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Abstract: This study presents a mathematical description of the solid fraction aggregation process
in the presence of a flocculant and its result. The basis is a population balance equation. The model
is realized in Python language. Verification was carried out using red mud from the investigated
enterprise; Flomin AL P 99 VHM was used as a flocculant. The mean square deviation for the
parameter “mean aggregate diameter” is equal to 19.88 µm. The time required for the model
calculation is about 3 min. The time spent on modeling depends on the number of calculation
channels. In this study, 40 channels (20 with PSD source data, and 20 with empty values required
for the calculation) were used for the calculation. The time spent on the model calculation is much
shorter than the inertia via each of the communication channels for the studied symmetric radial type
thickener. A user interface is developed, where the input parameters are the initial pulp particle size
distribution, viscosity and density of pulp in the thickener, particle surface area, concentration and
flow rate of flocculant, concentration of solid particles, inner diameter and height of the feed well,
and simulation time. The result of the simulation is particle size distribution in the feed well of the
washer and the mean flocculus diameter.

Keywords: particle size distribution; solid–liquid separation; aggregation algorithm; thickener/clarifier

1. Introduction

In the examined plant employing the Bayer and Bayer-sintering schemes, the thicken-
ing and washing processes play a crucial role in separating red mud from the liquid phase
of dilute pulp prior to controlled filtration. This step is essential for minimizing the alkali
losses and achieving the final desiliconization of the aluminate solution [1–3]. Enhancing
the automated control system, whether through the integration of new control loops or
the implementation of an expert control system based on generalized models of a radial
thickener, holds the potential to reduce the L:S ratio of the sands by 0.1 unit. This reduction,
in turn, corresponds to a 0.25% decrease in alkali losses, leading to a lowered burden on the
filters by diminishing the concentration of solids in the discharge from the thickeners [4].
Moreover, this improvement contributes to the stabilization of zones within the thickener,
ultimately fostering an increase in the productivity of the operational site.

The radial thickener is a symmetrical cylindrical conical vat with a diameter of 15 m,
a settling area of 177 m2, and an angle of inclination of the cone part of 8◦, from which it
is clear that the object is characterized by a high level of inertia and lag in most control
channels. The washer as a control object is also characterized by a high correlation between
the input and output parameters, which makes it difficult to control under constantly
acting perturbations, such as: the sludge flow rate in the thickener feed, its particle size
distribution, the chemical composition, and the diameter and shape of the flocculated
particles [5,6].

The primary purpose of the current automated control systems for the thickening
process is to maintain stability in the parameters of the primary technological circuits of
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the thickener, treating it as an independent control entity [7,8]. Describing the thickening
process as a system characterized by a set of interconnected input and output parameters,
it exhibits non-linear relationships. Additionally, various constraints on the control actions
exist within this system [9].

To ensure the stable operation of a symmetric thickening apparatus, specific fundamen-
tal parameters must be addressed. These include the bed mass, influencing the thickened
product’s density; the bed level, influenced by the degree of flocculation (refer to the
works [10,11] by the researcher Burger, R.A. for further details); and the solid phase content
in the upper drain of the symmetric thickening apparatus. In the dynamic conditions of
operational production, factors, such as the changes in total pulp flow, variations in leached
bauxite composition, disruptions in the leaching process, and manual control, make the
thickening process inherently unstable [12–14].

A relevant direction at the moment is the synthesis of models of control objects in
order to create software simulators, expert systems, and predictive models on the basis of
these models for implementation in the classical structure of automated control systems.

The diagram showing the relationship between various input and output parameters
of the thickener/washer is presented in Figure 1. The input process parameters are the
feed flow rate, ratio of the flocculant to the solids in the feed, primary particle size, feed
solid concentration, flocculation residence time, rake speed, and underflow rate. The
output parameters are the overflow solids concentration, bed level, and underflow solids
concentration. It is important to note that the input parameters do not affect the final
result of the process directly because the process of liquid–solid separation consists of
several sub-processes, namely a flocculation sub-model, free sedimentation sub-model, and
compaction sub-model.
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In the settling and compression sedimentation zone sub-model, the average size of
the flocculated particle obtained from the results of the flocculation sub-model is used as
the input parameter [15]. Thus, the population balance model described in this paper is
not a stand-alone solution of a separate problem in the framework of the theory of solid
particle sedimentation, but only one of the steps for the transition to the description of a
complete generalized model of the process occurring in the volume of the apparatus of a
single-chamber thickener.

At the moment, there is no information about the complete models describing the all
processes in a radial thickener in the open sources. Most often, other researchers describe
1D and 2D models, which do not take into account the clarified zone with the partial
removal of solid particles. In the actual systems, the particles within the freely mixed
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region can ascend beyond the feed well due to velocity forces, descending into the clarified
zone, and subsequently traversing through channels toward the discharge point of the
purified aluminate solution. However, the existing models operate under the assumption
that the solid fraction from the upper region remains unaffected, and the model addresses
the thickener in both the free and constrained sedimentation zones [16,17]. The zone of the
rake arm operation is most often omitted in model development. It should be noted that
in apparatuses with an implicit conical part, the control of the rake arms’ height does not
significantly affect the quality of pulp from under the cone of the radial thickener/washer.

This material is the first part of the presentation of the results of scientific research on
the development of a generalized model of a single-chamber thickener/washer.

2. Materials and Methods
2.1. Formation of Initial Allocation for PB

A population balance model requires an initial raw material particle size distribu-
tion as a starting point for modeling. However, in most cases, the experimental particle
size distribution cannot be used directly because the population balance has its own de-
fined channel spacing. This spacing is coarser (fewer channels) than what is specified
by most current particle-sizing instruments, in which case the initial population balance
size distribution can be obtained by interpolation. The algorithm currently uses linear
interpolation. If the experimental size distribution contains only a few data points (e.g.,
sieve analysis data) or the distribution is highly noisy, the size distribution can first be
fitted to a smoothed distribution. The smoothed distribution is then used to interpolate
to the original population balance distribution. A lognormal function is used to fit the
distribution, i.e.,

Pi =
k

ln(var)
√

2π
e
− 1

2 [
(ln (xi)−ln (x))

ln(var) ]
2

, (1)

where Pi—percent mass (or volume) of particles in the ith size range; k—constant; var—
equivalent of the variance; xi—mean size of the ith size range; x—volume weighted mean
of all the particles.

This is the usual normal distribution, but modified for the logarithmic x-axis. Log-
normal distributions are fitted to experimental data using simplex optimization on one of
four possible target functions. When fitting to a bell-shaped distribution, the function is of
the form:

min
k,x,var

Ψ = ∑i

(
Pi − Pi,exp

)2, (2)

where min Ψ—objective function that needs to be minimized; Pi,exp—experimental value
of Pi.

Particle size distributions typically display significant asymmetry, featuring an elon-
gated tail towards larger sizes on the right side. As a result, they are commonly depicted
using a logarithmic x-axis and size intervals that progressively widen in numerical incre-
ments. This approach creates a more symmetrical appearance to the distribution, often
fitting into a lognormal distribution pattern. Moreover, these distributions can be repre-
sented by the number of particles or even the surface area on the y-axis. However, it is
more common to plot the percentage by mass (or volume) within each size range. This
method accommodates situations where a majority of the sample’s mass is comprised of
only a few large particles.

If a cumulative distribution is chosen, the target function is of the form:

min
k,x,var

Ψ = ∑i

(
γi − γi,exp

)2, (3)

where γi—cumulative percent by size i.
This formulation more often weights the objective function toward larger-sized chan-

nels compared to a bell-shaped distribution.



Symmetry 2024, 16, 114 4 of 17

Particle size distributions are visualized either as cumulative distributions or in the
form of bell-shaped distributions. In the case of a bell-shaped distribution, the x-axis
represents the particle size, while the y-axis represents the number, mass fraction, or
percentage of particles within each size range. Although resembling a histogram (vertical
bar chart), a dot is commonly positioned at the midpoint of each size channel, and these dots
are amalgamated to create a smooth, bell-shaped distribution. This graphical representation
enhances the clarity of the particle distribution’s shape and the proportion of fines, among
other factors.

In contrast, a cumulative distribution is graphed as the percentage of particles passing
relative to the particle size. This method utilizes the top size of each size channel instead of
the center size, providing an alternative perspective on the distribution pattern.

Red mud from the Sredne-Timansky bauxite mine, obtained during the production
internship at the investigated enterprise, was used as feedstock. The chemical composition
of bauxite is characterized by a low sulfur content, an increased iron content, and the
presence of rare metals (Table 1).

Table 1. Approximate chemical composition of Timan bauxite.

% g/t

Al2O3 48.69 Ga 80
SiO2 8.1 Nb 400

Fe2O3 27.87 Se 76
TiO2 2.73 V 510
CaO 0.36 Cr 220

S 0.02 Ni 57
Msi 6.08

Using a Microsizer 201C instrument made by VA Instalt, Saint-Peterburg, Russia
(ultrasonic method; power: 100 W; measurement time: 30 s; transmission coefficient: 73.8%)
the particle distribution in the feed slurry of the washer was obtained (Figure 2, Table 2).

Symmetry 2024, 16, x FOR PEER REVIEW 4 of 17 
 

 

min
𝑘𝑘,�̅�𝑥,𝑣𝑣𝑣𝑣𝑣𝑣

Ψ = ∑ (𝛾𝛾𝑖𝑖 − 𝛾𝛾𝑖𝑖,𝑒𝑒𝑥𝑥𝑒𝑒)2𝑖𝑖 , (3) 

where γi—cumulative percent by size i. 
This formulation more often weights the objective function toward larger-sized chan-

nels compared to a bell-shaped distribution. 
Particle size distributions are visualized either as cumulative distributions or in the 

form of bell-shaped distributions. In the case of a bell-shaped distribution, the x-axis rep-
resents the particle size, while the y-axis represents the number, mass fraction, or percent-
age of particles within each size range. Although resembling a histogram (vertical bar 
chart), a dot is commonly positioned at the midpoint of each size channel, and these dots 
are amalgamated to create a smooth, bell-shaped distribution. This graphical representa-
tion enhances the clarity of the particle distribution’s shape and the proportion of fines, 
among other factors. 

In contrast, a cumulative distribution is graphed as the percentage of particles pass-
ing relative to the particle size. This method utilizes the top size of each size channel in-
stead of the center size, providing an alternative perspective on the distribution pattern. 

Red mud from the Sredne-Timansky bauxite mine, obtained during the production 
internship at the investigated enterprise, was used as feedstock. The chemical composition 
of bauxite is characterized by a low sulfur content, an increased iron content, and the pres-
ence of rare metals (Table 1). 

Table 1. Approximate chemical composition of Timan bauxite. 

 %  g/t 
Al2O3 48.69 Ga 80 
SiO2 8.1 Nb 400 

Fe2O3 27.87 Se 76 
TiO2 2.73 V 510 
CaO 0.36 Cr 220 

S 0.02 Ni 57 
Msi 6.08   

Using a Microsizer 201C instrument made by VA Instalt, Saint-Peterburg, Russia (ul-
trasonic method; power: 100 W; measurement time: 30 s; transmission coefficient: 73.8%) 
the particle distribution in the feed slurry of the washer was obtained (Figure 2, Table 2). 

 
Figure 2. Correspondence of particle sizes (D, µm) to the given values of weight fractions (P, %). 
Original images. 

Particle size 

W
ei

gh
t p

er
ce

nt
ag

e 

Figure 2. Correspondence of particle sizes (D, µm) to the given values of weight fractions (P, %).
Original images.

Table 2. Correspondence of particle sizes (D, µm) to the given values of weight fractions (P, %).

P, % 10 20 30 40 50 60 70 80 90 100

D, µm 2.46 4.24 6.57 11.6 27.4 52.9 76.3 99.5 129 300
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The studied pulp sample particle size distribution was in the range of 1.2–300 microns.
Based on particle size distribution analysis, it was found that the predominant composition
of the solid component consists of smaller classes, with the class below 100 µm constituting
approximately 80%.

Consequently, the majority of the sludge comprises particles measuring 100 µm in size.
Due to the minimal weight and size of these sludge particles, they exhibit slow settling
under gravity. Additionally, given their polydispersity, these particles settle at varying
rates, with the larger ones descending more rapidly and frequently colliding with the
smaller particles. The presence of larger particles in the sludge contributes to an improved
settling effect, resulting in a higher settling velocity for the sludge [18].

It is necessary to take into account the fact that particle size distribution analysis
displays only the predominant size of aggregates because the size of suspended particles
of red mud is influenced by both natural and anthropogenic factors, such as the chemical
and mineralogical composition of the initial bauxite, sample transportation and storage
conditions, the amount of time between sampling for analysis and the process of analysis,
and chemical dispersion of bauxite particles in the autoclave leaching process.

One way or another, we come to the conclusion that particle size distribution is
the most significant property describing the aggregation process in the feed beaker and
the sedimentation process as a whole. At the moment, the particle size, in particular,
the diameter of floccula from under the feed well, is not measured in real time due to the
impossibility of introducing the measuring device into the internal volume of the apparatus.
At the investigated plant, the thickeners and washers are under covers; it is practically
impossible to install a sensor with periodic introductions into the measured medium to
clean the overgrowth on the surface of the slurryAt the investigated plant, the thickeners
and washers are under covers; it is practically impossible to install a sensor with periodic
introductions into the measured medium and to clean the sensor’s surface from overgrowth
of the slurry [19,20].

As an intermediate result, the obtained particle size distribution was reduced ac-
cording to the formulas above to 20 initial channels, which is an input parameter for the
population balance model.

2.2. Population Balance Model

The population balance equation (PBE) stands out as a widely employed method for
modeling particle aggregation, coagulation, and flocculation. Both foreign and Russian
researchers utilize the PBE to model the particle aggregation induced by coagulants, aiming
to optimize the subsequent flocculation process [21–23]. Serving as a transfer equation
for the particle number density function, the PBE accounts for particle number density
functions that vary with time, spatial location, and internal coordinates. These internal
coordinates may encompass parameters, such as the volume, surface area, or chemical
composition. The dynamics of particle flocculation (aggregation) and the ensuing defloc-
culation (disintegration) of floccula are captured through particle size distribution (PSD),
where the growth and disintegration of floccula populations are expressed as a system of
differential equations [24].

The initial stride toward the broader industrial application of PBE models involves
crafting a systematic strategy to develop models that are both realistic for industrial plants
and mathematically straightforward for online applications [25]. The population balance
model is numerically solved as an initial value problem unfolding over time. The simulation
commences with the particle size distribution of the feedstock, incorporating additional
channels of larger size (empty values) above the initial distribution. Throughout the
flocculation process, the particles migrate upward into these channels [26].

Each size channel is characterized by an Ordinary Differential Equation (ODE). Ini-
tially, each channel contains a certain number of particles (or none), determined by the
initial distribution. Following the addition of a flocculant, the particles start aggregating
into larger structures, leading to the disappearance of particles from smaller-sized channels



Symmetry 2024, 16, 114 6 of 17

and their reappearance as aggregates in larger-sized channels. The rate of particle loss
or recruitment from each channel is dictated by the aggregation and destruction kernels,
with the kernel essentially representing a size-dependent rate equation. Numerical simu-
lation involves small time steps, tracking the particle count in each channel as the model
progresses through time [27,28].

A population balance model is a dynamic particle counting system. The population
balance approach was first described by Smoluchowski (1917) [29]:

dNk
dt

=
1
2

k−1

∑
i=1,i+j=k

βijNi Nj −
∞

∑
i=1

βik Ni Nk (4)

The first term on the right describes the influx of particles into a channel of size k due
to aggregation of particles from a smaller size range. Half of the channels are included to
avoid the double counting of particles of the smaller sizes i and j. The second term on the
right describes the loss of particles of size k as they aggregate with the other particles and
migrate upward into larger channels.

Since aggregates can also break up, two additional terms must be introduced to
account for loss and gain due to breakup. The second term on the right-hand side of
Equation (5) describes the rate of loss of particles of size k due to a fracture, and the last
term describes the gain due to fracture of larger aggregates, some of which will yield
daughter fragments falling within the size range k [30].

dNk
dt

=
1
2

k−1

∑
i=1,i+j=k

αβijNi Nj −
∞

∑
i=1

αβik Ni Nk − Sk Nk +
∞

∑
l=k+1

ΓlkSl Nl (5)

where Ni—the number of ith sized particles (m−3); t—time (s); α—the capture efficiency
[0, 1]; βij—the rate of collision between i- and j-sized particles (aggregation kernel) (m3/s);
Sk—the breakage rate (kernel) of kth sized particles (s−1); Γlk—the breakage distribution
function (number of k-sized particles produced from the breakage of an l-sized particle).

Equations (4) and (5) are valid only if the channel spacing has a constant width. A
typical view of particle size distribution is shown on a logarithmic scale. The logarithmic
interval makes the asymmetric distribution of particles more symmetric; this has several
additional advantages for modeling population balance. This distribution reduces the total
number of equations that need to be solved (which speeds up the modeling process), while
maintaining fine resolution on small particles. Different population balance formulas have
been proposed using different channel spacings.

The model under study uses the formula of Hounslow (Hounslow, 1988) and Spicer
(Spicer, 1996) [31,32]:

dNk
dt =

i−2
∑

j=1
2j−i+1βi−1,jNi−1Nj +

1
2 βi−1,i−1N2

i−1 − Ni
i−1
∑

j=1
2j−iβi,jNj

−Ni
∞
∑
j=i

βi,jNj − Si Ni +
∞
∑
j=i

Γi,jSjNj

(6)

This population balance formula has a relatively coarse discretization:

Vi+1

Vi
= 2 or

Li+1

Li
=

3
√

2, (7)

where Vi—the volume of the ith channel; Li—the length of the ith channel.
The Hounslow model has relatively coarse channel spacing, which allows it to cover

the entire size range from the smallest primary particles to the large aggregates in 40 size
channels. Despite the coarse channel spacing, the Hounslow model gives accurate results
for the zero moment (total number of particles) and the third moment (mass conservation)
and only minor errors in the other moments (e.g., the second moment is the surface area).
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The size interval is then modified to account for the porosity of the aggregate. Equation (9)
is formulated for non-porous particles, i.e., droplet coalescence, and this dimension is
retained in the model for particle mass conservation. However, a modified dimension is
used to calculate the collision radii, etc.:

dagg,i = dpK− 1
3

p (
dm,i

dp
)

3
D f , (8)

where dagg,i—the diameter of the i-sized aggregate (m); dp—the diameter of the primary
particle (m); dm,i—the mass effective diameter of the i-sized aggregate (m); Df—the fractal
dimension (dimensionless); Kp—the particle shape (packing) factor (dimensionless).

Aggregation and Destruction Kernels

The aggregation and fracture kernels describe the physics of the flocculation process
and are the most important equations in the model. As noted, they are rate equations
describing the rates of aggregation and fracture, but they are called kernels because they
are functions of particle size. The aggregation kernel has the form [33]:

βij = 1.294αG
(
ai + aj

)3, (9)

where α—the capture efficiency [0, 1] (taken as M); G—the average turbulent shear rate
(s−1); ai—the radius of the ith particle (m); aj—the radius of the jth particle (m).

This is the turbulent collision kernel of Saffman and Turner (1956) [34], which is the
most widely used and accepted flocculation kernel for fine particles in industrial-scale
turbulent flows. Capture efficiency (α) is also included to account for the fact that not all
the collisions will be successful.

The fracture kernel is of the form:

Si =
k2εk3µaagg,j

θ f
, (10)

where θf—effective flocculant surface coverage (kg/m2); µ—the suspension viscosity
(Ns/m2); ε—the energy dissipation rate per unit mass (m2/s3 or J/s k/g); k2—a model
parameter; k3—a model parameter.

2.3. Auxiliary Equations

In the washer, there are several main and auxiliary points of flocculant dosing: in the
feed beaker and in the pipe with the feed slurry before feeding it into the thickener/washer.
In this paper, the assumption is made that the aggregations of particles in the beaker
and pipe follow the same law. Further, all the modeling constants are obtained in the
experiments in the tube.

A number of additional equations are required to input different information into the
aggregation and fracture kernels. The capture efficiency (α) in Equation (9) is determined
by the mixing index (M):

M = 1 − e−k1
√

f L/D, (11)

where k1—the model parameter (dimensionless); L—the length of the pipe since flocculant
addition; D—the pipe diameter (m); f —the pipe friction factor (dimensionless).

This equation describes mixing in a turbulent flow in a pipe. Before the addition of
the flocculant, the capture efficiency is zero (stable, non-flocculated suspension). After
flocculant addition, a complex process of flocculant mixing with the suspension and
adsorption of flocculant on the particle surface occurs. As the flocculant adsorbs on
the particle surface, the entrapment efficiency increases, and the flocculation process
begins. In a population balance model, this complex sequence of steps is summarized and
simplistically described by Equation (15).
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Since the model is solved in relation to time rather than the pipe length, Equation (11)
is translated into the time domain through the average flow velocity in the pipe:

M = 1 − e−k1Ω, (12)

where for the flow in the pipe, Ω is defined by

dΩ
dt

=

√
f V

D
, (13)

where V—mean pipe flow velocity (m/s);
i.e., Ω is an additional ode solved by the model.
If either a constant shear rate or a constant energy dissipation rate is chosen, the pipe

data are not used, and the equation is reduced to:

dΩ
dt

= 1 (14)

The fracture kernel (Equation (10)) contains the term θf, the effective flocculant surface
coverage [30], which is defined as:

θ f =
m f

As
M(1 − Θ) (15)

where θf—effective flocculant surface coverage (kg/m2); M—the mixing index given by
Equation (11); mf = the mass of the flocculant (kg); As—the surface area of the solid (m2);
Θ—flocculant degradation [0, 1].

Conceptually, it is simply the mass of flocculant per unit particle surface area. The
fracture kernel is inversely proportional to the flocculant coverage, i.e., less flocculant
gives weaker aggregates, and therefore, increases the fracture rate, resulting in a smaller
aggregate size. The dependence of flocculant dosage on surface area means that finer raw
material particles with a larger surface area (per unit particle mass) are weaker, and hence,
give smaller aggregates, which is consistent with the experimental observations.

The effective coverage also contains a mixing index (M) to account for the fact that the
flocculant must adsorb on the surface to have any effect. However, this is mathematically
inconvenient because M is zero before the flocculant is added. Consequently, the effective
coverage is also zero, and the destruction kernel is either “infinity” or an “error floating
divisor of zero”. This problem is addressed in two ways. First, the code does not allow M
to ever be equal to zero; for this purpose, a minimum small number (1 × 10−10) is set in the
code. This prevents the floating division of zero. Second, the destruction kernel is turned
off when the average size of the aggregates approaches the size of the primary particles.
This is achieved by multiplying by a smoothed step function:

Z = 1 − e
1− dagg

dp (16)

This accounts for the fact that the primary particles are not degraded, at least relative
to the aggregates and under conditions favorable to flocculation. At the other end of the
process, the mild reduction in aggregate size under prolonged shear is modeled using
the term Θ, characterizing flocculant degradation. It accounts for the cleavage and/or
rearrangement of flocculant chains on the particle surface, resulting in a less effective
flocculant that is more prone to aggregate degradation. Flocculant degradation is modeled
as an additional differential equation:

dΘ
dt

= k4εk3 µϕs M (1 − Θ (
ϕe f f

ϕs
)

1
3 ) (17)
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Shear Rate and Energy Dissipation: The fluid shear rate (G) and energy dissipation
rate (ε) have a significant effect on most aspects of the flocculation process, increasing the
rate of agitation, rate of adsorption, rate of aggregation, and breakdown. The shear rate is
determined by:

G =

√
ερ f

µ
(18)

where G—the shear rate (s−1); µ—the suspension viscosity (Ns/m2); ε—the energy dissipa-
tion rate per unit mass (m2/s3, or J/skg).

For the flow in a pipe, the energy dissipation rate is calculated using the usual pipe
friction coefficient equations:

ε =
2 f V3

D
(19)

And for turbulent flow in smooth pipes, the friction coefficient (f ) is determined by
the Blasius equation:

f =
0.0791

Re
1
4

(20)

where the pipe Reynolds number is

Re =
DVρ f

µ
(21)

And the density of the fluid (suspension and slurry) is calculated from:

ρ f = ρsϕ + ρl(1 − ϕ), (22)

where ρs—the density of the solid (particles) (kg/m3); ρl—the density of the liquid (kg/m3);
ϕ—the volume fraction of the particles (m3/m3—dimensionless).

The viscosity of the suspension increases depending on the volume fraction of the
particles. For non-porous particles:

µ = µ0 (1 −
ϕ

ϕm
)−k, (23)

where ϕm—the maximum solid fraction, 0.65 (dimensionless); k—2; µ—the suspension
viscosity (Ns/m2); µ0—the viscosity of the liquid (Ns/m2).

However, the aggregates are porous, with the porosity increasing with their size
relative to the primary particles, so Equation (23) takes the form:

µs = µ0 (1 −
ϕ

ϕm
(

dagg

dp
)3−Df )−k, (24)

where dagg—the volume-weighted mean aggregate size (m); dp—the volume-weighted
mean primary particle size (m).

Typically, in flocculation in pipe flow, an increase in the aggregate size results in an
increase in viscosity, which, in turn, decreases the Reynolds number in the pipe, increases
the coefficient of friction, and therefore, increases the rate of energy dissipation. Essentially,
an increase in the viscosity results in an increase in the pressure drop required to move
the slurry through the pipe at a given velocity, so the pump has to work a little harder,
and more energy is dissipated in the fluid. As the viscosity increases more than the rate of
energy dissipation, the shear rate (Equation (18)) drops.
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3. Results
3.1. GUI Development and Model Manipulation

The user interface was built using the Tkinter library, which was installed as a standard
Python module. There are four libraries for GUI work in Python: Tkinter; Kivy; Python QT;
and wxPython. Tkinter was chosen because the library requires no additional installation
and allows you to quickly create applications with a simple GUI. The applications created
using this library are cross-platform, i.e., they can run on different operating systems.

The Tkinter module allows you to create applications with a windowed interface
containing vector graphics. In particular, the use of the graphical functions of the Can-
vas widget allows you to build graphs of functions. However, the capabilities of the
matplotlib module are much more advanced, and it is desirable to combine the win-
dowed Tkinter applications with the matplotlib graphical functions. This feature is re-
alized with the “composite” canvas FigureCanvasTkAgg, a special class that inherits
many of the methods of the Canvas widget and adds the ability to use the graphics
functions of the matplotlib module. The FigureCanvasTkAgg class is imported from the
matplotlib.backends.backend_tkagg module.

To run the model, it is necessary to enter the known process parameters into the data
input windows. Parameters, such as the initial particle size distribution of pulp, viscosity
and density of solution, surface area of particles, concentration and flow rate of flocculant,
concentration of solid particles, inner diameter of feeding well, and height of feeding cup,
are necessary. It is also necessary to specify the modeling time in seconds.

The parameters related to the red mud material and solution properties are constant, as
these parameters are related to the mining and geological conditions of the bauxite deposit
and process technology, i.e., they are boundary conditions. The surface area parameter
is calculated through the initial particle size distribution. The pipe flow rate corresponds
to the range of operating characteristic of the pump used in the studied production. The
flocculant dosage and feed solid concentration parameters are in the range of process
parameters of the enterprise under study (Table 3).

Table 3. Input parameters and their values.

Parameters Values Range Units

Flocculant dosage 0.08 0.05–0.8 kg/t

Feed solid concentration 70 30–150 g/L

Pipe flow rate 40 20–80 L/min

Liquor viscosity 0.001 - kg/ms

Particle density 3710 - kg/m3

Surface area 8.609 - m2/mL

Liquor density 1000 - kg/m3

Well inner diameter 0.4 - m

Well height 1 - m

Simulation run time 30 - s

To start the solver, it is necessary to click on the button “Start” (Figure 3).
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The time taken for modeling depends on the initially entered particle size distribution,
which depends on the number of calculation channels. The average calculation time of the
flocculation model is not more than 3 min.

The model calculates the growth and decay of particles with a certain step and con-
structs a lognormal particle size distribution (Figure 4). In this study, the slurry predomi-
nantly contained fines, which significantly affected the particle distribution of flocculated
particles. According to the modeling results, the particulate matter after flocculation
is mainly in the following classes 27–153 µm (85.4%). The reason why the distribution
becomes narrower in relative terms is that the flocculation process tends to change the
aggregates into having an overall stable size. The smaller aggregates combine into larger
aggregates, and the larger aggregates are less stable and more likely to be broken up.
Flocculus disintegration was also accounted for in the model; the resulting curve is blue
with a blue circle mark.
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3.2. Verification of the Algorithm

Since in the described and developed sub-model of flocculation, real initial data were
used to verify the result of the algorithm, which were verified using experiments on the
sedimentation of pulp in the presence of a flocculant. All the laboratory experiments were
carried out with the support of the Scientific Center for Problems of Processing of Mineral
and Technogenic Resources of St. Petersburg Mining University of Empress Catherine II
and the production laboratory of the investigated enterprise.

For the pulp settling test with the addition of a flocculant, a sample with a solids
concentration of 70 g/L was prepared. This value corresponds to the solids content in the
feed stream of the thickener/washer.

According to the technology implemented at the studied production facility, the
concentration of Flomin AL P 99 VHM flocculant solution fed to the thickener is equal to
0.5%. The aqueous solution of the reagent existed for about 5 days, and it was delivered to
the production facility in the form of powder. Such a period is explained by the effect of
oxygen on the macromolecule compound; oxygen causes their destruction and reduces the
viscosity of the solution used [35].

Immediately before injecting a working solution of flocculant into the cylinder, it was
made and left until the emulsion had completely dissolved (the minimum time required
is 1.5 h). The technological regulations recommend the use of an additive in the solution
in the form of sodium hydroxide in the amount of 10 g per 1 L of flocculant solution,
which increases the efficiency of interaction of pulp particles with the flocculant due to the
formation of an alkaline environment and leads to a reduction in the amount of polymer
used [36,37].

When preparing the flocculant, the following points were taken into account:

(1) The rotation speed of the magnetic stirrer armature during emulsion dissolution
should not exceed 2 r/s. This is due to the fact that the rate of sedimentation of
flocculates formed during the treatment of the CS reagent at this frequency is several
times higher than in the solution prepared at 20 r/s because high speeds of rotation
increase the level of tangential stress in the liquid, which leads to the destruction of
swollen particles of the flocculant.

(2) The flocculant granules were added directly to the alkaline solution. The solution
was stirred for 30 min with a magnetic stirrer, and then it is necessary to leave the
prepared solution at rest for 60 min for the formation of macromolecules.

As a result, a flocculant solution with a concentration of 0.5% was obtained.
In the preparation of the slurry under study, it was necessary to measure a 6.9 g

suspension of dried sludge from the thickener to dilute with 250 mL of alkaline water
(alkali concentration 12 g/L). The slurry was heated in a metal beaker until a temperature
between 50 and 80 ◦C degrees was reached. This temperature range corresponds to the
process temperature in the washers. To homogenize the prepared pulp, it was necessary to
carry out transfers from beaker to beaker in order to avoid the loss of solid fraction.

A homogenized sample of the prepared slurry with a solid concentration of 70 g/L was
placed in a 250 mL measuring cylinder; the initial height before the addition of flocculant
was recorded. The dose of flocculant with a concentration of 0.5% was equal to 0.7 mL.

To meet the condition of complete homogenization of the pulp with the preservation of
the initial properties of sedimentation, the cylinder was stirred non-intensively ten times by
entering the plunger at the height of the beaker; this method of stirring is used in domestic
practice in the preparation of the sample for sedimentation [38].

During the sedimentation process, the height of the interface is regularly recorded
until a constant height of the thickened product is reached (Figure 5).
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The flocculation time was equal to 30 s; this value was set as a simulation time in the
flocculation sub-model (figure with distribution) to match the time of sedimentation of
the slurry in the presence of flocculant in the laboratory experiment, since this time was
sufficient to carry out complete sedimentation, and thus, complete the flocculation process.
During the experimental studies, photographs of clusters of precipitated red mud were
obtained, where the floccula (Figure 6) can be characterized as an asymmetric formation
surrounding the precipitated aggregates. These images also helped to verify a population
balance model that accounts for the size of the deposited aggregates and the symmetry
of the floccula. These images were acquired using a microscope and a droplet method
of examination. The floccula were sampled using a 2 mL pipette during the interaction
process between the precipitated pulp and flocculant and transferred to a microscope slide.
An AOMEKIE 64-640 microscope (Ningbo Barride Optics Co., Ltd, Ningbo, China) was
used to obtain images of the flocculated pulp.

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 5. Deposition result of red mud sample with initial concentration of 70 g/L. Original images. 

The flocculation time was equal to 40 s; this value was set as a simulation time in the 
flocculation sub-model (figure with distribution) to match the time of sedimentation of 
the slurry in the presence of flocculant in the laboratory experiment, since this time was 
sufficient to carry out complete sedimentation, and thus, complete the flocculation pro-
cess. During the experimental studies, photographs of clusters of precipitated red mud 
were obtained, where the floccula (Figure 6) can be characterized as an asymmetric for-
mation surrounding the precipitated aggregates. These images also helped to verify a pop-
ulation balance model that accounts for the size of the deposited aggregates and the sym-
metry of the floccula. These images were acquired using a microscope and a droplet 
method of examination. The floccula were sampled using a 2 mL pipette during the inter-
action process between the precipitated pulp and flocculant and transferred to a micro-
scope slide. An AOMEKIE 64-640 microscope (Ningbo Barride Optics Co., Ltd, Ningbo, 
China) was used to obtain images of the flocculated pulp. 

 
Figure 6. Sample of deposited red mud. Original images. Figure 6. Sample of deposited red mud. Original images.



Symmetry 2024, 16, 114 14 of 17

Since the experiment was carried out in the laboratory of the investigated enterprise,
the material parameters of red mud and the properties of the liquor in the laboratory
experiment and in the model correspond to the technology. In the laboratory experiment,
red mud with a density of 3200 kg/m3 was used, and the solid concentration corresponds to
the process concentration of 70 g/L. The dosage of flocculant injected into a 250 mL cylinder
was approximately 0.7–0.9 mL, with a concentration of 0.5%; the error was acceptable due
to the equipment used to inject the suspension (syringe). The flocculant dose is directly
proportional to the solid content. Since the concentrations of the solid are equal, the volume
of flocculant in the laboratory experiment corresponds to the volume of flocculant put in
the model.

Thus, the mathematical model and the laboratory experiment have common param-
eters necessary for the flocculation process. Fifteen red mud settling experiments were
conducted in the presence of the flocculant (Table 4). From each cylinder, five samples with
floccules were taken. The average particle diameter calculated in the model equal to 84 µm
was compared with fifteen different average results obtained in the laboratory experiment.
The mean square deviation for the parameter “mean aggregate diameter” was equal to
19.88 µm.

Table 4. Results of the conducted experiment.

Number of Experiments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Particle diameter in the sample, µm

143 97 76 138 152 105 127 115 91 120 138 135 89 109 95

92 109 141 112 111 72 111 115 75 45 47 103 152 58 148

38 84 107 119 101 93 69 45 148 92 100 111 101 43 123

131 36 38 70 37 52 130 69 83 38 116 65 114 96 143

63 152 62 131 148 54 98 90 103 113 105 131 62 128 112

Average particle diameter, µm

93.3 95.7 84.9 113.7 109.9 75.3 107.1 86.8 99.8 81.4 101.3 109.1 103.7 86.8 124.2

Dispersion, µm2

395.41

Mean square deviation, µm

19.88

4. Discussion

The red mud-thickening and washing processes are an essential part of alumina
production. The site requires the modification of the used processing methods into more
technologically advanced and highly efficient ones [39–41].

The size of the floccula and their mean and median diameters directly affect the settling
process along the height of the unit in the thickener or washer, the consolidation of the solid
phase in the cone bottom of the unit, and the yield of the solid fraction with the top clarified
drain of the unit. Sub-processes with particle formation were found, for example, in the
following processes: crystallization, agglomeration, grinding, dissolution, leaching, etc.

Since at the investigated enterprise this type of apparatus is used both at the thickening
branch and red mud washing branch, it is possible to use the results obtained in the course
of the research on the existing structure of ACSPP. For example, these data may be used
as an add-on over the existing SCADA system in order to visualize the parameter “mean
aggregate diameter of floccula from under the feeding cup” unmeasured in the current
conditions on the operator’s mnemonic scheme, i.e., a kind of virtual software device for
measuring the granulometric composition of the aggregated pulp. Also, this parameter
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can be used in the control system as one of the target parameters in the cascade control
system to adjust the flocculant flow rate. It should be noted that the process of aggregation
occurring in the feeding cup is one of the sub-processes in the thickener or washer of the
radial type, and therefore, the model describing the process of flocculation of red mud
slurry in the cup is part of the overall model of the control object. Also, this model can be
used as a predictive model using advanced process control technology [42,43].

5. Conclusions

This paper presents a detailed mathematical description of the investigated floccula-
tion process and its result after implementation as a model. The model is realized in Python
language using a Runge–Kutta solver of the fourth order. The time required to compute
the model is about 3 min on an Intel(R) Core(TM) i3-8130U CPU @ 2.20 GHz 2.21 GHz. The
mean square deviation for the parameter “mean average flocculus diameter” is equal to
19.88 µm. The time taken to calculate the model is much shorter than the inertia of each of
the communication channels for the investigated symmetric radial-type thickener/washer.

A user interface was developed in which the input parameters are the initial pulp
size distribution, viscosity and density of the pulp in the thickener, particle surface area,
flocculant concentration and flow rate, solids concentration, inner diameter and height of
the feed well, and modeling time. The result of the flocculation model, namely the mean
aggregate diameter, is used as initial value of the subsequent sub-processes of solid–liquid
phase separation.
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