Photon Acceleration by Superluminal Ionization Fronts
Abstract
:1. Introduction
2. Time Frame
3. Frequency Shifts
4. Field Transformations
5. Modulated Fronts
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semenova, V.I. Reflection of Electromagnetic Waves from an Ionization Front. Radiophys. Quantum Electron. 1967, 10, 599–604. [Google Scholar] [CrossRef]
- Lampe, M.; Ott, E.; Walker, J.H. Interaction of Electromagnetic Waves with a Moving Ionization Front. Phys. Fluids 1978, 21, 42. [Google Scholar]
- Mendonça, J.T. Nonlinear Interaction of Wavepackets. J. Plasma Phys. 1979, 22, 15. [Google Scholar] [CrossRef]
- Wilks, S.C.; Dawson, J.M.; Mori, W.B.; Katsouleas, T.; Jones, M.E. Photon Accelerator. Phys. Rev. Lett. 1989, 62, 2600. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, J.T. Theory of Photon Acceleration; Institute of Physics Publishing: Bristol, UK, 2001. [Google Scholar]
- Boyd, R.W. Nonlinear Optics; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Silva, L.O.; Mendonça, J.T. Photon Kinetic Theory of Self-Phase Modulation. Opt. Commun. 2001, 196, 285. [Google Scholar] [CrossRef]
- Alfano, R.R. (Ed.) Ths Supercontinuum Laser Source, 4th ed.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Silva, L.O.; Mendonça, J.T. Photon Acceleration in Superluminous and Accelerated Ionization Fronts. IEEE Trans. Plasma Sci. 1996, 24, 316. [Google Scholar]
- Savage, R.L., Jr.; Joshi, C.; Mori, W.B. Frequency Upconversion of Electromagnetic Radiation upon Transmission into an Ionization Front. Phys. Rev. Lett. 1992, 68, 946. [Google Scholar] [CrossRef]
- Dias, J.M.; Stenz, C.; Lopes, N.; Badiche, X.; Blasco, F.; Santos, A.D.; Silva, L.O.e.; Mysyrowicz, A.; Antonetti, A.; Mendonça, J.T. Experimental Evidence of Photon Acceleration of Ultrashort Laser Pulses in Relativistic Ionization Fronts. Phys. Rev. Lett. 1997, 78, 4773. [Google Scholar]
- Dias, J.M.; Lopes, N.C.; Silva, L.O.; Figueira, G.; Mendonça, J.T.; Stenz, C.; Blasco, F.; Santos, A.D.; Mysyrowicz, A. Photon Acceleration of Ultrashort Laser Pulses by Relativistic Ionization Fronts. Phys. Rev. E 2002, 66, 056406. [Google Scholar] [CrossRef]
- Lopes, N.C.; Figueira, G.; Dias, J.M.; Silva, L.O.; Mendonça, J.T.; Balcou, P.; Rey, G.; Stenz, C. Laser Pulse Frequency Up-shifts by Relativistic Ionization Fronts. EuroPhys. Lett. 2004, 66, 371. [Google Scholar]
- Sainte-Marie, A.; Gobert, O.; Quéré, F. Controlling the Velocity of Ultrashort Light Pulses in Vacuum through Spatio-temporal Couplings. Optica 2017, 4, 1298. [Google Scholar] [CrossRef]
- Froula, D.H.; Turnbull, D.; Davies, A.S.; Kessler, T.J.; Haberberger, D.; Palastro, J.P.; Bahk, S.; Begishev, I.A.; Boni, R.; Bucht, S.; et al. Spatiotemporal Control of Laser Intensity. Nat. Photon. 2018, 12, 262. [Google Scholar]
- Franke, P.; Turnbull, D.; Katz, J.; Palastro, J.P.; Begishev, I.A.; Bromage, J.; Shaw, J.L.; Boni, R.; Froula, D.H. Measurement and Control of Large Diameter Ionization Waves of Arbitrary Velocity. Opt. Express 2019, 27, 31978. [Google Scholar] [PubMed]
- Li, Z.; Liu, Y.; Leng, Y.; Li, R. Investigating Group-Velocity-Tunable Propagation-Invariant Optical Wave-Packets. Sci. Rep. 2022, 12, 16102. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Bhatt, R.N.; Sondhi, S.L. Fast Preparation of Critical Ground States using Superluminal Fronts. Phys. Rev. Lett. 2018, 120, 210604. [Google Scholar] [CrossRef]
- Kondakci, H.E.; Abouraddy, A.F. Optical Space-time Wave Packets of Arbitrary Group Velocity in Free Space. Nat. Commun. 2019, 10, 929. [Google Scholar] [CrossRef] [PubMed]
- Yessenov, M.; Free, J.; Chen, Z.; Johnson, E.G.; Lavery, M.P.L.; Alonso, M.A.; Abouraddy, A.F. Space-time Wave Packets Localized in All Dimensions. Nat. Commun. 2022, 13, 4573. [Google Scholar]
- Mendonça, J.T.; Shukla, P.K. Time Refraction and Time Reflection: Two Basic Concepts. Phys. Scr. 2002, 65, 160. [Google Scholar] [CrossRef]
- Plansinis, B.W.; Donaldson, W.R.; Agrawal, G.P. What is the Temporal Analog of Reflection and Refraction of Optical Beams. Phys. Rev. Lett. 2015, 115, 183901. [Google Scholar] [CrossRef]
- Malaca, B.; Pardal, M.; Ramsey, D.; Pierce, J.R.; Weichman, K.; Andriyash, I.A.; Mori, W.B.; Palastro, J.P.; Fonseca, R.A.; Vieira, J. Coherence and Superradiance from a Plasma-Based Quasiparticle Accelerator. Nat. Photon. 2023, 18, 39–45. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Guerreiro, A.; Martins, A.M. Quantum Theory of Time Refraction. Phys. Rev. A 2000, 62, 033805. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Martins, A.M.; Guerreiro, A. Temporal Beam Splitter and Temporal Interference. Phys. Rev. A 2003, 68, 043801. [Google Scholar] [CrossRef]
- Mendonça, J.T. The Quantum Nature of Light; Institute of Physics Publishing: Bristol, UK, 2022. [Google Scholar]
- Mendonça, J.T. Temporal Klein Model for Particle-Pair Creation. Symmetry 2021, 13, 1361. [Google Scholar] [CrossRef]
- Mendonça, J.T. Particle-pair Creation by High-harmonic Laser Fields. Phys. Src. 2023, 98, 125606. [Google Scholar]
- Mendonça, J.T.; Guerreiro, A. Time Refraction and the Quantum Properties of Vacuum. Phys. Rev. A 2005, 72, 063805. [Google Scholar] [CrossRef]
- Ginzburg, V.L. Propagation of Electromagnetic Waves in Plasmas; Gordon and Breach: New York, NY, YSA, 1961. [Google Scholar]
- Kline, M.; Kay, I.W. Electromagnetic Theory and Geometric Optics; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Shcherbakov, M.R.; Lemasters, R.; Fan, Z.; Song, J.; Lian, T.; Harutyunyan, H.; Shvets, G. Time-Variant Metasurfaces Enable Tunable Spectral Bands of Negative Extinction. Optica 2019, 6, 1441. [Google Scholar] [CrossRef]
- Liu, C.; Alam, M.Z.; Pang, K.; Manukyan, K.; Reshef, O.; Zhou, Y.; Choudhary, S.; Patrow, J.; Pennathurs, A.; Song, H.; et al. Photon Acceleration Using a Time-Varying Epsilon-Near-Zero Metasurface. ACS Photonics 2021, 8, 716. [Google Scholar]
- Yuan, L.; Fan, S. Temporal Modulation Brings Metamaterials into New Era. Light Sci. Appl. 2022, 11, 173. [Google Scholar]
- Castaldi, G.; Rizza, C.; Engheta, N.; Galdi, V. Multiple Actions of Time-resolved Short-pulsed Metamaterials. Appl. Phys. Lett. 2023, 122, 021701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, J.T. Photon Acceleration by Superluminal Ionization Fronts. Symmetry 2024, 16, 112. https://doi.org/10.3390/sym16010112
Mendonça JT. Photon Acceleration by Superluminal Ionization Fronts. Symmetry. 2024; 16(1):112. https://doi.org/10.3390/sym16010112
Chicago/Turabian StyleMendonça, José Tito. 2024. "Photon Acceleration by Superluminal Ionization Fronts" Symmetry 16, no. 1: 112. https://doi.org/10.3390/sym16010112
APA StyleMendonça, J. T. (2024). Photon Acceleration by Superluminal Ionization Fronts. Symmetry, 16(1), 112. https://doi.org/10.3390/sym16010112