 19 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

High-Field Nonresonant Response of Zundel Cations to Intense
Terahertz Radiation
Kaicheng Wang 1, Lianghao Guo 1, Qin Zhang 1, Hui Ning 1, Chang Lu 2, Shaomeng Wang 1 and Yubin Gong 1,*

1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China,
No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu 611731, China

2 Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology,
No. 2188 Longxiang Avenue, Longgang District, Shenzhen 518172, China

* Correspondence: ybgong@uestc.edu.cn

Abstract: The fundamental unit for comprehending the physicochemical properties of water, the
Zundel cation configuration H5O2

+, has yet to be exhaustively evaluated in terms of its interaction
with terahertz (THz) electromagnetic waves, characterized by sub-picosecond oscillation periods
or pulse widths. In this study, we embark on an investigation of the broad resonance and high-
field nonresonant effects of intense THz radiation (ITR) on Zundel cations, utilizing a multifaceted
methodological approach that includes density functional theory (DFT) calculations, finite difference
time domain (FDTD) algorithm of the Schrödinger equation, and ab initio molecular dynamics (AIMD)
simulations. Our analysis reveals that the proton potential energy surface (PES) varies in response to
the external electric (E) field, suggesting that the interaction frequency of the central proton with the
electromagnetic wave encompasses the THz band. This resonance effect is associated with proton
behavior that may oscillate or demonstrate periodic tunneling. Moreover, our work uncovers the
high-field nonresonant effects of ITR on Zundel cations, manifesting in proton transfer and vibrational
excitation of the system. Our findings contribute to the understanding of the interaction between
Zundel species and electromagnetic waves by presenting a microscopic view of proton transfer as
informed by wavefunction evolution.

Keywords: Zundel cations; terahertz radiation; nonresonant response; potential energy surface;
ab initio molecular dynamics

1. Introduction

Ever since G. Zundel introduced the double-minimum potential well model, the
intriguing characteristics of Zundel cations have commanded attention in the context of wa-
ter’s physical and chemical properties [1–5]. The ab initio calculation method has delivered
accurate potential energy surface (PES) of Zundel cations [6], bolstering full-dimensional
quantum dynamics simulations of the Zundel cluster [7], as well as quantum simulations
of proton transfer [8]. Meanwhile, molecular dynamics (MD) methods permit simula-
tions of the complex system of bulk water, comprising numerous water molecules. Ab
initio molecular dynamics (AIMD) simulations, for example, Car-Parrinello MD, density-
functional tight-binding (DFTB) MD [9], and divide-and-conquer DFTB (DC-DFTB) MD
simulations [10], offer profound insights into the proton transfer process within bulk water.
The resultant proton diffusion coefficients align with experimental findings. Furthermore,
path integral molecular dynamics (PIMD) simulations have spotlighted nuclear quantum
effects (NQEs), such as proton tunneling and zero-point energy in high-pressure ice hy-
drogen bonds [11], bulk water [12–14], and liquid water under an external E field [15].
The significance of quantum effects in proton transfer has been corroborated by potential-
induced dioxygen reduction experiments at ambient temperature [16]. The NQEs of protons
in hydrogen-bonded molecular chains have also been observed via scanning tunneling
microscopy/atomic force microscopy (STM/AFM) measurements [17]. Both theoretical
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and experimental evidence substantiate the vital role the quantum effect of the nucleus
plays within the hydrogen bond system.

Under the widely endorsed Grotthuss mechanism, the remarkable mobility of protons
within liquid water owes to the proton “hopping” mechanism between neighboring water
molecules within Zundel cations [2,3]. Recent experimental advances in this domain are
equally exciting. Transient infrared (IR) pump–probe spectra have unveiled the pivotal
role fluctuating E fields play in proton motion within the Zundel configuration [18]. Vibra-
tional spectroscopy within clusters has further detailed proton transfer within ultracold
clusters of isotope water molecules [19]. Notably, two-dimensional infrared (2D-IR) spec-
troscopy demonstrated that Zundel cations are copious in bulk water with an approximate
1-picosecond lifespan, underscoring their importance in aqueous proton transport [20].

The THz frequency range accommodates the frequencies associated with the formation
and rupture of hydrogen bonds within water, and the low-frequency vibrational modes
of the hydrogen bond network. The swift progression in THz science and technology
now permits the generation of intense THz radiation (ITR) with sub-picosecond E field
fluctuations, facilitating interactions with an array of substances [21,22]. The energy of
THz photons is also comparable to hydrogen bond energy. THz spectroscopy has been
employed to monitor the characteristic vibrational modes of hydrated ions [23]. Given
the temporal and frequency selectivity, THz waves could conceivably interact with the
Zundel configuration. However, comprehensive theoretical simulations or experimental
investigations scrutinizing these molecular level interactions remain scant.

In the present study, we employ DFT calculations to ascertain the PES of Zundel
species under the influence of an external E field. This provides an energy landscape
that characterizes the resonant interaction of Zundel cations with THz electromagnetic
waves. The evolution of the proton wavefunction, as dictated by the time-dependent (TD)
Schrödinger equation, unveils details about the oscillation and transfer of protons under
the nonresonant influence of the high-field of the ITR. Ultimately, we use AIMD simulations
to simulate the potent nonresonant effect of ITR on the Zundel cation.

2. Methods
2.1. PES Scans of Zundel Cations

The Zundel cation (H2O···H+···OH2) structure as shown in Figure 1a was optimized
using the B3LYP-D4 [24,25] functional and def2-QZVPP atomic basis sets with auxiliary
basis [26–28], facilitated by the ORCA 5.0 software package [29,30]. To significantly acceler-
ate the computational process while maintaining virtually no loss in precision, the ORCA
software employs the resolution of the identity (RI) approximation method as its default
approach for calculating Coulomb interactions [31,32]. Figure S1 illustrates the optimized
equilibrium configuration of the Zundel cation, where the two oxygen atoms are spaced
2.40 Å apart.

After optimizing the structure to obtain the ground state equilibrium configuration,
the next step is to perform PES scans under external E field variations. When there are
substantial structural deviations from the equilibrium state in the course of the PES scans,
relying solely on single point energy calculations at the B3LYP-D4/def2-QZVPP level may
not ensure the precision of energy calculations. It is necessary to select a more accurate
double-hybrid functional. The PES of the proton within the Zundel cation along the transfer
coordinate Z was computed via DFT methodology using the ORCA 5.0 package. Consid-
ering both robustness and performance in calculating weak intermolecular interactions,
the PWPB95-D4 [24,33] functional and def2-QZVPP basis set were employed in PES scans.
The scanning ranges for the oxygen atomic spacing ranged from 2.1 Å to 3.2 Å and for the
proton position Z scanning ranged from −1 Å to 1 Å, with a spatial step of 0.05 Å.
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origin of the Z-axis is the center of the two oxygen atoms. RO-O is the distance between the two 

oxygen atoms. White and red spheres represent hydrogen and oxygen atoms, respectively. This is a 

three-dimensional structure with noncoplanar hydrogen atoms. (b) The two-dimensional PES with 

the change in the E field intensity in the Z-direction. The horizontal axis of each PES is the distance 

between two oxygen atoms and the longitudinal axis is the position of protons. The color bar in the 

upper right corner of (b) represents the relative magnitude of the potential energy. For clarity, the 

potential energy above 1 eV is shown in white. 
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Figure 1. Zundel configuration and its PES. (a) Schematic diagram of a Zundel cation H5O2
+. The

origin of the Z-axis is the center of the two oxygen atoms. RO-O is the distance between the two
oxygen atoms. White and red spheres represent hydrogen and oxygen atoms, respectively. This is a
three-dimensional structure with noncoplanar hydrogen atoms. (b) The two-dimensional PES with
the change in the E field intensity in the Z-direction. The horizontal axis of each PES is the distance
between two oxygen atoms and the longitudinal axis is the position of protons. The color bar in the
upper right corner of (b) represents the relative magnitude of the potential energy. For clarity, the
potential energy above 1 eV is shown in white.

The PES data were computed for Z-direction E field intensities increasing from 0 to
8 V/nm, with a field strength scanning step size of 0.4 V/nm, yielding a total of 19,803 data
points across the PES under varied external E field conditions. Due to computational
resource limitations, we conducted a rigid scan rather than a relaxed one, as additional
structural optimizations would result in an impractical computational time burden because
structural optimization for each scanning point takes several tens of minutes in ORCA. So,
in the PES scans, only Z, RO-O, and E field intensity are varied, while the other geometric
parameters remain at their ground state equilibrium values.

While more accurate global PESs are accessible for the Zundel configuration [6],
our dynamic processes are conducted under the influence of a time-varying external E
field. This necessitates the utilization of PESs that account for variations in external field
dimensions. Due to limitations in computational resources, we conducted PES scans at a
reduced level of atomic basis sets and functional calculations, while incorporating external
E field dimensions.
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2.2. Solving the TD Schrödinger Equation via the FDTD Method

The one-dimensional TD Schrödinger equation is

i} ∂

∂t
Ψ(z, t) =

(
− }2

2m
∂2

∂z2 + U(t)
)

Ψ(z, t). (1)

Here, h̄ represents the reduced Planck constant and U(t) denotes the TD potential
function. The spatial scale of the molecule is on the order of nanometers, while the wave
packet length of each ITR pulse is on the order of tens of micrometers. Consequently, the
impact of ITR on molecular systems can be effectively modeled as a time-varying uniform
E field acting on the entire molecular system. Thus, we can utilize the data obtained from
PES scans to determine how the potential energy function varies with time. Initially, we
need to specify the variation of the applied E field, denoted as E(t), and in conjunction with
the discussions in Section 2.1 regarding the determination of PESs U(E) at different E field
strengths, ultimately arrive at the TD potential function U(t). For convenience, we denote
the first and second time derivatives of the wavefunction as v and a:

v(t) =
∂

∂t
Ψ(z, t)

a(t) =
∂2

∂t2 Ψ(z, t)
. (2)

The next step involves uniformly discretizing the TD Schrödinger equation in space
and employing the velocity Verlet integration method for time integration [34,35]

Ψ(z, t + ∆t) = Ψ(z, t) + v(t)∆t + 1
2 a(t)(∆t)2

v(t + ∆t) = v(t) + 1
2 [a(t) + a(t + ∆t)]

. (3)

By specifying the initial values of the wavefunction and iteratively solving, we can
obtain the temporal evolution of the wavefunction. In this study, the spatial step is 0.01 Å
and the integration time step is 1 attosecond, using a one-dimensional model Hamiltonian’s
reduced mass equivalent to a proton’s mass.

2.3. AIMD and AI-PIMD Simulations of Zundel Cations

The ORCA 5.0 package’s AIMD module was utilized to simulate the influence of
intense field THz waves on Zundel cations, with the B3LYP-D4 functional and the def2-
SVP basis set. The system was initialized at 300K, with a simulation time step of 0.5 fs,
recording the system’s dipole moment at each frame. The system was initially simulated
for 25 picoseconds, with an ITR E field pulse applied over 2 ps, followed by a further 25 ps
of simulation. The time domain waveform of the E field can be expressed as

E(t) = Emax exp

[
−2 log 2

(
t− tc

τ

)2
]

sin(2π f t− π

2
), (4)

where Emax, tc, τ, and f are the peak of the E field, the pulse center, the pulse width, and
the frequency of the ITR, respectively. When tc = 0.5 ps, τ = 0.2 ps, and f = 3 THz, the
time-domain waveform and power spectrum of the ITR are shown in Figure S2a,b.

AI-PIMD simulations of ITR effects on Zundel cations were executed using the CP2K
software [36], with an initial temperature of 300K, a time step of 1 fs, and 8 ring polymer
beads allocated to each atom. The system dipole at each frame was calculated with respect
to the system’s charge center, with a simulation time of 25 + 1 + 25 ps, where the central
1ps applies an ITR with a peak value of 10 V/nm.
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2.4. Calculation of IR Spectrum

The IR absorption spectrums were derived via the Fourier transform of the autocorre-
lation function of the time derivative of the dipole moment [37]

A(ω) ∝
∫ 〈dµ(τ)

dt
dµ(t + τ)

dt

〉
τ

e−iωtdt, (5)

where µ is the dipole moment of the system. During the MD simulation, the system’s
dipole moment at each frame was computed to facilitate the calculation of the IR absorption
spectrum. Transient IR absorption lines were obtained from dipole data within a 0.5 ps
time window.

To establish a correlation between the infrared spectra obtained in MD simulations and
molecular vibrational mode frequencies, structural optimization and vibrational analyses
were conducted at the B3LYP-D4/def2-svp level [26,27], ensuring congruence with AIMD
simulations.

3. Results and Discussion
3.1. Deformation of Proton PES under Elevated Static E Fields

The proton PES exhibits a pronounced dependence on the intermolecular water dis-
tance (RO-O), with modulations in response to variations in the local E field. As demon-
strated in Figure 1b, the PES of Zundel cations, obtained via Density Functional Theory
(DFT) computations, reveals alterations under the influence of external E fields. As E field
strength escalates from 0 to 8 V/nm, a progressive deformation of the PES is observed,
exhibiting a strong tendency towards one side. Augmentation of the E field results in the
loss of symmetry in the double potential well, leading to its eventual vanishing.

3.2. Resonant Interaction between THz Waves and Zundel Cations

Resonance interaction is a basic form of interaction between electromagnetic waves
and matter. One of the basic conditions of resonance is that the energy level of matter
matches the light quantum energy of electromagnetic waves. Therefore, it is necessary to
examine the energy levels of molecules from the PES. Figure 2a shows the symmetric PES
when RO-O is 2.8 Å, depicted by the black dotted line. In the case of static potential wells,
the proton wavefunction adheres to the stationary Schrödinger equation,

HΨi = EiΨi, i = 0, 1, 2, · · · , (6)

where Ei denotes energy eigenvalues, with the Hamiltonian H determined by the PES. This
equation facilitates the derivation of eigen wavefunctions for the proton in the Z-direction,
alongside their corresponding energy eigenvalues. The four lowest energy wavefunctions
are represented in Figure 2a.

The blue (even parity) and yellow lines (odd parity) represent wavefunctions corre-
sponding to the ground eigenstate and the first excited eigenstate, respectively. The first
two energy levels of the proton, when considering a specific energy barrier at the center of
the double-minimum potential, demonstrate close energetic values with a mere energy gap
of 3.4 meV. When we consider the initial proton state as a linear superposition of these two
eigenstates (illustrated by the red dotted line in Figure 2a), it is evident that the proton’s
most probable density is initially situated in the positive coordinate well (with negligible
density in negative coordinates). Then, the time evolution of the proton wavefunction,
according to the time-dependent Schrödinger equation, is

Ψ(z, t) =
1√
2

(
Ψ1e−

i
} E1t −Ψ0e−

i
} E0t

)
, (7)

which can be resolved by the Schrödinger equation via the FDTD algorithm. Figure 2b
depicts the evolution of the proton probability density distribution. The proton oscillation
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between two wells in the one-dimensional model is seen to have a frequency of 0.83 THz,
calculated from the oscillation period in Figure 2b, concordant with the theoretical value
derived from the energy level difference

ν01 = (E1 − E0)/h, (8)

where h is the Planck constant. The proton’s maximum kinetic energy during this oscillation,
0.145 eV, is less than the central energy barrier of 0.34 eV, indicating the occurrence of
quantum tunneling. Consequently, even two water molecules 2.8 Å apart can experience
an exchange of extra protons within a picosecond timescale. However, this model, being
static, fails to account for the impact of random polarization fields on the Zundel cation in
liquid water, an effect which disrupts the potential well’s symmetry.
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Figure 2. PES and the oscillation frequency of proton. (a) The PES and the eigen wavefunction of a
proton when RO-O is 2.8 Å. The energy units on the vertical axis do not represent the amplitude of
the wavefunction. The magnitude of the eigenenergy corresponding to each eigen wavefunction is
distinguished by the respective heights, as indicated by the nearly horizontal portions at the left and
right ends of each wavefunction. (b) Schematic diagram of proton probability density distribution
function over time. The color bar represents the probability density and the data are normalized.
(c) The oscillation frequency varies with the RO-O and Ez field.
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Broadening our discussion, Figure 2c reveals a wide frequency range for this periodic
tunneling behavior, dependent on variations in RO-O and Ez fields. An elongation of the
distance between adjacent water molecules induces a decrease in the oscillation frequency
of protons within the double-minimum well. Simultaneously, fluctuations of the E field
in the Z-direction influence the tunneling frequency for a fixed RO-O distance. The E field
component in the Z-direction elevates the energy level difference between the ground state
and the first excited state, correspondingly increasing the oscillation frequency. Generally,
in bulk water, the distance between the two oxygen atoms in Zundel cations is typically
between 2.2 and 2.8 Å [20]. This results in the photon energy corresponding to the energy
level difference between the ground state and the first excited state being above 30 THz.
When RO-O falls below 2.5 Å, the double-minimum potential diminishes and yields a single-
minimum well, indicating a shared proton between the two water molecules. Additionally,
the lifetime of Zundel geometries, being limited to 1 ps, suggests that oscillation frequencies
lower than 1 THz would contribute minimally to the proton transfer process. These
limitations suggest the existence of a periodic “hopping” process, where protons tunnel
across the energy barrier between adjacent water molecules at THz frequencies.

3.3. Proton Transfer during Collisional Events

The static symmetric double-well potential in liquid water is unsustainable amidst
local polarized E field fluctuations and dynamic hydrogen-bonded networks. Proton
transfer within the Zundel cation may accompany water molecule collisions and local E
field fluctuations. Figure 3 elucidates the proton transfer process during the ‘collision’ of
two water molecules within a Zundel cation, simulated based on the FDTD solution of
the time-dependent Schrödinger equation. Initially, the proton resides in the potential
well on the positive coordinate side with a kinetic energy of 0.12 eV. Proton transfer
completion occurs at 0.5 ps, 1.0 ps, and 2.0 ps, as demonstrated in Figure 3a–c, correlating
with the approach and separation of water molecules (3.0 Å→2.8 Å→3.0 Å). The lowest
intermediate energy barrier height is 0.34 eV when RO-O is 2.8 Å, roughly three times the
kinetic energy of the proton. Hence, proton transfer occurs with a certain probability during
collision events, with this probability increasing with longer collision times. This transfer
process during collisions encompasses oscillation features typical of the static symmetric
double-well potential, requiring two oxygen atoms to maintain close proximity over a
sufficient period to facilitate proton transfer. This requisite duration is contingent on the
oscillation period of the symmetric double-well illustrated in Figure 2c. In stark contrast,
results based on classical Newtonian particle kinematics (Figure 3d–f) suggest that proton
transfer is unattainable in these three collision scenarios. Given initial proton positions
and kinetic energy (0.12 eV), identical to those in Figure 3a–c, the probability of proton
transfer, due to the particle’s kinetic energy being less than the barrier height (0.34 eV), is
effectively null. This limitation illustrates that classical MD simulations cannot account for
such phenomena.

Given that the separation between two oxygen atoms typically falls below 2.8 Å,
the phenomenon of proton transfer within Zundel cations is predominantly devoid of
reliance on quantum tunneling effects. Consequently, encounters involving distances
of 2.8 Å between the oxygen atoms in Zundel cations occur exceedingly infrequently.
Nevertheless, the discourse within this segment remains capable of shedding light on
the quantum tunneling mechanism intrinsic to extended proton transfer processes akin
to hydrogen bonds. Such phenomena are prevalent across a multitude of biochemical
processes, prominently including enzyme catalysis.
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Figure 3. The transfer of protons during the collision of water molecules. (a–c) Illustration of the
time evolution of proton probability density distribution during the approach and separation of two
water molecules in a Zundel cation. During the first half of the time, RO-O changed from 3.0 Å to
2.8 Å and in the second half of the time, the distance increased to 3.0 Å. In the whole process, RO-O

changed in a sinusoidal form. The color bar represents the probability density and is normalized.
(d–f) is the proton trajectories based on the classical Newton equation of motion under the same
parameter condition corresponding to (a–c), respectively. The red “×” in the figure signifies that no
proton transfer has occurred, and its pathway is prohibited.

3.4. Proton Transfer Induced by High-Field Nonresonant Interaction

E field oscillations can impact the structure or proton transition dynamics of the
Zundel cationic system. Hydrogen bond oscillations and transformations within bulk
water, which transpire on a picosecond timescale, introduce local E field fluctuations in
the THz band. Utilizing the simplified one-dimensional model and time-dependent (TD)
Schrödinger equation, Figure 4 delineates the influence of sinusoidal and THz E fields
on the proton transition process. The variability in the E field induces oscillation and
proton translocation within Zundel cations, as demonstrated in Figure 4c,f. As the E field
induces a deformation in the potential PES of the proton, a PES inversion facilitates proton
movement along the evolving valley floor of the PES, thus effectuating proton transfer.
Simultaneously, E field fluctuations reduce the intermediate barrier height and transiently
create a near-symmetrical double barrier. Such alterations enable proton transference via
periodic tunneling, a process that does not necessitate the proton’s kinetic energy to exceed
the intermediate barrier height within the Zundel configuration.

The oscillatory collision of water molecules within bulk water, grounded in the
hydrogen-bonded network and slow E field changes, underpins the alteration in Zun-
del configuration. Present advancements in THz science and technology facilitate the
production of sub-picosecond electromagnetic pulses with a spectral distribution in the
THz range, which matches the rapid dynamic process of water. Figure 4d–f highlight the
impact of intense terahertz radiation (ITR) on Zundel configuration protons, as resolved
by the TD Schrödinger equation. A directionally polarized ITR, through the high-field
nonresonant effect, induces proton oscillation and excites the proton from the ground
state to a superposition state, incorporating higher eigenstates. In this context, the ITR’s
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directionally high field applies work to the protons, instigating proton oscillations, despite
the ITR’s power spectrum range failing to match the proton transition frequency.
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Figure 4. Effect of E field fluctuation on proton transfer in Zundel configuration. Effect of E field
fluctuation on proton transfer in Zundel configuration. The initial RO-O distance are both 2.8 Å.
(a–c) are the time domain waveform of the sinusoidal E field with 1THz amplitude of 1 V/nm, the TD
PES felt by protons and the evolution of the corresponding proton wavefunction. Similarly, (d–f) is
the case under the action of ITR with an E field amplitude of 5 V/nm. The color bar on the right side
of (e) represents the potential energy of the proton in (b,e). For clarity, potential energy higher than
1 eV is expressed in crimson. The color bar on the right side of (f) represents the probability density
of proton normalization of (c,f).

3.5. Vibrational Excitation Instigated by ITR’s Nonresonant Interaction

Given that both the hydrogen-bonded network vibrations and local E field fluctuations
of water molecules within bulk water occur in the THz band, examining the effect of THz
waves on Zundel cations is of paramount importance. The previously mentioned one-
dimensional approach possesses limitations in studying cation responses to THz waves,
which underscores the need for further exploration via AIMD simulations. The system’s
equilibrium time is 5 ps and the average kinetic energy of the Zundel cation for the
following 20 ps registers at 0.104 eV. As Figure S2a illustrates, post 20 ps, an ITR with a
peak E field of 10 V/nm is applied. The pulse center is positioned at 21 ps, with power
concentrated around 3 THz, as depicted in Figure S2b.

Figures 5a and S3 elucidate the shift in the system’s infrared (IR) absorption spectrum
before and after ITR pumping of varying intensities. It can be observed that both pre-
and post-pumping of terahertz waves, and the spectral absorption peaks in the vicinity
of 30 THz, 52 THz, and 113 THz align precisely with the outcomes derived from com-
prehensive quantum simulations [38]. The most notable change is the appearance of a
low-frequency absorption peak at around 10 THz due to the ITR increasing the system’s
average kinetic energy to 0.638 eV. This newly conferred energy accentuates the weak
low-frequency vibration of Zundel cations, thus emerging as an IR absorption near 10 THz.
An examination of Figure S3a,b reveals a significantly greater impact on the IR spectrum
at a peak intensity of 1.0 V/nm compared to 0.1 V/nm, although neither notably shifts
the absorption peaks’ position and height. The system’s dipole variation along the E field
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polarization axis during ITR, as exhibited in Figure 5b, demonstrates a significantly greater
impact from an ITR peak of 10 V/nm on the system dipole, echoing the E field time domain
waveform in Figure S2a.
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Figure 5. The change in IR spectrum and dipole moment of the system under the action of ITR. (a) is
the IR absorption intensity of the Zundel cationic system before and after ITR pumping, whose peak
E field strength is 10.0 V/nm. Simulation was performed through AIMD and the dipole data of
20 ps was used. (b) is the variation of the system dipole in the E field direction with time during
ITR through AIMD simulations. (c) is the change in dipole moment of the system in three directions
during the action of ITR by AI-PIMD simulations.

Adopting a similar approach, ITR’s effect on Zundel cations was simulated via ab
initio path integral molecular dynamics (AI-PIMD). Figure 5c presents the dipole moment
changes of the system during ITR’s action, mirroring the E field waveform of ITR. An
inspection of Figure S4a–c reveals minor changes in the infrared spectrum’s band intensity
after the ITR action, likely due to the random orientation introduced by the Zundel cation’s
rotation during the interaction. However, Figure S4a indicates an enhancement in absorp-
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tion near 3 THz following the ITR action, aligning with the central frequency of the applied
ITR shown in Figure S2b.

The system’s transient vibrational modes are analyzed, as displayed in Figure 6, which
illustrates Zundel cations’ four IR-active vibrational modes within the low (0–20 THz),
medium (30–60 THz), and high (>100 THz) frequency ranges. The vibrational mode
constantly fluctuates with time and the vibration energy is exchanged between different
modes, underscoring the coupling between the vibrations. The peak intensity variation
of the transient IR spectrum over time vividly captures these ultrafast transient processes,
inclusive of, but not restricted to, the 32.1 THz vibration mode corresponding to proton
transfer. Examination of Figure 6b,c reveals that ITR with peak intensities of 1.0 V/nm
or lower induces limited changes in the vibrational modes and IR spectra of the Zundel
cations. Lower intensity THz waves are more prone to resonant interactions than high-field
nonresonant interactions.
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Figure 6. Transient IR absorption spectra of Zundel cationic system before and after ITR action.
(a–c) correspond to the ITR with peak E field strengths of 10.0, 1.0, and 0.1 V/nm, respectively. The
intensity of the infrared spectrum of each image was normalized and logarithmically processed.
The vertical red dashed line indicates the pulse center of the ITR. The horizontal black dashed line
indicates the vibrational modes of Zundel cations, where the vibration frequencies are 5.3, 8.9, 11.1,
14.0, 32.2, 42.4, 44.4, 52.3, 111.9, and 114.5 THz, respectively.
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A recent study based on stochastic theory and trajectory decomposition techniques
has made contributions towards understanding proton transfer processes and spectral
signatures [39,40]. Proton translocation between two water molecules involves significant
separations and a free-energy barrier, deviating from normal mode behavior and character-
ized by two nonvibrational time scales: a dispersed 200–300 fs waiting period leading to
a subtle shoulder near 3 THz in the absorption spectrum and a well-defined spectral con-
tribution around 36 THz with a mean transfer event duration of approximately 14 fs [40].
Notably, Figure 6 exhibits a sustained absorption peak in the vicinity of 32 to 40 THz, a
range corresponding to the spectral characteristics attributed to proton translocation events.
Furthermore, the faint absorption features observed below 10 THz are explicable by the
intervals between successive translocation events.

4. Conclusions

In conclusion, we have employed first-principle calculations to conduct a theoretical
investigation of both resonant and nonresonant modulation of Zundel cations by THz
waves. The PES image of protons discloses the quantum mechanical underpinnings of the
resonant interaction with THz waves, potentially leading to proton transfer and oscillation.
Additionally, the extraordinarily high E field inherent to the ITR may incite oscillations
or transfers of shared protons through nonresonant interactions. On a broader scale, our
AIMD simulations and transient IR spectroscopy reveal the vibrational relaxation process
resulting from the nonresonant interaction between ITR and Zundel cations. ITR has the
capacity to induce or amplify the 10 THz low-frequency vibrational modes of the Zundel
configuration through high-field nonresonant effects, a phenomenon we anticipate can be
identified using THz spectroscopy. These theoretical findings elucidate the microscopic
molecular mechanism of THz wave action, particularly high-field THz waves, on Zundel
cations, thereby enhancing our understanding of the fundamental physics underlying the
interaction between water and THz waves.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/sym15091798/s1, Figure S1: The optimized equilibrium configuration of the
Zundel cation. Figure S2: Illustration of ITR E field components. Figure S3: The IR absorption intensity
of the Zundel cationic system before and after ITR pumping by AIMD simulations. Figure S4: The IR
spectrum of three bands (0–30, 30–60 and 100–120 THz) before and after ITR action.
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