Modeling of Particle Size Distribution in the Presence of Flocculant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formation of Initial Allocation for PB
2.2. Population Balance Model
Aggregation and Destruction Kernels
2.3. Auxiliary Equations
3. Results
3.1. GUI Development and Model Manipulation
3.2. Verification of the Algorithm
- (1)
- The rotation speed of the magnetic stirrer armature during emulsion dissolution should not exceed 2 r/s. This is due to the fact that the rate of sedimentation of flocculates formed during the treatment of the CS reagent at this frequency is several times higher than in the solution prepared at 20 r/s because high speeds of rotation increase the level of tangential stress in the liquid, which leads to the destruction of swollen particles of the flocculant.
- (2)
- The flocculant granules were added directly to the alkaline solution. The solution was stirred for 30 min with a magnetic stirrer, and then it is necessary to leave the prepared solution at rest for 60 min for the formation of macromolecules.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Concha, A.F. Solid–Liquid Separation in the Mining Industry; Fluid Mechanics and Its Applications; Springer: Cham, Switzerland, 2014; Volume 105, 429p. [Google Scholar]
- Kynch, G.J. A theory of sedimentation. Trans. Faraday Soc. 1952, 48, 166. [Google Scholar] [CrossRef]
- Serzhan, S.L.; Skrebnev, V.I.; Malevanny, D.V. Study of the effects of steel and polymer pipe roughness on the pressure loss in tailings slurry hydrotransport. Ore Process. J. 2023, 4, 41–49. [Google Scholar] [CrossRef]
- Zhukovskiy, Y.L.; Korolev, N.A.; Malkova, Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque. J. Min. Inst. 2022, 256, 686–700. [Google Scholar] [CrossRef]
- Nikolaeva, N.; Aleksandrova, T.; Romashev, A. Effect of grinding on the fractional composition of polymineral laminated bituminous shales. Miner. Process. Extr. Met. Rev. 2018, 39, 231–234. [Google Scholar] [CrossRef]
- Khalifa, A.A.; Bazhin, V.Y.; Ustinova, Y.V.; Shalabi, M.E.K. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow. J. Min. Inst. 2022, 254, 261–270. [Google Scholar] [CrossRef]
- Koteleva, N.I.; Valnev, V.V.; Korolev, N.A. Augmented reality as a means of metallurgical equipment servicing. Tsvetnye Met. 2023, 4, 14–23. [Google Scholar] [CrossRef]
- Laros, T.; Slottee, S.; Baczek, F. Testing, Sizing, and Specifying Sedimentation Equipment. In Mineral Processing Plant Design, Practice, and Control: Proceedings Volume 1; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2002; Volume 2, 2243p. [Google Scholar]
- Fawell, P.; Farrow, J.B.; Heath, A.; Nguyen, T.; Owen, A.T.; Rudman, M.; Scales, P.; Simic, K.; Stephens, D.; Swift, J.D.; et al. 20 years of AMIRA P266 ‘Improving Thickener Technology’—How has it changed the understanding of thickener performance? In Proceedings of the 12th International Seminar on Paste and Thickened Tailings, Viňa del Mar, Chile, 21–24 April 2009. [Google Scholar] [CrossRef]
- Bürger, R.; Concha, F. Settling velocities of particulate systems: 12. Int. J. Miner. Process. 2001, 63, 115–145. [Google Scholar] [CrossRef]
- Bürger, R.; Damasceno, J.; Karlsen, K. A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section. Int. J. Miner. Process. 2004, 73, 183–208. [Google Scholar] [CrossRef]
- Salamatov, V.I.; Salamatov, O.V.; Zabolotnyaya, D.Y. To the Issue of Mathematical Modeling of the Red Mud Thickening Process. Defect Diffus. Forum 2021, 410, 400–404. [Google Scholar] [CrossRef]
- Chen, G.; Li, C.; Ruan, Z.; Bürger, R.; Gao, Y.; Hou, H. Structural evolution of bed drainage channels under the shear effect of the whole process of tailings thickening. Miner. Eng. 2023, 203, 108364. [Google Scholar] [CrossRef]
- Ruan, Z.; Wu, A.; Bürger, R.; Betancourt, F.; Wang, Y.; Wang, Y.; Jiao, H.; Wang, S. Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry. Powder Technol. 2021, 392, 278–285. [Google Scholar] [CrossRef]
- Gheshlaghi, M.E.; Goharrizi, A.S.; Shahrivar, A.A. Simulation of a semi-industrial pilot plant thickener using CFD approach. Int. J. Min. Sci. Technol. 2013, 23, 63–68. [Google Scholar] [CrossRef]
- Derlon, N.; Thürlimann, C.; Dürrenmatt, D.; Villez, K. Batch settling curve registration via image data modeling. Water Res. 2017, 114, 327–337. [Google Scholar] [CrossRef]
- Ardila Labiosa, A. Dynamic Simulation of Red Mud Washers Used in Aluminum Industries. Master’s Thesis, RMIT University, Melbourne, VIC, Australia, 2010. [Google Scholar]
- Madarász, L.; Köte, Á.; Hambalkó, B.; Csorba, K.; Kovács, V.; Lengyel, L.; Marosi, G.; Farkas, A.; Nagy, Z.K.; Domokos, A. In-line particle size measurement based on image analysis in a fully continuous granule manufacturing line for rapid process understanding and development. Int. J. Pharm. 2022, 612, 121280. [Google Scholar] [CrossRef] [PubMed]
- Oksengoyt, E.A.; Kunitskiy, N.A.; Petrov, P.A.; Shestakov, A.K. Modern equipment by Soyuztsvetmetavtomatika for detecting aerosols and spills of harmful pollutants. Tsvetnye Met. 2023, 4, 61–65. [Google Scholar] [CrossRef]
- Golberg, G.Y. Development of the Theory of Formation and Destruction of Flocculation Structures in the Processes of Separation of Suspensions of Fine Coal Enrichment Products. Ph.D. Thesis, Russian Academy of Sciences, Moscow, Russia, 2019; p. 46. [Google Scholar]
- Nopens, I.; Biggs, C.; De Clercq, B.; Govoreanu, R.; Wilén, B.-M.; Lant, P.; Vanrolleghem, P. Modelling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM). Water Sci. Technol. 2002, 45, 41–49. [Google Scholar] [CrossRef]
- Ma, J.; Fu, K.; Fu, X.; Guan, Q.; Ding, L.; Shi, J.; Zhu, G.; Zhang, X.; Zhang, S.; Jiang, L. Flocculation properties and kinetic investigation of polyacrylamide with different cationic monomer content for high turbid water purification. Sep. Purif. Technol. 2017, 182, 134–143. [Google Scholar] [CrossRef]
- Xu, H.; Tian, H.; Deng, J.; Zhuo, Q.; Cui, J.; Wang, J.; Yin, Y.; Yu, P. Review of influence of steric effect on aggregation behavior of fine particles. Miner. Eng. 2023, 203, 108304. [Google Scholar] [CrossRef]
- Quezada, G.R.; Ayala, L.; Leiva, W.H.; Toro, N.; Toledo, P.G.; Robles, P.; Jeldres, R.I. Describing Mining Tailing Flocculation in Seawater by Population Balance Models: Effect of Mixing Intensity. Metals 2020, 10, 240. [Google Scholar] [CrossRef]
- Health, A.R.; Koh, P.T.L. Combined population balance and CFD modeling of particle aggregation by polymeric flocculant. In Proceedings of the Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, VIC, Australia, 10–12 December 2003. [Google Scholar]
- Barthelmes, G.; Pratsinis, S.; Buggisch, H. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation. Chem. Eng. Sci. 2003, 58, 2893–2902. [Google Scholar] [CrossRef]
- Ahrens, R. Efficient Numerical Treatment of Aggregation Integrals in Multivariate Population Balance Equations. Ph.D. Thesis, Technischen Universität Hamburg, Hamburg, Germany, 2020. [Google Scholar]
- Biggs, C.A.; Lant, P.A. Activated sludge flocculation: On-line determination of floc size and the effect of shear. Water Res. 2000, 34, 2542–2550. [Google Scholar] [CrossRef]
- Von Smoluchowski, M. Versuch einer mathematischen Theorie der Koagulations kinetik kolloider Lösungen. Z. Phys. Chem. 1917, 129, 129–168. [Google Scholar]
- Heath, A.R.; Bahri, P.A.; Fawell, P.D.; Farrow, J.B. Polymer flocculation of calcite: Population balance model. AIChE J. 2006, 52, 1641–1653. [Google Scholar] [CrossRef]
- Hounslow, M.J.; Ryall, R.L.; Marshall, V.R. A discretized population balance for nucleation, growth, and aggregation. AIChE J. 1988, 34, 1821–1832. [Google Scholar] [CrossRef]
- Spicer, P.T.; Pratsinis, S.E. Shear-induced flocculation: The evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996, 30, 1049–1056. [Google Scholar] [CrossRef]
- Veerapaneni, S.; Wiesner, M.R. Hydrodynamics of fractal aggregates with radially varying permeability. J. Colloid Interface Sci. 1996, 177, 45–57. [Google Scholar] [CrossRef]
- Saffman, P.G.; Turner, J.S. On the collision of drops in turbulent clouds. J. Fluid Mech. 1956, 1, 16–30. [Google Scholar] [CrossRef]
- Gandurina, L.V. Organicheskie flokulyanty` v Texnologii Ochistki Prirodny`x i Promy`Shlenny`x Stochny`x vod i Obrabotki Osadka. Inzhenernoe Obespechenie ob``Ektov Stroitel`stva: Obzornaya Informacii/VNIINTPI,-M. 2000, pp. 2–59. Available online: https://meganorm.ru/Data2/1/4293841/4293841858.htm (accessed on 20 October 2023).
- Salamatov, O.V.; Salamatov, V.I. O vliyanii flokulyantov na kinetiku processov obezvozhivaniya i promy`vki krasny`x shlamov iz nizkokremnisty`x boksitov pri proizvodstve glinozema. Vestn. Irkutsk. Gos. Texnicheskogo Univ. 2019, 23, 404–414. [Google Scholar] [CrossRef]
- Petrakov, D.G.; Loseva, A.V.; Alikhanov, N.T.; Jafarpour, H. Standards for Selection of Surfactant Compositions used in Completion and Stimulation Fluids. Int. J. Eng. 2023, 36, 1605–1610. [Google Scholar] [CrossRef]
- Romashev, A.O.; Nikolaeva, N.V.; Gatiatullin, B.L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. J. Min. Inst. 2022, 256, 677–685. [Google Scholar] [CrossRef]
- Piirainen, V.Y.; Barinkova, A.A. Development of composite materials based on red mud. Obogashchenie Rud 2023, 3, 35–41. [Google Scholar] [CrossRef]
- Krizsky, V.N.; Kosarev, O.V.; Alexandrov, P.N.; Luntovskaya, Y.A. Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline. J. Min. Inst. 2023, 2023, 1–10. [Google Scholar]
- Ilyushin, Y.V.; Kapostey, E.I. Developing a Comprehensive Mathematical Model for Aluminium Production in a Soderberg Electrolyser. Energies 2023, 16, 6313. [Google Scholar] [CrossRef]
- Dubovikov, O.A.; Beloglazov, I.I.; Alekseev, A.A. Specific features of the use of pulverized coal fuel in combined chemical processing. Obogashchenie Rud 2022, 2022, 32–38. [Google Scholar] [CrossRef]
- Bazhin, V.Y.; Masko, O.N.; Martynov, S.A. Automatic burden balance monitoring and control in the production of metallurgical silicon. Tsvetnye Met. 2023, 4, 53–60. [Google Scholar] [CrossRef]
% | g/t | ||
---|---|---|---|
Al2O3 | 48.69 | Ga | 80 |
SiO2 | 8.1 | Nb | 400 |
Fe2O3 | 27.87 | Se | 76 |
TiO2 | 2.73 | V | 510 |
CaO | 0.36 | Cr | 220 |
S | 0.02 | Ni | 57 |
Msi | 6.08 |
P, % | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
D, μm | 2.46 | 4.24 | 6.57 | 11.6 | 27.4 | 52.9 | 76.3 | 99.5 | 129 | 300 |
Parameters | Values | Range | Units |
---|---|---|---|
Flocculant dosage | 0.08 | 0.05–0.8 | kg/t |
Feed solid concentration | 70 | 30–150 | g/L |
Pipe flow rate | 40 | 20–80 | L/min |
Liquor viscosity | 0.001 | - | kg/ms |
Particle density | 3710 | - | kg/m3 |
Surface area | 8.609 | - | m2/mL |
Liquor density | 1000 | - | kg/m3 |
Well inner diameter | 0.4 | - | m |
Well height | 1 | - | m |
Simulation run time | 30 | - | s |
Number of Experiments | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Particle diameter in the sample, μm | ||||||||||||||
143 | 97 | 76 | 138 | 152 | 105 | 127 | 115 | 91 | 120 | 138 | 135 | 89 | 109 | 95 |
92 | 109 | 141 | 112 | 111 | 72 | 111 | 115 | 75 | 45 | 47 | 103 | 152 | 58 | 148 |
38 | 84 | 107 | 119 | 101 | 93 | 69 | 45 | 148 | 92 | 100 | 111 | 101 | 43 | 123 |
131 | 36 | 38 | 70 | 37 | 52 | 130 | 69 | 83 | 38 | 116 | 65 | 114 | 96 | 143 |
63 | 152 | 62 | 131 | 148 | 54 | 98 | 90 | 103 | 113 | 105 | 131 | 62 | 128 | 112 |
Average particle diameter, μm | ||||||||||||||
93.3 | 95.7 | 84.9 | 113.7 | 109.9 | 75.3 | 107.1 | 86.8 | 99.8 | 81.4 | 101.3 | 109.1 | 103.7 | 86.8 | 124.2 |
Dispersion, μm2 | ||||||||||||||
395.41 | ||||||||||||||
Mean square deviation, μm | ||||||||||||||
19.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorova, E.; Pupysheva, E.; Morgunov, V. Modeling of Particle Size Distribution in the Presence of Flocculant. Symmetry 2024, 16, 114. https://doi.org/10.3390/sym16010114
Fedorova E, Pupysheva E, Morgunov V. Modeling of Particle Size Distribution in the Presence of Flocculant. Symmetry. 2024; 16(1):114. https://doi.org/10.3390/sym16010114
Chicago/Turabian StyleFedorova, Elmira, Elena Pupysheva, and Vladimir Morgunov. 2024. "Modeling of Particle Size Distribution in the Presence of Flocculant" Symmetry 16, no. 1: 114. https://doi.org/10.3390/sym16010114
APA StyleFedorova, E., Pupysheva, E., & Morgunov, V. (2024). Modeling of Particle Size Distribution in the Presence of Flocculant. Symmetry, 16(1), 114. https://doi.org/10.3390/sym16010114