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Abstract: In this study, we first generalize the Lorentzian inner and vector products, and then
we define the generalized split quaternions by means of the generalized Lorentzian inner and
vector products. Next, on any hyperboloid of one or two sheets, which is a generalized Lorentzian
sphere, non-parabolic conical rotations with nonnull axes are expressed using the generalized split
quaternions with supporting numerical examples.

Keywords: Lorentzian inner product; Lorentzian vector product; Lorentzian rotation matrix;
Lorentzian symmetry; split quaternion

1. Introduction

Quaternions were defined by W. R. Hamilton in 1843 to generalize complex num-
bers. Since rotations and reflections in three-dimensional Euclidean space can be ex-
pressed with quaternions, there are many application areas for real quaternions in various
fields of science. In addition to real quaternions, numerous different kinds of quater-
nions and their applications have been investigated over the years. For instance, rotations
in three-dimensional generalized Euclidean spaces have been expressed using elliptical
quaternions [1–3]. Some studies on the topic are given in the reference section [4–7]. How-
ever, generalizations of quaternions and their applications have also attracted researchers’
attention [8–11]. As is known, using generalized scalar products is one way to general-
ize quaternions [3,12]. See [13–18] for information on generalized scalar products and
related concepts.

In this study, we deal specifically with split quaternions as defined by Inoguchi [19].
Split quaternions comprise a number system that is closely related to three-dimensional
Lorentzian geometry, which is a geometric framework that is used to study the struc-
ture of spacetime in special relativity. Split quaternions can be used to represent conical
rotations on standard hyperboloids, which are spheres in three-dimensional Lorentzian
geometry [12,20,21]. Some recent studies on split quaternions are also given in the reference
section [22–24].

The aim of our study is to provide a generalization for three-dimensional Lorentzian
geometry and split quaternions by generalizing the Lorentzian inner and vector products,
and to determine non-parabolic conical rotations in three-dimensional space using general-
ized split quaternions. Due to these generalized split quaternions, any non-parabolic conical
rotation in three-dimensional space can be easily expressed without long calculations with
affine transformations.

The paper is organized as follows. First, we describe the basics of three-dimensional
Lorentzian geometry and define a three-dimensional generalized Lorentzian inner product
whose sphere is any given hyperboloid of one or two sheets, having the equation

Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = ±r2 (1)
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and a three-dimensional generalized Lorentzian vector product. Then, we describe the
basics of split quaternions and generalize them using generalized Lorentzian products.
We also show how generalized split quaternions can be used to represent non-parabolic
conical rotations, which are elliptic and hyperbolic rotational motions on any hyperboloids.
Finally, we provide some numerical examples.

2. Generalized Lorentzian Inner and Vector Products

Three-dimensional Lorentzian geometry, also known as the Minkowski 3-space R3
1, is

the Euclidean space R3 endowed with the Lorentzian inner product

〈u, w〉L = −u1w1 + u2w2 + u3w3, (2)

where u = (u1, u2, u3), w = (w1, w2, w3) ∈ R3. The associated matrix of the Lorentzian
inner product is diag(−1, 1, 1). Since it is indefinite, the vectors of R3

1 are classified as
follows. A vector u ∈ R3

1 is called spacelike, timelike, or lightlike if 〈u, u〉L > 0, 〈u, u〉L < 0,
or 〈u, u〉L = 0, respectively. The norm of the vector u ∈ R3

1 is defined by ‖u‖L =
√
|〈u, u〉L|,

and the Lorentzian vector product of u and w is defined by

u×L w =

∣∣∣∣∣∣
−i j k
u1 u2 u3
w1 w2 w3

∣∣∣∣∣∣, (3)

where i, j, k are standard unit vectors. For further information on Lorentzian geometry,
see [25–27].

Similar to the generalization of the three-dimensional Euclidean inner product [1,28],
one can generalize the Lorentzian inner product by using a suitable general matrix instead
of diag(−1, 1, 1), as in the following example.

For vectors u = (u1, u2, u3), w = (w1, w2, w3) ∈ R3, and the real symmetric matrix

Ω =

A D E
D B F
E F C

 (4)

having a negative determinant, whose eigenvalues are not of the same sign, the map
BΩ(u, w) = uTΩw = Au1w1 + Bu2w2 + Cu3w3 + D(u1w2 + u2w1) + E(u1w3 + u3w1)
+ F(u2w3 + u3w2) is called the generalized Lorentzian (or BΩ-) inner product, and the
real vector space R3 with the generalized Lorentzian inner product is called the three-
dimensional generalized Lorentzian space, which is denoted by R3

BΩ
.

Here, Ω is the matrix associated with the symmetric bilinear form, and

∆ =
√
|det Ω| =

√
|ABC + 2FDE− AF2 − CD2 − BE2|. (5)

is the constant of it. As usual, the BΩ-norm of the vector u is defined as

‖u‖BΩ
=
√
|BΩ(u, u)|=

√∣∣Au2
1 + Bu2

2 + Cu2
3 + 2Du1u2 + 2Eu1u3 + 2Fu2u3

∣∣,
and the vectors u and w are called BΩ-orthogonal if BΩ(u, w) = 0. As with the Lorentzian
space, since the generalized Lorentzian inner product is indefinite, the vectors of R3

BΩ
can

be classified as follows:

(i) If BΩ(u, u) > 0 or u = 0, then u is called a BΩ-spacelike vector.
(ii) If BΩ(u, u) < 0, then u is called a BΩ-timelike vector.
(iii) If BΩ(u, u) = 0 and u 6= 0, then u is called a BΩ-lightlike or BΩ-null vector.
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Normally,

cos−1

(
BΩ(u, w)

‖u‖BΩ
‖w‖BΩ

)
and cosh−1

(
−BΩ(u, w)

‖u‖BΩ
‖w‖BΩ

)
(6)

determine the BΩ-measure of the angle between u and w, if they are BΩ-spacelike and
BΩ-timelike vectors, respectively. For a positive real number r, the set

S2
BΩ

(r) =
{

u ∈R3
BΩ

: BΩ(u, u) = r2
}

(7)

is called a BΩ-pseudosphere with the radius r, and the set

H2
BΩ

(r) =
{

u ∈R3
BΩ

: BΩ(u, u) = −r2
}

(8)

is called a BΩ-hyperbolic sphere with the radius r. The BΩ-pseudosphere and the BΩ-
hyperbolic sphere are both called the generalized Lorentzian (or BΩ-) sphere. In addition,
the set

LBΩ =
{

u ∈R3
BΩ

: BΩ(u, u) = 0
}

(9)

is called a BΩ-lightcone. Using the classification conditions for quadrics (see [29]), one
can easily see that the BΩ-pseudosphere is a general hyperboloid of one sheet, the BΩ-
hyperbolic sphere is a general hyperboloid of two sheets, and the BΩ-lightcone is a
general cone.

It is known that in three-dimensional space, the vector product can be defined by
a skew symmetric matrix. Now, we define and then determine the BΩ-skew symmetric
matrices in R3

BΩ
.

Definition 1. Let T be a 3× 3 real matrix. If

BΩ(Su, w) = −BΩ(u, Sw) (10)

for every u, w ∈ R3
BΩ

, then T is called BΩ-skew symmetric.

One can derive that the matrix S is BΩ-skew symmetric if and only if StΩ = −ΩS.
Thus, we obtain the following theorem:

Theorem 1. BΩ-skew symmetric matrices are as follows

λ


(EF−CD)u3−(DF−BE)u2

det Ω
(DF−BE)u1−(BC−F2)u3

det Ω
(BC−F2)u2−(EF−CD)u1

det Ω
(AC−E2)u3−(DE−AF)u2

det Ω
(DE−AF)u1−(EF−CD)u3

det Ω
(EF−CD)u2−(AC−E2)u1

det Ω
(DE−AF)u3−(AB−D2)u2

det Ω
(AB−D2)u1−(DF−BE)u3

det Ω
(DF−BE)u2−(DE−AF)u1

det Ω

 (11)

where u1, u2, u3, λ ∈ R.

Proof. We need to find the matrix

S =

 s11 s12 s13
s21 s22 s23
s31 s32 s33

 (12)
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having the equality StΩ = −ΩS, so we have the following system of equations:

As11 + Ds21 + Es31 = 0
Bs22 + Fs32 + Ds12 = 0
Cs33 + Fs23 + Es13 = 0
As12 + Bs21 + Fs31 + Ds11 + Ds22 + Es32 = 0
As13 + Cs31 + Fs21 + Es11 + Ds23 + Es33 = 0
Bs23 + Cs32 + Fs22 + Fs33 + Ds13 + Es12 = 0

. (13)

Using the substitutions

u1 = Et12 + Ft22 + Ct32 = −Dt13 − Bt23 − Ft33

u2 = At13 + Dt23 + Et33 = −Et11 − Ft21 − Ct31 (14)

u3 = Dt11 + Bt21 + Ft31 = −At12 − Dt22 − Et32,

one derives three systems of equations
As11 + Ds21 + Es31 = 0
Ds11 + Bs21 + Fs31 = u3
Es11 + Fs21 + Cs31 = −u2
As12 + Ds22 + Es32 = −u3
Ds12 + Bs22 + Fs32 = 0
Es12 + Fs22 + Cs32 = u1

(15)


As13 + Ds23 + Es33 = u2
Ds13 + Bs23 + Fs33 = −u1
Es13 + Fs23 + Cs33 = 0

.

Solving them with Cramer’s rule, one obtains matrix (11).

Considering the following BΩ-skew symmetric matrix

S =


∆5u2 − ∆6u3 ∆3u3 − ∆5u1 ∆6u1 − ∆3u2

∆4u2 − ∆2u3 ∆6u3 − ∆4u1 ∆2u1 − ∆6u2

∆1u2 − ∆4u3 ∆5u3 − ∆1u1 ∆4u1 − ∆5u2

, (16)

where ∆ =
√
|det Ω|, ∆1 = (AB − D2)/∆, ∆2 = (AC − E2)/∆, ∆3 = (BC − F2)/∆,

∆4 = (DE− AF)/∆, ∆5 = (DF− BE)/∆, and ∆6 = (EF− CD)/∆, one has the following
definition:

Definition 2. Let u = (u1, u2, u3) and w = (w1, w2, w3) be any two vectors in R3
BΩ

. The
generalized Lorentzian vector product is the function

×GL : R3
BΩ
×R3

BΩ
→ R3

BΩ
, (u, w)→ u×GL w, (17)
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defined by

u×GL w =


∆5u2 − ∆6u3 ∆3u3 − ∆5u1 ∆6u1 − ∆3u2

∆4u2 − ∆2u3 ∆6u3 − ∆4u1 ∆2u1 − ∆6u2

∆1u2 − ∆4u3 ∆5u3 − ∆1u1 ∆4u1 − ∆5u2


w1

w2
w3



=


−∆3(u2w3 − u3w2)− ∆6(u3w1 − u1w3)− ∆5(u1w2 − u2w1)

−∆6(u2w3 − u3w2)− ∆2(u3w1 − u1w3)− ∆4(u1w2 − u2w1)

−∆5(u2w3 − u3w2)− ∆4(u3w1 − u1w3)− ∆1(u1w2 − u2w1)



=

∣∣∣∣∣∣∣∣∣
−∆3i− ∆6j− ∆5k −∆6i− ∆2j− ∆4k −∆5i− ∆4j− ∆1k

u1 u2 u3

w1 w2 w3

∣∣∣∣∣∣∣∣∣,
where ∆1 = (AB− D2)/∆, ∆2 = (AC− E2)/∆, ∆3 = (BC− F2)/∆, ∆4 = (DE− AF)/∆,
∆5 = (DF− BE)/∆ , ∆6 = (EF− CD)/∆, and i, j, k are the usual standard unit vectors.

Using the substitutions î = ∆3i + ∆6j + ∆5k, ĵ = ∆6i + ∆2j + ∆4k, and k̂ = ∆5i +
∆4j + ∆1k, one has the generalized Lorentzian vector product as follows

u×GL w =

∣∣∣∣∣∣∣∣∣
−î −ĵ −k̂

u1 u2 u3

w1 w2 w3

∣∣∣∣∣∣∣∣∣. (18)

3. Generalized Split Quaternions

For the real numbers q0, q1, q2, q3, and the basic elements i, j, k satisfying the equalities
i2 = −1, j2 = k2 = 1, ij = k, jk = −i, ki = j, ji = −k, kj = i, ik = −j, a split quaternion
q is represented by q = (q0, q1, q2, q3) = q0 + q1i + q2j + q3k, or q = sq + vq, where sq = q0
and vq = q1i + q2j + q3k denote the scalar and vector parts of q, respectively. The conjugate

and norm of q are defined as q = sq − vq and Nq =
√
|qq| =

√∣∣q2
0 + q2

1 − q2
2 − q2

3

∣∣. A
split quaternion is called spacelike, timelike, or lightlike (null), if Iq < 0, Iq > 0, or
Iq = 0, respectively, where Iq = q2

0 + q2
1 − q2

2 − q2
3. In addition, if Nq = 1, then q is called

the unit split quaternion. The split quaternion multiplication of p = (p1, p2, p3, p4) and
q = (q1, q2, q3, q4) is defined by

pq = p0q0 + 〈u, w〉L + p0vq + q0vp + vp ×L vq, (19)

and the algebra of the split quaternion set H is an associative, non-commutative, and
non-division ring [19,21].

In this section, we generalize the split quaternions by using the generalized Lorentzian
inner and vector products. The generalized split quaternions will be the number system
related to the three-dimensional generalized Lorentzian geometry.

Consider the real value entries A, B, C, D, E, F of the matrix Ω and the basic elements
i, j, k satisfying the equalities
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i2 = A, j2 = B, k2 = C

ij = D− i∆5 − j∆4 − k∆1

ji = D + i∆5 + j∆4 + k∆1 (20)

jk = F− i∆3 − j∆6 − k∆5

kj = F + i∆3 + j∆6 + k∆5

ki = E− i∆6 − j∆2 − k∆4

ik = E + i∆6 + j∆2 + k∆4,

where ∆ =
√
|det Ω|, ∆1 = (AB− D2)/∆, ∆2 = (AC− E2)/∆, ∆3 = (BC− F2)/∆, ∆4 =

(DE− AF)/∆, ∆5 = (DF − BE)/∆, and ∆6 = (EF − CD)/∆. Then, for q0, q1, q2, q3 ∈ R,
q = (q0, q1, q2, q3) = q0 + q1i + q2j + q3k = sp + vp is called a generalized split (or g-split)
quaternion, where sp = q0 and vp = q1i + q2j + q3k. Here, sq is called the scalar part of q,
and vq is called the vector part of q, considering i, j, k are the usual standard unit vectors.
The set of all g-split quaternions is denoted by HΩ. For every Ω, this set is an associative,
non-commutative, and non-division ring. The g-split quaternion multiplication table is
as follows:

· 1 i j k
1 1 i j k
i i A D− i∆5 − j∆4 − k∆1 E + i∆6 + j∆2 + k∆4
j j D + i∆5 + j∆4 + k∆1 B F− i∆3 − j∆6 − k∆5
k k E− i∆6 − j∆2 − k∆4 F + i∆3 + j∆6 + k∆5 C

(21)

The g-split quaternion multiplication of two quaternions p = p0 + p1i + p2j + p3k =
sp + vp and q = q0 + q1i + q2j + q3k = sq + vq is defined by

pq = p0q0 + BΩ
(
vp, vq

)
+ p0vq + q0vp + vp ×GL vq. (22)

Then, one can derive that

spq = p0q0 + Ap1q1 + Bp2q2 + Cp3q3 + Dp1q2 + Dp2q1 + Ep1q3 + Ep3q1 + Fp2q3 + Fp3q2

and vpq =

 p0q1 + q0 p1 − ∆3(p2q3 − p3q2)− ∆6(p3q1 − p1q3)− ∆5(p1q2 − p2q1),
p0q2 + q0 p2 − ∆6(p2q3 − p3q2)− ∆2(p3q1 − p1q3)− ∆4(p1q2 − p2q1),
p0q3 + q0 p3 − ∆5(p2q3 − p3q2)− ∆4(p3q1 − p1q3)− ∆1(p1q2 − p2q1)

.

The g-split quaternion left and right multiplications can be expressed as the following:

Lp(q) = pq =


p0 Ap1 + Dp2 + Ep3 Dp1 + Bp2 + Fp3 Ep1 + Fp2 + Cp3
p1 p0 + p2∆5 − p3∆6 p3∆3 − p1∆5 p1∆6 − p2∆3
p2 p2∆4 − p3∆2 p0 + p3∆6 − p1∆4 p1∆2 − p2∆6
p3 p2∆1 − p3∆4 p3∆5 − p1∆1 p0 + p1∆4 − p2∆5




q0
q1
q2
q3

 (23)

Rp(q) = qp =


p0 Ap1 + Dp2 + Ep3 Dp1 + Bp2 + Fp3 Ep1 + Fp2 + Cp3
p1 p0 + p3∆6 − p2∆5 p1∆5 − p3∆3 p2∆3 − p1∆6
p2 p3∆2 − p2∆4 p0 + p1∆4 − p3∆6 p2∆6 − p1∆2
p3 p3∆4 − p2∆1 p1∆1 − p3∆5 p0 + p2∆5 − p1∆4




q0
q1
q2
q3

. (24)
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One can see that the associative property for g-split quaternion multiplication is
satisfied since RqLp = LpRq. As usual, we also have the following conjugate, norm, and
inverse definitions for a g-split q:

q = sq − vq

Nq =
√∣∣Jq

∣∣ where Jq = qq = qq = s2
q −BΩ(vq, vq) (25)

q−1 =
q
Jq

.

In addition, if Nq = 1, then q is called a unit g-split quaternion, and if Nq 6= 0, then q/Nq is
a unit g-split quaternion. The g-split quaternions are classified according to the sign of Jq
as the following split quaternions: a g-split quaternion is called g-timelike, g-spacelike, and
g-lightlike (or g-null) if Jq > 0, Jq < 0 and Jq = 0, respectively. Here, one can also see with
a long calculation that

s2
pq −BΩ

(
vpq, vpq

)
− (s2

p −BΩ
(
vp, vp

)
)(s2

q −BΩ
(
vq, vq

)
) = 0. (26)

Then, we have Jpq = Jp Jq, and so Npq = NpNq. Notice that the set of g-spacelike g-split
quaternions and the set of g-lightlike g-split quaternions do not form a group under g-split
quaternion multiplication. However, the set of g-timelike g-split quaternions forms a group
under g-split quaternion multiplication.

The vector part of any g-timelike g-split quaternion can be BΩ-spacelike, BΩ-timelike,
or BΩ-null. However, the vector part of any g-spacelike g-split quaternion is BΩ-spacelike
necessarily. Any g-split quaternion q = q0 + q1i + q2j + q3k without a BΩ-null vector part
can be expressed in the polar form similar to the split quaternions, as in the following:

(i) Every g-timelike g-split quaternion with a BΩ-spacelike vector part can be written in
the form

q = Nq(cosh θq + εq sinh θq), (27)

where cosh θq = q0
Nq

, sinh θq =

√
BΩ(vq ,vq)

Nq
, and εq = q1i+q2 j+q3k√

BΩ(vq ,vq)
, which is a unit

BΩ-spacelike vector in R3
BΩ

, satisfying the equality ε2
q = 1.

(ii) Every g-timelike g-split quaternion with a BΩ-timelike vector part can be written in
the form

q = Nq(cos θq + εq sin θq), (28)

where cos θq = q0
Nq

, sin θq =

√
|BΩ(vq ,vq)|

Nq
, and εq = q1i+q2 j+q3k√

|BΩ(vq ,vq)|
is a unit BΩ-timelike

vector in R3
BΩ

, satisfying the equality ε2
q = −1.

(iii) Every g-spacelike g-split quaternion can be written in the form

q = Nq(sinh θq + εq cosh θq), (29)

where sinh θq = q0
Nq

, cosh θq =

√
BΩ(vq ,vq)

Nq
, and εq = q1i+q2 j+q3k√

BΩ(vq ,vq)
, which is a unit

BΩ-spacelike vector in R3
BΩ

, satisfying the equality ε2
q = 1.

4. Generating Generalized Lorentzian Rotation Matrices

In this section, we first define BΩ-rotations, which can be elliptic or hyperbolic ro-
tations of the three-dimensional space, and then we use generalized split quaternions to
generate BΩ-rotation matrices, similar to the three-dimensional Lorentzian space.

It is known that orthogonal matrices whose determinants are 1 can be used to represent
rotations since they are the only linear transformations preserving both the norm and the
vector product. Therefore, we need to define the BΩ-orthogonal matrices in R3

BΩ
:
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Definition 3. Let R be a 3× 3 real matrix. If

BΩ(Ru, Rw) = BΩ(u, w) (30)

for all vectors u, w ∈ R3
BΩ

, then R is called BΩ-orthogonal.

One can derive that R is BΩ-orthogonal if and only if RtΩR = Ω. It is clear that
the determinant of a BΩ-orthogonal matrix is either 1 or −1. If R is BΩ-orthogonal and
det(R) = 1, then R is called a BΩ-rotation matrix. We denote the BΩ-rotation around
the BΩ-axis u by the BΩ-angle θ, with Ru

θ . Note that a BΩ-rotation occurs on a general
hyperboloid of one or two sheets. By the following theorem, one can see that every unit
g-timelike g-split quaternion defined by the matrix Ω, whose vector part is not BΩ-null,
determines a BΩ-rotation in R3

BΩ
:

Theorem 2. If q = q0 + q1i + q2j + q3k is a unit g-timelike g-split quaternion whose vector
part is not BΩ-null, then Rq(p) = qpq−1 determines a BΩ-rotation, and the matrix Rq of the
transformation is

(
2q2

0−1
)
−2(δ′q1

−∆′q(5,6)) −2(δ′′q1
− ∆′′q(3,5)) −2(δ′′′q1

− ∆′′′q(6,3))

−2(δ′q2
− ∆′q(4,2))

(
2q2

0−1
)
−2(δ′′q2

−∆′′q(6,4)) −2(δ′′′q2
− ∆′′′q(2,6))

−2(δ′q3
− ∆′q(1,4)) −2(δ′′q3

− ∆′′q(5,1))
(
2q2

0−1
)
−2(δ′′′q3

−∆′′′q(4,5))

, (31)

where δ′qi
=qi(Aq1+Dq2+Eq3), δ′′qi

=qi(Dq1+Bq2+Fq3), δ′′′qi
=qi(Eq1+Fq2+Cq3),

∆′q(i,j)=q0
(
∆iq2−∆jq3

)
, ∆′′q(i,j)=q0

(
∆iq3−∆jq1

)
, and ∆′′′q(i,j)=q0

(
∆iq1−∆jq2

)
. In addition:

(i) If the vector part of q is BΩ-spacelike, and the polar form of q is

cosh θq + εq sinh θq, (32)

then the BΩ-axis of the BΩ-rotation is εq, and the BΩ-angle of the BΩ-rotation is 2θq =

2 cosh−1 q0. Therefore, Rq = R
εq
2θ .

(ii) If the vector part of q is BΩ-timelike, and the polar form of q is

cos θq + εq sin θq, (33)

then the BΩ-axis of the BΩ-rotation is εq, and the BΩ-angle of the BΩ-rotation is 2θq =

2 cos−1 q0. Therefore, Rq = R
εq
2θ .

Proof. Let q be a unit g-timelike g-split quaternion whose vector part is not BΩ-null. Let us
consider the map Rq(p) = qpq−1 = qpq for any g-split quaternion p. It is not difficult to see
that Rq is linear, preserving the norm of the vector part and the scalar part of p. Then, we
must consider only pure g-split quaternions whose maps are also pure g-split quaternions
with the same norm. To determine the transformation matrix, it is enough to find Rq(i),
Rq(j), and Rq(k). Using Rq(i) = Lq(Li(q)), Rq(j) = Lq

(
Lj(q)

)
, Rq(k) = Lq(Lk(q)), and

Jq = 1, one obtains

Rq(i)=
(

2q2
0−1−2(δ′q1

−∆′q(5,6))
)

i−2(δ′q2
−∆′q(4,2))j−2(δ′q3

−∆′q(1,4))k

Rq(j)=−2(δ′′q1
−∆′′q(3,5))i+

(
2q2

0−1−2(δ′′q2
−∆′′q(6,4))

)
j−2(δ′′q3

−∆′′q(5,1))k

Rq(k)=−2(δ′′′q1
−∆′′′q(6,3))i−2(δ′′′q2

−∆′′′q(2,6))j+
(

2q2
0−1−2(δ′′′q3

−∆′′′q(4,5))
)

k,

and we obtain matrix (31). In addition, one can see that
(

Rq
)tΩRq = Ω and det(Rq) = 1.

Therefore, Rq is a BΩ-rotation matrix. In addition,
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(i) Let the vector part of q be BΩ-spacelike, and let the polar form of q be
cosh θq + εq sinh θq. Since vq ‖ εq, we have vq ×GL εq = εq ×GL vq = 0 and qεq = εqq.
Then, we have Rq(εq) = qεqq−1 = εqqq−1 = εq, which means that εq is the BΩ-axis
of the BΩ-rotation. To determine the BΩ-angle of the BΩ-rotation, let us consider a
BΩ-orthonormal set

{
εq, ε1, ε2

}
satisfying

ε1 ×GL ε2 = εq, ε2 ×GL εq = ε1 and εq ×GL ε1 = ε2. (34)

It is enough to determine how ε1 changes under Rq. Considering the g-split quaternion
multiplication, one obtains

Rq(ε1) = qε1q

=
(
cosh θq + εq sinh θq

)
ε1
(
cosh θq − εq sinh θq

)
=
(
ε1 cosh θq + ε2 sinh θq

)(
cosh θq − εq sinh θq

)
= ε1 cosh 2θq + ε2 sinh 2θq. (35)

Thus, the BΩ-angle of the BΩ-rotation is 2θq. In addition, 2θq = 2 cosh−1 q0, since
cosh θq = q0.

(ii) Let the vector part of q be BΩ-timelike, and let the polar form of q be cos θq + εq sin θq.
Since vq ‖ εq, we have vq ×GL εq = εq ×GL vq = 0, and so qεq = εqq. Then, we
have Rq

(
εq
)
= qεqq−1 = εqqq−1 = εq. Thus, εq is the BΩ-axis of the BΩ-rotation.

To determine the BΩ-angle of the BΩ-rotation, let us consider a BΩ-orthonormal set{
εq, ε1, ε2

}
satisfying

ε1 ×GL ε2 = εq, ε2 ×GL εq = ε1, and εq ×GL ε1 = ε2. (36)

It is enough to determine how ε1 changes under Rq. Considering the g-split quaternion
multiplication, one obtains

Rq(ε1) = qε1q

=
(
cos θq + ε0 sin θq

)
ε1
(
cos θq − ε0 sin θq

)
=
(
ε1 cos θq + ε2 sin θq

)(
cos θq − εq sin θq

)
= ε1 cos 2θq + ε2 sin 2θq. (37)

Thus, the BΩ-angle of the BΩ-rotation is 2θq. In addition, 2θq = 2 cos−1 q0, since cos θ = q0.

By the following corollary, we see that all BΩ-rotations whose axes are not BΩ-null
vectors can be represented by unit g-timelike g-split quaternions defined by the matrix Ω:

Corollary 1.

(i) For a unit BΩ-spacelike vector n = (n1, n2, n3) in R3
BΩ

, the BΩ-rotation matrix Rn
θ is

1− µs + δ′n1
µs + ∆′5,6ρs δ′′n1

µs + ∆′′3,5ρs δ′′′n1
µs + ∆′′′6,3ρs

δ′n2
µs + ∆′4,2ρs 1− µs + δ′′n2

µs + ∆′′6,4ρs δ′′′n2
µs + ∆′′′2,6ρs

δ′n3
µs + ∆′1,4ρs δ′′n3

µs + ∆′′5,1ρs 1− µs + δ′′′n3
µs + ∆′′′4,5ρs

, (38)

where µs = 1− cosh θ, ρs = sinh θ, δ′ni
= ni(An1 + Dn2 + En3), δ′′ni

= ni(Dn1 + Bn2 + Fn3),
δ′′′ni

= ni(En1 + Fn2 + Cn3), ∆′i,j =
(
∆in2 − ∆jn3

)
, ∆′′i,j =

(
∆in3 − ∆jn1

)
, and

∆′′′i,j =
(
∆in1 − ∆jn2

)
.

(ii) For a unit BΩ-timelike vector n = (n1, n2, n3) in R3
BΩ

, the BΩ-rotation matrix Rn
θ is
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1 + µt + δ′n1

µt + ∆′5,6ρt δ′′n1
µt + ∆′′3,5ρt δ′′′n1

µt + ∆′′′6,3ρt

δ′n2
µt + ∆′4,2ρt 1 + µt + δ′′n2

µt + ∆′′6,4ρt δ′′′n2
µt + ∆′′′2,6ρt

δ′n3
µt + ∆′1,4ρt δ′′n3

µt + ∆′′5,1ρt 1 + µt + δ′′′n3
µt + ∆′′′4,5ρt

, (39)

where δ′ni
= ni(An1 + Dn2 + En3), δ′′ni

= ni(Dn1 + Bn2 + Fn3), δ′′′ni
= ni(En1 + Fn2 + Cn3),

∆′i,j = sin θ
(
∆in2 − ∆jn3

)
, ∆′′i,j = sin θ

(
∆in3 − ∆jn1

)
, and ∆′′′i,j = sin θ

(
∆in1 − ∆jn2

)
.

Proof.

(i) Let n be a unit BΩ-spacelike vector. Then, by the theorem, the unit g-timelike g-split
quaternion

q = q0 + q1i + q2j + q3k = cosh(θ/2) + (n1, n2, n3) sinh(θ/2), (40)

whose vector part is BΩ-spacelike, determines the BΩ-rotation around the BΩ-axis n by
the BΩ-angle θ. Therefore, we have q0 = cosh(θ/2), q1 = n1 sinh(θ/2),
q2 = n2 sinh(θ/2), and q3 = n3 sinh(θ/2). Substituting these values into matrix
(31), we obtain matrix (38).

(ii) Let n be a unit BΩ-timelike vector. Then, by the theorem, the unit g-timelike g-split
quaternion

q = q0 + q1i + q2j + q3k = cos(θ/2) + (n1, n2, n3) sin(θ/2), (41)

whose vector part is BΩ-timelike, determines the BΩ-rotation around the BΩ-axis n by
the BΩ-angle θ. Therefore, we have q0 = cos(θ/2), q1 = n1 sin(θ/2), q2 = n2 sin(θ/2),
and q3 = n3 sin(θ/2). Substituting these values into matrix (31), we obtain matrix (39).

Remark 1. Note that a BΩ-rotation of a point P around a BΩ-axis ` by the BΩ-angle π, which is
a BΩ-half turn, is a point P′, which is determined by the BΩ-symmetry about the plane through the
line ` and BΩ-orthogonal to the line through the points P and P′.

5. Numerical Results

In this section, we give some numerical examples as applications of our results. In
the first example, we see that in three-dimensional Lorentzian space corresponding to a
given matrix Ω, a unit g-timelike g-split quaternion determines a conical rotation on a
hyperboloid of one sheet about its vector part by double its argument. This rotation is
elliptic since the vector part is BΩ-spacelike.

Example 1. Given a matrix

Ω =

 1 −2 0
−2 1 −2
0 −2 4

,

 (42)

which is suitable for the conditions, then we have ∆ =
√
|−16| = 4, ∆1 = − 3

4 , ∆2 = ∆5 = 1, ∆3 = 0,
∆4 = 1

2 , ∆5 = 1, and ∆6 = 2. Let us consider the g-split quaternion p = (1/
√

2, 1/
√

6, 1/
√

6,
1/2
√

6) . It is unit g-timelike with a BΩ-timelike vector part, since Np = 1, Jp = 1, and
BΩ(vp, vp) = − 1

2 . Then, its polar form is

p = cos(π/4) +
(

1√
3

i + 1√
3

j + 1
2
√

3
k
)

sin(π/4). (43)

With a simple calculation, we obtain

Rp =

 1/3 (2−
√

3)/3 2/
√

3
1/3 (

√
3 + 4)/6 −1/

√
3

(1− 2
√

3)/6 (5
√

3 + 4)/12 −
√

3/6

, (44)
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which is the BΩ-rotation around εp =
(

1/
√

3, 1/
√

3, 1/2
√

3
)
= ε by the BΩ-angle π/2. One

can check that (Rp)tΩRp = Ω and det Rp = 1. Let us also consider the g-split quaternion
q = (1/2, 1/2, 1/2, 1/4), which is also unit g-timelike with a BΩ-timelike vector part, since
Nq = 1, Jq = 1 and BΩ(vq, vq) = − 3

4 . Then, its polar form is

q = cos(π/3) +
(

1√
3

i + 1√
3

j + 1
2
√

3
k
)

sin(π/3). (45)

With a simple calculation again, one obtains

Rq =


0 1

2 1
1
2

3
4 − 1

2

− 1
4

9
8 − 3

4

, (46)

which is the BΩ-rotation εq = ε =
(

1/
√

3, 1/
√

3, 1/2
√

3
)

by the BΩ-angle 2π/3. One can

check that (Rq)tΩRq = Ω and det Rq = 1. In addition, we have

pq =
(√

2−
√

6
4 ,

√
3+1

2
√

6
,
√

3+1
2
√

6
,
√

3+1
4
√

6

)
= cos(7π/12) +

(
1√
3

i + 1√
3

j + 1
2
√

3
k
)

sin(7π/12), (47)

since BΩ(vp, vq) = −
√

6/4 and vp ×GL vq = 0. Note also that Npq = 1, and we obtain

Rpq =


1−
√

3
3

3
√

3+4
6 −

√
3

3
√

3+2
6

8−3
√

3
12

√
3

6

3
√

3+2
12

8−
√

3
24 − 5

√
3

12

, (48)

which is the matrix of the BΩ-rotation around the BΩ-axis εpq = ε =
(

1/
√

3, 1/
√

3, 1/2
√

3
)

by
the BΩ-angle 7π/6. Note that

Rε
π/2Rε

2π/3 = Rε
2π/3Rε

π/2 = Rε
7π/6. (49)

Now we have BΩ-rotation matrices. Let us consider the vector u = (1, 2, 3) on the hyperboloid of
one sheet with the equation

x2 + y2 + 4z2 − 4xy− 4yz = 9. (50)

One can see that

Rε
π/2(u) =

(
4
√

3+5
3 , 5−2

√
3

3 , 5
6

)
= v (51)

Rε
2π/3(u) =

(
4, 1

2 ,− 1
4

)
= v′ (52)

Rε
2π/3(v) = Rε

π/2(v
′)=Rε

7π/6(u)=
(

5−
√

3
3 ,

√
3+10
6 , 10−13

√
3

12

)
=w. (53)

Note that these vectors are on the same hyperboloid. The rotation occurs on an ellipse that is the
intersection curve of the hyperboloid and the plane Πε through the end point of the vector u and
BΩ-orthogonal to the vector ε.

In the next example, we take a unit g-timelike g-split quaternion having a BΩ-timelike
vector part, and then the movement of the BΩ-rotation turns into a hyperbola.
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Example 2. Let us consider the g-split quaternions q = (1/2, 1/2, 1/2, 1/4) and r = (0, 1/
√

3,
2/
√

3, 2/
√

3), instead of p and q. The g-split quaternion r is also unit g-timelike having a BΩ-
timelike vector part, since Nq = 1, Jq = 1 and BΩ(vr, vr) = −1. Then, its polar form is

r = cos(π/2) +
(

1√
3

i + 2√
3

j + 2√
3

k
)

sin(π/2). (54)

Then, one obtains

Rr =


1 8

3 − 8
3

4 13
3 − 16

3

4 16
3 − 19

3

, (55)

which is the BΩ-rotation around εr =
(

1/
√

3, 2/
√

3, 2/
√

3
)

by the BΩ-angle π. For this example,
there are two different BΩ-axes. In addition, since

BΩ(vq, vr) = −5
√

3
6

(56)

vq ×GL vr =
(√

3
3 ,−

√
3

6 ,
√

3
12

)
, (57)

one obtains
qr =

(
− 5
√

3
6 ,
√

3
2 ,
√

3
6 , 5

√
3

12

)
, (58)

which is a unit g-timelike g-split quaternion whose vector part is BΩ-spacelike. Then, it has the
polar form

qr = cosh θ +

(
3i+j+ 5

2 k√
13

)
+ sinh θ, (59)

where θ = sinh−1(
√

13
12 ). Thus, one obtains

Rqr =


6 15

2 −9
3
2

23
12 − 13

6
5
4

5
24 − 7

12

, (60)

which is the BΩ-rotation around εqr =
(

3/
√

13, 1/
√

13, 5/2
√

13
)

by the BΩ-angle

2 sinh−1(
√

13
12 ). Note that RqRr = Rqr but RrRq 6= Rqr. In this case, for the vector u = (1, 2, 3),

Rqr(u) = (−6,− 7
6 ,− 1

12 ) = s. Note that BΩ-rotation occurs on a hyperbola that is the intersection
curve of the hyperboloid and the plane Πεqr through the end point of the vector u and BΩ-orthogonal

to the vector εqr =
(

3/
√

13, 1/
√

13, 5/2
√

13
)

.

Note that BΩ-rotation matrices having the same coefficients are also valid for hyper-
boloids of two sheets. For example, take a vector m = (2, 2,

√
3

2 + 1) on the hyperboloid of
two sheets with the equation

x2 + y2 + 4z2 − 4xy− 4yz = −9. (61)

Then, one has Rqr(m) =
(

36−9
√

3
2 , 56−13

√
3

12 , 56−7
√

3
24

)
= n. The rotation occurs on the in-

tersection hyperbola of this hyperboloid and the plane Πεqr : x− 10y + 8z = 4
√

3− 10
that passes through the end point of the vector m and BΩ-orthogonal to the vector
εqr =

(
3/
√

13, 1/
√

13, 5/2
√

13
)

.
In the last example, we determine BΩ-rotation for a given axis and an angle, consider-

ing the same matrix Ω.
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Example 3. Let us determine the matrix of the BΩ-rotation around the BΩ-axis u = (1, 1, 1/2) by
BΩ-angle 2π/3. Since we have the unit BΩ-timelike vector u/Nu =

(
1/
√

3, 1/
√

3, 1/2
√

3
)

and BΩ-angle θ = π/3, we need to consider the g-split quaternion q whose polar form is

cos(π/3) +
(

1/
√

3, 1/
√

3, 1/2
√

3
)

sin(π/3). (62)

This unit g-timelike g-split quaternion, whose vector part is BΩ-timelike, determines the
BΩ-rotation around BΩ-axis εq and BΩ-angle 2π/3. By a straightforward calculation, one obtains
δ′q1

= δ′q2
= δ′′q3

= − 1
3 , δ′q3

= − 1
6 , δ′′q1

= δ′′q2
= − 2

3 , δ′′′q1
= δ′′′q2

= δ′′′q3
= 0, ∆′5,6 = ∆′4,2 = 0,

∆′1,4 = ∆′′3,5 = ∆′′′2,6 = − 1
2 , ∆′′6,4 = 1

4 , ∆′′5,1 = 5
8 , ∆′′′6,3 = 1, ∆′′′4,5 = − 1

4 , and

R
εq
2π/3 =


0 1

2 1
1
2

3
4 − 1

2

− 1
4

9
8 − 3

4

, (63)

which is the matrix of the BΩ-rotation around the BΩ-axis u = (1, 1, 1/2) by the BΩ-angle 2π/3
(see Example 1).

6. Discussion

In this paper, we generalized three-dimensional Lorentzian geometry and its asso-
ciated number system, the split quaternions. Due to the results, the generalized split
quaternions can easily express any non-parabolic conical rotation in three-dimensional
space without long calculations with affine transformations. For future studies, one can
consider the famous Rodrigues, Hausholder, and Cayley transformations to derive new
simple formulas for non-parabolic conical rotations in three-dimensional space.
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