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Abstract: We investigate the Noether symmetries of the Klein–Gordon Lagrangian for Bianchi I
spacetime. This is accomplished using a set of new Noether symmetry relations for the Klein–Gordon
Lagrangian of Bianchi I spacetime, which reduces to the wave equation in a special case. A detailed
Noether symmetry analysis of the Klein–Gordon and the wave equations for Bianchi I spacetime is
presented, and the corresponding conservation laws are derived.
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1. Introduction

A conformal Killing vector (CKV) K has to satisfy

£Kgij = 2 σ(xk)gij , (1)

where gij is the metric tensor, £K is the Lie derivative operator along K, and σ(xk) is a
conformal factor. When σ;ij ̸= 0, the CKV field is said to be proper [1]. The vector field K
is called a special conformal Killing vector (SCKV) field if σ;ij = 0; a homothetic Killing
vector (HKV) field if σ, i = 0, e.g., σ is a constant on the manifold; and a Killing vector
(KV) field if σ = 0, which is also called the isometry of spacetime. The set of all CKVs
(respectively SCKV, HKV, and KV) forms a finite-dimensional Lie algebra. The maximum
dimensions of the CKV algebra on the manifold M is fifteen if M is conformally flat, and
it is seven if the spacetime is not conformally flat. The physical features of differential
equations, in terms of the conservation laws admitted by them, are directly associated
with the Noether symmetries, which is facilitated using a Lagrangian of the corresponding
dynamical system.As we show in the following section, there is a direct relation between
the conformal symmetries and Noether symmetries.

If a Lagrangian L for a given dynamical system exhibits symmetry, this property
is strongly related to Noether symmetries, which describe the physical characteristics of
differential equations associated with a Lagrangian L, in terms of the first integrals they
possess [2,3]. This relationship can be viewed from two different perspectives. First, one
can take a strict Noether symmetry approach [4–6], which results in £XL = 0, where £X
is the Lie derivative operator along X. On the other hand, one can employ the Noether
symmetry approach with a gauge term [7–13], a generalization of the strict Noether sym-
metry approach where the Noether symmetry equation includes the gauge term. Noether
symmetries with a gauge term are equally valuable in addressing a variety of problems in
physics and applied mathematics. In the following section, we will discuss the relationship
between Noether symmetries with a gauge term of the Klein–Gordon Lagrangian and the
geometric symmetries of spacetimes. The study of differential equations involving geom-
etry is an active area of research. Recent literature [14,15] has delved into the connection
between geometrical structures and conserved quantities. Noether symmetries are directly
linked to conserved quantities or conservation laws [3], which naturally emerge in a wide
range of applications.
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The cosmological principle assumes that the universe is homogeneous and isotropic
at large scales, and the geometrical model that satisfies these properties is Friedmann–
Lemaître–Robertson–Walker (FLRW) spacetime. However, there has been a suggestion
from studies of the cosmic microwave background (CMB) temperature anisotropies that
the assumption of statistical isotropy is violated at the largest angular scales, leading to
some intriguing anomalies [16]. In order to make predictions for the CMB anisotropies,
one can explore cosmological models that are homogeneous but anisotropic, such as the
Bianchi-type spacetimes, which encompass both isotropic and homogeneous FLRW models.

Bianchi classified all three-dimensional real Lie algebras and demonstrated that there
are nine possible simply transitive groups of motions, denoted as G3. These groups are
generated using Killing vectors Kα, where α = 1, 2, 3, with structure constants Cγ

αβ, defined

by
[
Kα, Kβ

]
= Cγ

αβKγ. The structure constants Cγ
αβ can be decomposed into irreducible

parts, as follows:
Cγ

αβ = ϵαβσ Nσγ + Aαδ
γ
β − Aβδ

γ
α

here Nαβ is symmetric. It follows from the Jacobi identities that Nαβ Aβ = 0. One can
diagonalize Nαβ without loss of generality, choosing Aα in the 1-direction when it is non-
zero. The real Lie algebras can then be classified into nine types of spatially homogeneous
Bianchi spacetimes, distinguished by the particular form of the structure constants Cγ

αβ,
based on whether Aα = 0 (Class A) or Aα ̸= 0 (Class B). This classification results in the
Bianchi types, such as I, I I, VI0, VII0, VII I, and IX for Class A models, and I I I, IV, V,
VIh, and VIIh for Class B models. It is important to note that the Bianchi models include
FLRW models as special cases, with Bianchi I (flat), Bianchi V (open), and Bianchi IX
(closed) representing the FLRW models. In this study, we consider the Bianchi I metric as
the background spacetime in the Klein–Gordon equation. The line element for Bianchi I
spacetime can be written as follows [17]:

ds2 = −dt2 + A(t)2dx2 + B(t)2dy2 + C(t)2dz2 . (2)

The above spacetime yields a flat FLRW metric if A = B = C. For any form of the
metric coefficients A, B, and C, it can easily be computed from Equation (1) that the KVs
for Bianchi I spacetime are K1 = ∂x, K2 = ∂y, and K3 = ∂z. In this study, all vector fields
are written with bold letters.

The rest of the paper is organized as follows: In the next section, Section 2, we present
an analysis of Noether symmetries with a gauge term for the Klein–Gordon Lagrangian in
the context of the Bianchi I spacetime model. In Section 3, we apply the Noether symmetry
approach to the Bianchi I spacetime. In Section 4, we study the field equations of the Bianchi
I spacetime with an imperfect fluid. Conclusions and discussions are presented in the final
section, Section 5.

2. Klein–Gordon Lagrangian and Noether Symmetry Equations

The Klein–Gordon equation in the Riemannian space with metric gik is a second-order
partial differential equation of the form

□ψ = G(xk, ψ), (3)

where □ψ = gikψ;ik and □ refers to the de’Alembertian or Laplace operator defined by

□ = 1√−g
∂

∂xi

(√−ggik ∂
∂xk

)
in terms of the Riemannian space. The Klein–Gordon equation given

in (3) follows from the first-order Lagrangian, which is called the Klein–Gordon Lagrangian,

L =
√
−g
(

1
2

gijψiψj − F(xk, ψ)

)
, (4)
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where ψi(xk) ≡ ∂ψ(xk)
∂xi and F′(xk, ψ) = −G(xk, ψ). Here, the prime represents the derivative

with respect to the scalar field ψ. The above Lagrangian reduces to the Lagrangian of the
wave equation when F = 0.

The wave equation of spacetimes is one of the most important equations in physics,
and it is common to study this equation in terms of the Lie and Noether symmetry gen-
erators they admit [18–23]. When symmetry generators exist, they play a crucial role in
finding exact solutions. Jamal et al. [21] investigated the wave equation of Bianchi III
spacetime, calculating and classifying Noether symmetries and constructing corresponding
conservation laws. They also obtained reductions of the wave equation and identified some
invariant solutions. In the papers [22,23], the authors utilized the invariance and multiplier
method [24,25] to conduct conservation law classifications of the wave equation for the
Bianchi I spacetime, using power law metric coefficients.

Noether symmetries of the Klein–Gordon equations for well-known spacetimes have
been calculated and classified according to their symmetry generators [15,26–30]. In [26],
the symmetry analysis of the Klein–Gordon equation in de Sitter spacetime was classi-
fied, and the obtained symmetries were utilized to find exact solutions using quadratures.
Paliathanasis et al. [27] conducted a classification of Lie and Noether symmetries for the
Klein–Gordon and wave equations in pp-wave spacetimes. The symmetry properties and
conservation laws of wave and Gordon-type equations in Milne and Bianchi III spacetimes
were investigated in the papers [28,29]. In [15], a geometric procedure was employed for the
symmetry classification of the Klein–Gordon equation in Bianchi I spacetime, connecting
the Noether symmetries with a gauge function of the Klein–Gordon Lagrangian to the
conformal symmetries of the metric tensor. Their study extended the results of Bozhkov
and Freire [31] for the Klein–Gordon equation with a constant potential, i.e., V(xk) = V0.
More recently, Paliathanasis [30] considered the Klein–Gordon equations for the conformal
forms of Bianchi I, Bianchi III, and Bianchi V spacetimes, deriving closed-form expres-
sions for potential functions that admit Lie and Noether symmetries of the Klein–Gordon
equations. In this work, we aim to derive Noether symmetries with a gauge term for the
dynamical Lagrangian L of the Klein–Gordon equation within the background of Bianchi
I spacetimes. To obtain the Klein–Gordon equation in this spacetime, we construct a La-
grangian model. Using the obtained Lagrangian for the Klein–Gordon equation in Bianchi
I spacetime, we calculate and classify Noether symmetry generators with gauge terms.
Furthermore, we identify conservation laws provided by the Lagrangian for representing
the Klein–Gordon equation.

In a general program of research into the problem of integrating the classical and
quantum equations of motion of a test particle in external fields of different nature in
spaces with symmetry following the sets of Killing fields, Obukhov found all admissible
electromagnetic fields for the case, when the groups of motions G3 act simply transitively
on the hypersurfaces of spacetime V4 [32–35]. In [32], he found all external electromagnetic
fields in which the Klein–Gordon–Fock equation admits the first-order symmetry operators
and completed the classification of admissible electromagnetic fields in which the Hamilton–
Jacobi and Klein–Gordon–Fock equations admit algebras of motion integrals that are
isomorphic to the algebras of operators of the r-parametric groups of motions, Gr, of
spacetime manifolds if r ≤ 4 [33]. In the paper [34], the case when the groups G4 act on V3
was considered. The remaining case in the latter article, when the groups G4 act simply
transitively on the space V4, was studied in the paper [35].

The Noether symmetry generator for the Klein–Gordon Lagrangian (4) is

X = ξ i(xk, ψ)
∂

∂xi + Φ(xk, ψ)
∂

∂ψ

if there a gauge function f i(xk, ψ) exists and the Noether symmetry condition

X[1]L+ L(Diξ
i) = Di f i (5)
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is satisfied, where

Di =
∂

∂xi + ψi
∂

∂ψ
+ ψik

∂

∂ψk
+ . . .

is the total derivative operator and X[1] is the first prolongation of Noether symmetry
generator X, i.e.,

X[1] = X + ζi(xk, ψ, ψk)
∂

∂ψi
(6)

where ζi(xk, ψ, ψk) = DiΦ − ψjDiξ
j. The corresponding Noether flow Ti is defined by

the expression

Ti = −ξ iL+
(

ξkψk − Φ
) ∂L

∂ψi
+ f i, (7)

which is called the conserved vector T = (T1, . . . , Tn) , where i = 1, . . . , n, or if n = 1, then it
is called the conserved quantity. The Noether flow (7) satisfies the local conservation law

DiTi = 0. (8)

It is crucial to discover conservation laws when studying physical systems. For
studying differential equations, conservation laws are useful for integrability, linearization,
analyzing solutions, and understanding constants of motion. Noether’s theorem enables
the derivation of all local conservation laws for a (system of) differential equation(s) derived
from a Lagrangian. This method helps resolve the problem of calculating conservation
laws for given differential equation(s), as Noether’s theorem provides a formula utilizing
symmetries of the action to derive these local conservation laws. One can find a detailed
discussion about the physical significance of Noether symmetries in [36].

For the Klein–Gordon Lagrangian (4), we obtain the first prolongation of the Noether
symmetry generator X as

X[1]L =
√
−g
{
− ΦF,ψ − Fξ iΓk

ik − F,iξ
i +

1
2

[
£ξ gmn +

(
ξ iΓk

ik + 2Φ,ψ

)
gmn

]
ψmψn

+gim
(

Φ,iψm − ξ
j
,ψψmψiψj

)}
, (9)

where £ξ is the Lie derivative operator along ξ = ξk∂/∂xk. Putting (9) into (5) together with
Diξ

i = ξ i
,i + ξ i

,ψψi and Di f i = f i
,i + f i

,ψψi, the Noether symmetry condition (5) gives rise to

ξ i
,ψ = 0,

√
−ggijΦ,j − f i

,ψ = 0, (10)

£ξ gij =
(

ξk
;k + 2 Φ,ψ

)
gij, (11)√

−g
(

£ξ F + Fξ i
;i + ΦF,ψ

)
+ f i

,i = 0. (12)

Thus, we find the geometrical form of Noether symmetry equation (5) in terms of Lie
derivatives of the metric tensor. Here, Equation (10) yields ξ i = ξ i(xk) and
f i =

√−ggij ∫ Φ,jdψ + Ai(xk), where Ai(xk) is an integration function. If ξ i is a CKV
with conformal factor σ(xk), then Equations (1) and (11) imply ξ i

;i = 2 σ − 2 Φ,ψ. Finally,
the Noether symmetry condition (12) becomes

F,iξ
i + 2 F (σ − Φ,ψ) + Φ F,ψ +

∫
(□Φ)dψ +

Ai
,i√−g

= 0 . (13)

For the Bianchi I spacetime (2), the Klein–Gordon Lagrangian (4) has the form

L = − ABC
2

ψ2
t +

BC
2A

ψ2
x +

AC
2B

ψ2
y +

AB
2C

ψ2
z − ABC F(t, x, y, z, ψ) , (14)
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which is the the Lagrangian of the wave equation when F = 0. The Klein–Gordon
Equation (3) is obtained through variation of this Lagrangian with respect to the scalar
field ψ, as the following:

1
A2 ψxx +

1
B2 ψyy +

1
C2 ψzz − ψtt −

(ABC)
�

ABC
ψt = G(t, x, y, z, ψ), (15)

where G(t, x, y, z, ψ) = − ∂F
∂ψ and the dot represents the derivative with respect to time t.

Let us consider the Noether symmetry generator for the Klein–Gordon Lagrangian (14)
as follows:

X = ξ0 ∂

∂t
+ ξ1 ∂

∂x
+ ξ2 ∂

∂y
+ ξ3 ∂

∂z
+ Φ

∂

∂ψ
, (16)

where the components of ξ = (ξ0, ξ1, ξ2, ξ3) and Φ are dependent on t, x, y, z and ψ. Now,
we seek the dependent variables ξ0, ξ1, ξ2, ξ3, Φ that will be solved from the geometrical
Noether symmetry conditions (10)–(12), in order that the Lagrangian (14) would admit any
Noether symmetry. For the Bianchi I spacetime (2), the geometrical Noether symmetry
conditions (10)–(12) yield 19 PDEs:

ξ0
,ψ = 0, ξ1

,ψ = 0, ξ2
,ψ = 0, ξ3

,ψ = 0, ABC Φ,t + f 0
,ψ = 0,

BC
A

Φ,x − f 1
,ψ = 0,

AC
B

Φ,y − f 2
,ψ = 0,

AB
C

Φ,z − f 3
,ψ = 0, A2ξ1

,t − ξ0
,x = 0, B2ξ2

,t − ξ0
,y = 0,

C2ξ3
,t − ξ0

,z = 0, A2ξ1
,y + B2ξ2

,x = 0, A2ξ1
,z + C2ξ3

,x = 0, B2ξ2
,z + C2ξ3

,y = 0,

−ξ0
,t + ξ1

,x + ξ2
,y + ξ3

,z +

(
Ȧ
A

+
Ḃ
B
+

Ċ
C

)
ξ0 + 2 Φ,ψ = 0,

ξ0
,t − ξ1

,x + ξ2
,y + ξ3

,z +

(
− Ȧ

A
+

Ḃ
B
+

Ċ
C

)
ξ0 + 2 Φ,ψ = 0, (17)

ξ0
,t + ξ1

,x − ξ2
,y + ξ3

,z +

(
Ȧ
A

− Ḃ
B
+

Ċ
C

)
ξ0 + 2 Φ,ψ = 0,

ξ0
,t + ξ1

,x + ξ2
,y − ξ3

,z +

(
Ȧ
A

+
Ḃ
B
− Ċ

C

)
ξ0 + 2 Φ,ψ = 0,

F,tξ
0 + F,xξ1 + F,yξ2 + F,zξ3 + ΦF,ψ + F

[
ξ0

,t + ξ1
,x + ξ2

,y + ξ3
,z +

(
Ȧ
A

+
Ḃ
B
+

Ċ
C

)
ξ0
]

+
1

ABC

(
f 0
,t + f 1

,x + f 2
,y + f 3

,z

)
= 0.

It is noted here that the set of all Noether symmetries with the gauge functions f i form
a finite dimensional Lie algebra.

3. Noether Symmetries and Conservation Laws

It is easily seen from Equation (1) that for arbitrary forms of metric functions A(t), B(t)
and C(t), the background spacetime of Bianchi I metric admit the three KVs, the generators
of translations in x, y and z directions which implies momentum conservation,

K1 = ∂x, K2 = ∂y, K3 = ∂z . (18)

It is obvious that these KVs are also Noether, and so Lie, symmetries of the Klein–Gordon
Equation (15) in the background of Bianchi I spacetime. Hence, applying the expression (7) of
conservation law, the resulting conserved flow vector components related to the Klein–Gordon
Equation (15) are as follows:
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Tt = −ABCψtψx, Tx =
ABC

2

(
ψ2

t +
1

A2 ψ2
x −

1
B2 ψ2

y −
1

C2 ψ2
z + 2 V1(t, y, z, ψ)

)
,

Ty =
AC
B

ψxψy, Tz =
AB
C

ψyψz , (19)

for K1 = ∂x,

Tt = −ABCψtψy, Tx =
BC
A

ψxψy,

Ty =
ABC

2

(
ψ2

t −
1

A2 ψ2
x +

1
B2 ψ2

y −
1

C2 ψ2
z + 2 V2(t, x, z, ψ)

)
, (20)

Tz =
AB
C

ψyψz.

for K2 = ∂y,

Tt = −ABCψtψz, Tx =
BC
A

ψxψz, Ty =
AC
B

ψyψz

Tz =
ABC

2

(
ψ2

t −
1

A2 ψ2
x −

1
B2 ψ2

y +
1

C2 ψ2
z + 2 V3(t, x, y, ψ)

)
. (21)

for K3 = ∂z. Here, the conserved flow vector is T = (Tt, Tx, Ty, Tz), and V1(t, y, z, ψ),
V2(t, x, z, ψ), and V3(t, x, y, ψ) are integration functions. We give a complete solution of
Noether symmetry conditions (17) for the Bianchi I spacetime in the following.

Case (i): First, let us consider the Klein–Gordon equation that requires that F ̸= 0. Taking
F = U0 + U1ψ + 1

2 U2
2 ψ2 for any metric coefficients of Bianchi I spacetime, where U0, U1

and U2 are constants, the components of the Noether symmetry generator (16) are found
from Equations (17) as

ξ0 = 0 , ξ1 = c1 , ξ2 = c2 , ξ3 = c3 , (22)

Φ =
(
c4 ea1x + c5 e−a1x)(c6 ea2y + c7 e−a2y)(c8 ea3z + c9 e−a3z)Y(t) , (23)

along with the gauge vector components

f 0 = −ABC
(
c4 ea1x + c5 e−a1x)(c6 ea2y + c7 e−a2y)(c8 ea3z + c9 e−a3z)ψẎ(t) + F0(t, x, y, z) ,

f 1 = a1
BC
A
(
c4 ea1x − c5 e−a1x)(c6 ea2y + c7 e−a2y)(c8 ea3z + c9 e−a3z)ψY(t) + F1(t, x, y, z) ,

f 2 = a2
AC
B
(
c4 ea1x + c5 e−a1x)(c6 ea2y − c7 e−a2y)(c8 ea3z + c9 e−a3z)ψY(t) + F2(t, x, y, z) , (24)

f 3 = AB
(

a3ψ

C
− U1C

a3

)(
c4 ea1x + c5 e−a1x)(c6 ea2y + c7 e−a2y)(c8 ea3z − c9 e−a3z)Y(t)

−
∫

(F0,t + F1,x + F2,y)dz + F3(t, x, y) ,

where c1, . . . , c9 and a1, a2, a3 are constant parameters, F0, . . . , F3 are integration functions,
and Y(t) solves the following second-order ordinary differential equation:

Ÿ +

(
Ȧ
A

+
Ḃ
B
+

Ċ
C

)
Ẏ −

(
a2

1
A2 +

a2
2

B2 +
a2

3
C2 + U2

2

)
Y(t) = 0 . (25)

Therefore, there are eleven Noether symmetries, such that
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X1 = K1 , X2 = K2 , X3 = K3 , (26)

X4 = ea1x+a2y+a3zY(t)∂ψ , X5 = e−a1x+a2y+a3zY(t)∂ψ , X6 = ea1x−a2y+a3zY(t)∂ψ , (27)

X7 = ea1x+a2y−a3zY(t)∂ψ , X8 = ea1x−a2y−a3zY(t)∂ψ , X9 = e−a1x+a2y−a3zY(t)∂ψ , (28)

X10 = e−a1x−a2y+a3zY(t)∂ψ , X11 = e−a1x−a2y−a3zY(t)∂ψ . (29)

with the corresponding non-zero gauge vectors:

f4,5 = e±a1x+a2y+a3z ABC ψ

(
−Ẏ, ± a1Y

A2 ,
a2Y
B2 ,

( a3

C2 − U1

a3ψ

)
Y
)

,

f6,7 = ea1x∓a2y±a3z ABC ψ

(
−Ẏ,

a1Y
A2 , ∓ a2Y

B2 , ±
( a3

C2 − U1

a3ψ

)
Y
)

, (30)

f8,9 = e±a1x∓a2y−a3z ABC ψ

(
−Ẏ, ± a1Y

A2 , ∓ a2Y
B2 , −

( a3

C2 − U1

a3ψ

)
Y
)

,

f10,11 = e−a1x−a2y±a3z ABC ψ

(
−Ẏ, − a1Y

A2 , − a2Y
B2 , ±

( a3

C2 − U1

a3ψ

)
Y
)

.

The conserved vector fields associated with X1, . . . , X11 given in (26)–(29) are obtained as

T1 = −1
2

ABC W K1 − ψxT0 , T2 = −1
2

ABC W K2 − ψyT0 , T3 = −1
2

ABC W K3 − ψzT0 ,

T4 = ea1x+a2y+a3z Y T0 + f4 , T5 = e−a1x+a2y+a3z Y T0 + f5 , T6 = ea1x−a2y+a3z Y T0 + f6 ,

T7 = ea1x+a2y−a3z Y T0 + f7 , T8 = ea1x−a2y−a3z Y T0 + f8 , T9 = e−a1x+a2y−a3z Y T0 + f9 , (31)

T10 = e−a1x−a2y+a3z Y T0 + f10 , T11 = e−a1x−a2y−a3z Y T0 + f11 ,

where the gauge vectors f5, . . . , f11 are the same as in (30), and W and T0 are defined by

W = −ψ2
t +

1
A2 ψ2

x +
1

B2 ψ2
y +

1
C2 ψ2

z − 2 F , T0 = ABC
(

ψt,−
1

A2 ψx,− 1
B2 ψy,− 1

C2 ψz

)
, (32)

where F = U0 + U1ψ + 1
2 U2ψ2. The conserved vector components (7) for the integration

functions F0, . . . , F3 of the gauge functions which have the property of Ti = f i are

T =
(

F0(t, x, y, z), F1(t, x, y, z), F2(t, x, y, z),−
∫
(F0,t + F1,x + F2,y)dz + F3(t, x, y)

)
. (33)

We note, here, that the above conserved quantities will appear in each of the possible cases.
Therefore, we will not mention these quantities again.

Through to the end of this section, following Ref. [21], we will take into account the
power-law form of metric functions, such that

A(t) = tL , B(t) = tp , C(t) = tq , (34)

where L, p, and q are constant parameters. For the latter forms of the metric functions, we
find that there exists an additional HKV, which is a scaling transformation or a dilation,

K4 = −t∂t + (L − 1)x∂x + (p − 1)y∂y + (q − 1)z∂z , (35)

where σ = const. = 1, in addition to the KVs K1, K2 and K3 in (18). Furthermore, we
will consider some subcases in which we obtain the symmetry generators for the wave
(F = U0 = const., where one can take F = 0 without loss of generality) and Klein–Gordon
equations (F ̸= const.) of Bianchi I spacetime.

Obviously, other choices for the metric functions will lead to a different solution for
the function of Y(t) from Equation (25). We give some examples of these choices: (i.1)
A(t) = sin(Lt), B(t) = cos(pt), C(t) = cos(qt); (i.2) A(t) = sin(Lt), B(t) = sin(pt),
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C(t) = sin(qt); (i.3) A(t) = cos(Lt), B(t) = cos(pt), C(t) = cos(qt); and (i.4) A(t) = sech(Lt),
B(t) = sech(pt), C(t) = sech(qt). In subcase (i.1), if L = p = 1 and q = 0, then the line
element reduces to the conformally flat Bianchi I spacetime, and point symmetries and poten-
tials for the Klein–Gordon equation with F = V(t, x, y, z)ψ2/2 in this metric were studied by
Ref. [15]. The solution Y(t) of (25) for L = p and q = 0 is found as follows:

Y(t) =
g2(t)

p+a1
2p

sin(2pt)

[
b1g1(t)

d1
2 2F1(n1 − d1, n2 − d1; 2d1; g1(t))

+b2g1(t)
d2
2 2F1(n1 + d2, n2 + d2; 2d2; g1(t))

]
, (36)

where p ̸= 0, d1 = 1 − a2/p, d2 = 1 + a2/p, n1 = (a1 +
√

p2 − a2
3 − U2

2)/(2p), n2 =

(a1 −
√

p2 − a2
3 − U2

2)/(2p), and the functions g1(t), g2(t) are defined as

g1(t) =
1
2
[cos(2pt) + 1] , g2(t) =

1
2
[cos(2pt)− 1] . (37)

The solution (36) is a new one that was not mentioned in Ref. [15] and generalizes the
case 4.4 of this reference, where they were taken as L = p = 1. For L = p = 1 and q = 3,
we have the following solution for Equation (25):

Y(t) =
sin(2t)g2(t)

a1
2 g3(t)

a3
36 d2

(4a3+3
√

25−4U2
2 )

[2g1(t)]
3
4
√

2 cos2(2t)− 3 cos(2t) + 1

[
b1(cos t)d1 HG

(
3
4

, α1, β1, γ1, δ1, 1 + a1, g1(t)
)

+b2(cos t)−d1 HG

(
3
4

, α2, β2, γ2, δ2, 1 + a1, g1(t)
)]

, (38)

where HG is the Heun general function, the functions g1(t), g2(t) are the same ones as in (37)
with p = 1, and we define that g3(t) = [cos(2t) − 1/2]/2, β1 = 1 + (a1 + d1)/2 + d2,
β2 = 1+ (a1 − d1)/2+ d2, δ1 = 1+ d1, δ2 = 1− d1, and

α1 =
d1

8
(3a1 + 7) + a2

1 + a2
2 +

11
27

a2
3 + 2a1 + U2

2 −
7
3
+

a3(1 + d1)

9 d2
(4a3 + 3

√
25 − 4U2

2),

α2 = −d1

8
(3a1 + 7) + a2

1 + a2
2 +

11
27

a2
3 + 2a1 + U2

2 −
7
3
+

a3(1 − d1)

9 d2
(4a3 + 3

√
25 − 4U2

2),

in which d1 and d2 are defined as

d1 =
1
6

√
9 + 4(9a2

2 + a2
3), d2 =

1
12

√
225 + 16a2

3 − 36U2
2 + 24a3

√
25 − 4U2

2 .

One can find other solutions of (25) for different choices of the parameters L, p and q.
Some solutions of the Equation (25) for the remaining subcases (i.2)–(i.4) are included in
Table 1.
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Table 1. Some solutions of the Equation (25) for the metric functions given in subcases (i.2), (i.3),

and (i.4). Here, it is defined that k =
√

a2
1 + a2

2 + a2
3, k1 =

√
1 + a2

2 + a2
3, k2 =

(√
k2 + q2

)
/(2q),

k3 =
(√

k2 + 4
)

/4, k4 =
(√

a2
2 + a2

3

)
/q, k5 =

(√
a2

1 + q2
)

/q, k6 =
(√

k2 − U2
2

)
/q, u1 =(√

9q2 − 4U2
2

)
/(4q), u2 =

(√
4 − U2

2

)
/2, u3 =

√
25 − 4U2

2 and u4 =
√

26 − 4U2
2 + 2u3. We also

defined that ℓ1(t) = cos(2qt) + 1, ℓ2(t) = cos(2qt)− 1, and ℓ3± (t) = (cos 2t)−
1
2 (k1±1). The special

functions HG = HeunG(−1, α, β, γ, δ, τ(t)) and HC = HeunC(α, β, γ, δ, η, τ(t)) are the Heun general
function and the Heun confluent function, respectively. Furthermore, 2F1(n1, n2; d; ℓ(t)) represents
the hypergeometric function.

Case L , p , q Y(t)

(i.2) L = p = q (ℓ2(t)/2)k2+
1
2

ℓ2(t)

[
b1 2F1

(
n,−n; 1

2 ; 1
2 ℓ1(t)

)
+ b2

√
ℓ1(t) 2F1

(
−n, n; 3

2 ; 1
2 ℓ1(t)

)]
where n = k2 +

1
4 + u1

L = 2, p = q = 1 sin(2t)(cos2 t−1)k3

ℓ2(t)
√

ℓ1(t)

[
b1(cos t)−

a1
2 2F1

(
n1, n2; 2 d−; 1

2 ℓ1(t)
)

+b2 (cos t)
a1
2 2F1

(
n3, n4; 2 d+; 1

2 ℓ1(t)
)]

where d± = 1
2 (1 ±

a1
2 ), n1 = k3 + d− − u2, n2 = k3 + d− + u2

n3 = k3 + d+ + u2, n4 = k3 + d+ − u2

(i.3) L = p = q
√

ℓ2(t)
ℓ1(t)

[
b1[2 ℓ2(t)]

1
2 +k2 2F1

(
n1, n2; 1 + 2k2; 1

2 ℓ1(t)
)

+b2 [2 ℓ(t)]
1
2 −k2 2F1

(
n3, n4; 1 − 2k2; 1

2 ℓ1(t)
)]

where n1 = k2 +
3
4 − u1, n2 = k2 +

3
4 + u1, n3 = −k2 +

3
4 + u1,

n4 = −k2 +
3
4 − u1

L = 1, p = q = 2 (cos t)a1ℓ2(t)
1+u3+u4

4u4

[
b1 ℓ3− HG(−1, α1, β1, γ1, δ1, η,− cos 2t)

+b2 ℓ3+ HG(−1, α2, β2, γ2, δ2, η,− cos 2t)
]

where λ1± = 1 + 1
2 (a1 ± k1), δ1 = 1 + k1, δ2 = 1 − k1, η = 1 + a1

α1 = 1
2 (1 − a1δ1) +

√
k1

2u4

[
k1(1 − k1) +

1
2 (1 + u3)

]
+ 1+u3

4 u4
,

α2 = 1
2 (1 − a1δ2)−

√
k1

2u4

[
k1(1 − k1)− 1

2 (1 + u3)
]
+ 1+u3

4 u4
,

β1 = λ1+ + 1
4 u4, β2 = λ1− + 1

4 u4, γ1 = λ1+ +
U2

2−6
u4

, γ2 = λ1− +
U2

2−6
u4

(i.4) L = p = q cosh4(qt)
[
b1HC

(
0,− 1

2 , 2, k2

4q2 , 3q2−k2−U2
2

4 q2 ,− sin2 t
)

+b2 sinh(qt)HC

(
0, 1

2 , 2, k2

4 q2 , 3q2−k2−U2
2

4q2 ,− sin2 t
)]

L = 0, p = q b1HC

(
0,− 3

2 ,− 1
2 ,− k2

4
4 , 5q2−2a2

1−2U2
2

8 q2 , cosh2(qt)
)

+b2 cosh3(qt)HC

(
0, 3

2 ,− 1
2 ,− k2

4
4 , 5q2−2a2

1−2U2
2

8 q2 , cosh2(qt)
)

Case (ii): If F = U0 + U1ψ + 1
2 U2

2 ψ2, it is found for the power-law form of Bianchi I
spacetime that twelve Noether symmetries appear:

X1
1 = K1, X1

2 = K2, X1
3 = K3, (39)

X1
4 = K4 + ψ∂ψ , X1

5 = X4 , X1
6 = X5 , X1

7 = X6 , (40)

X1
8 = X7 , X1

9 = X8 , X1
10 = X9 , X1

11 = X10 , X1
12 = X11 , (41)
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with the corresponding non-zero gauge vectors:

f1
5,6 = e±a1x+a2y+a3z f0

(
−Ẏ, ±a1t−2LY, a2t−2pY,

(
a3t−2q − U1

a3ψ

)
Y
)

,

f1
7,8 = ea1x∓a2y±a3z f0

(
−Ẏ, a1t−2LY, ∓a2t−2pY, ±

(
a3t−2q − U1

a3ψ

)
Y
)

, (42)

f1
9,10 = e±a1x∓a2y−a3z f0

(
−Ẏ, ±a1t−2LY, ∓a2t−2pY, −

(
a3t−2q − U1

a3ψ

)
Y
)

,

f1
11,12 = e−a1x−a2y±a3z f0

(
−Ẏ, −a1t−2LY, −a2t−2pY, ±

(
a3t−2q − U1

a3ψ

)
Y
)

,

where f0 = tL+p+qψ and X4, . . . , X11 are the same as in (27)–(29). Meanwhile, in this
subcase, the second-order ordinary differential Equation (25) for Y(t) becomes

Ÿ +
(L + p + q)

t
Ẏ −

(
a2

1
t2L +

a2
2

t2p +
a2

3
t2q + U2

2

)
Y(t) = 0 . (43)

The conserved flow vectors associated with the KVs X1
1, X1

2, X1
3 and non-Killing Noether

symmetries X1
4, . . . , X1

12 given in (40) and (41) are obtained as

T1
1 = −1

2
tL+p+q W K1 − ψxT0 , T1

2 = −1
2

tL+p+q W K2 − ψyT0 , (44)

T1
3 = −1

2
tL+p+q W K3 − ψzT0 , T1

4 = −1
2

tL+p+q W K4 + (ψ − Q0)T0 , (45)

T1
5 = ea1x+a2y+a3z Y T0 + f1

5 , T1
6 = e−a1x+a2y+a3z Y T0 + f1

6 , T1
7 = ea1x−a2y+a3z Y T0 + f1

7 , (46)

T1
8 = ea1x+a2y−a3z Y T0 + f1

8 , T1
9 = ea1x−a2y−a3z Y T0 + f1

9 , T1
10 = e−a1x+a2y−a3z Y T0 + f1

10 , (47)

T1
11 = e−a1x−a2y+a3z Y T0 + f1

11 , T1
12 = e−(a1x+a2y+a3z) Y T0 + f1

12 , (48)

where W, T0 are given in Equation (32) by taking A = tL, B = tp, C = tq, Q0 is defined as

Q0 = −tψt + (L − 1)xψx + (p − 1)yψy + (q − 1)zψz , (49)

and the gauge vectors f1
5, . . . , f1

12 have the same forms as in (42). Furthermore, this subcase
yields a thirteenth Noether symmetry, in addition to the twelve obtained above, which is
X = y∂x − x∂y if L = p, and q is an arbitrary constant; X = z∂x − x∂z if L = q, and p is an
arbitrary constant, and finally X = z∂y − y∂z if p = q, and L is an arbitrary constant.

In this case, let us examine some solutions of Equation (43) for specific values of the
constant powers L, p, and q of the metric functions. If we assume L = 2, p = q = 0, the
solution of the Equation (43) is expressed in terms of double confluent Heun functions:

Y(t) =
1√

t

[
b1HD + b2HD

∫ dt
t H2

D

]
, (50)

where b1, b2 are constant parameters, and HD = HeunD
(

α, β, γ, δ, t2+1
t2−1

)
with α = 0,

β = − 1
4 − (a2

1 + a2
2 + a2

3)− U2
2 , γ = 2(a2

1 − a2
2 − a2

3 − U2
2), and δ = 1

4 − (a2
1 + a2

2 + a2
3)− U2

2 .
For L = −3, p = q = 0, we have the solution

Y(t) = t4e
a1t4

4

b1HB + b2HB

∫ e
a1t4

2 dt
t5 H2

B

 , (51)

where HB is the Heun biconfluent function such that HB = HeunB
(

α, β, γ, δ,
√

a1
2 t2
)

with

α = 2, β = 0, γ = 0, and δ = 1√
2a1

(a2
3 + U2

2). Further analysis of Equation (43) with
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respect to values of L, p, and q reveals non-trivial solutions in terms of some familiar special
functions. Table 2 contains some of these solutions corresponding to specific values for L, p,
and q.

Table 2. Some solutions of Equation (43) for specific values of L, p, and q. Here, it is defined

that ϵ1 =
√

a2
2 + a2

3 + U2
2 , ϵ2 =

√
a2

3 + U2
2 , η1 =

√
1 + 4a2

1 and η2 =
√

1 + 16a2
1. Furthermore, the

special functions KM = KummerM(µ, ν, z) and KU = KummerU(µ, ν, z) are the Kummer functions,
WM = WhittakerM(µ, ν, z) and WW = WhittakerW(µ, ν, z) are the Whittaker functions, respectively.

Case L , p , q Y(t)

1 L = 1
2 , p = q = 0

√
t e−ϵ1t[b1KM(µ, ν, 2ϵ1t) + b2KU(µ, ν, 2ϵ1t)]

where µ =
a2

1
2 ϵ1

+ 3
4 , ν = 3

2 .

2 L = −1, p = q = 0 t2e−
a1 t2

2
[
b1KM(µ, ν, a1t2) + b2KU(µ, ν, a1t2)

]
where µ = 1 + ϵ2

1
4a1

, ν = 2.

3 L = 1, p = −1, q = 0 1√
t

[
b1WM(µ, ν, a2t2) + b2WW(µ, ν, a2t2)

]
where µ = − ϵ2

2
4a2

, ν = 1
4 η1.

4 L = 1, p = 1
2 , q = 0 t−

3
4 [b1WM(µ, ν, 2 ϵ2t) + b2WW(µ, ν, 2 ϵ2t)]

where µ = − a2
2

2 ϵ2
, ν = 1

4 η2.

5 L = 1, p = −1, q = −3 t2e−
a3 t4

4

[
b1tα HB(α, β, γ, δ,

√
a3
2 t2) + b2t−α HB(−α, β, γ, δ,

√
a3
2 t2)

]
where α =

√
4 + a2

1, β = 0, γ = − a2
2

2a3
, δ =

U2
2√

2a3

6 L = 3, p = 2, q = −1 t−
3
2

[
b1 e−

(a3 t4−a1)
2 t2 HD(α, β, γ, δ, αt2−4a1

αt2+4a1
)

+b2 e
(a3 t4−a1)

2 t2 HD(−α, β, γ, δ, αt2−4a1
αt2+4a1

)
]

where α = 4
√

a1a3, β =
αa2

2
4a1

+ α2

8 − 9
4 + U2

2

√
a1
a3

,

γ = − αa2
2

2a1
+ 2 U2

2

√
a1
a3

, δ =
αa2

2
4a1

− α2

8 + 9
4 + U2

2

√
a1
a3

.

7 L = −1, p = 3, q = 1 1
t

[
b1 e−

(a1 t4−a2)
2 t2 HD(α, β, γ, δ, αt2−4a2

αt2+4a2
)

+b2 e
(a1 t4−a2)

2 t2 HD(−α, β, γ, δ, αt2−4a2
αt2+4a2

)
]

α = 4
√

a1a2, β = α2

8 − a2
3 − 1 + U2

2

√
a2
a1

γ = 2 U2
2

√
a2
a1

, δ = − α2

8 + a2
3 + 1 + U2

2

√
a2
a1

.

Subcase (ii.1). If we take F = U0 + U1ψ in the Klein–Gordon Equation (15) for the power
law form of Bianchi I spacetime (34) with L ̸= p ̸= q, where U0, U1 are constants, it is found
that there are fifteen Noether symmetries, as follows:

X5
1 = K1 , X5

2 = K2 , X5
3 = K3 , (52)

X5
4,5 = m e−a1x+a2y±a3zY(t)∂ψ , X5

6,7 = m e−a1x−a2y±a3zY(t)∂ψ , (53)

X5
8,9 = (ea1x + m e−a1x) e a2y±a3zY(t)∂ψ , X5

10,11 = (ea1x + m e−a1x)e−a2y±a3zY(t)∂ψ , (54)

X5
12,13 = K4 + X5

4,5 +

(
ψ − 3V1t2

2(1 + L + p + q)
− 3V1t1−L−p−q

2m(1 + L + p + q)

)
∂ψ , (55)

X5
14,15 = K4 + X5

6,7 +

(
ψ − 3V1t2

2(1 + L + p + q)

)
∂ψ , (56)

and the corresponding non-zero gauge vectors are
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f5
4,5 = m e−a1x+a2y±a3z f0

(
−Ẏ,−a1t−2L Y, a2t−2p Y, ±

(
a3t−2q − U1

a3ψ

)
Y
)

,

f5
6,7 = m e−a1x−a2y±a3z f0

(
−Ẏ, −a1t−2L Y, −a2t−2p Y, ±

(
a3t−2q − U1

a3ψ

)
Y
)

,

f5
8,9 = (ea1x + m e−a1x) e a2y±a3z f0

(
−Ẏ,

a1(ea1x − m e−a1x)

(ea1x + m e−a1x)
Y, a2t−2p Y, ±

(
a3t−2q − U1

a3ψ

)
Y
)

,

f5
10,11 = (ea1x + m e−a1x) e−a2y±a3z f0

(
−Ẏ,

a1(ea1x − m e−a1x)

(ea1x + m e−a1x)
Y, −a2t−2p Y, ±

(
a3t−2q − U1

a3ψ

)
Y
)

,

f5
12,13 = f5

4,5 +
3U1ψ

1 + L + p + q

[
t1+L+p+q +

(1 − L − p − q)
2m

]
∂t (57)

+

[
3U1t

2m(1 + L + p + q)
+ tL+p+q

(
4U0 +

3U2
1 t2

2(1 + L + p + q)

)]
z∂z ,

f5
14,15 = f5

6,7 +
3U1ψ t1+L+p+q

1 + L + p + q
∂t + tL+p+q

[
4U0 +

3U2
1 t2

2(1 + L + p + q)

]
z∂z ,

where f0 = tL+p+qψ, m is a non-zero constant parameter, and K4 is the HKV given in (35).
Thus, one can write the conserved flow vectors for the Noether symmetries X5

4, ..., X5
15 as

T5
4,5 = m Y e−a1x+a2y±a3z T0 + f5

4,5 , T5
6,7 = m Y e−a1x−a2y±a3z T0 + f5

6,7

T5
8,9 = Y (ea1x + m e−a1x) e a2y±a3z T0 + f5

8,9 , T5
10,11 = Y (ea1x + m e−a1x) e−a2y±a3z T0 + f5

10,11

T5
12,13 =

[
m Y e−a1x−a2y±a3z − 3U1t2

2(1 + L + p + q)
− 3U1t1−L−p−q

2m(1 + L + p + q)
+ ψ

]
T0 (58)

−1
2

tL+p+q W K4 + f5
12,13

T5
14,15 =

[
m Y e−a1x+a2y±a3z − 3U1t2

2(1 + L + p + q)
+ ψ

]
T0 −

1
2

tL+p+q W K4 + f5
14,15 ,

where W = −ψ2
t + t−2Lψ2

x + t−2pψ2
y + t−2qψ2

z − 2(U0 + U1ψ).
Subcase (ii.2). For F = 0, which requires U0 = U1 = U2 = 0, Equation (15) reduces to
the wave equation for Bianchi I spacetime. If we take L = p = q in (34), the Bianchi I
spacetime yields the flat FLRW spacetime. For the latter assumption of metric coefficients,
and assuming F = U0, we find twenty six Noether symmetries, which are the KVs X1

1, X1
2, X1

3
given in (39), and

X2
4 = K4 + ψ∂ψ , X2

5 = K5 , X2
6 = K6 , X2

7 = K7 , (59)

X2
8 = K1

8 + 2(q − 1)xψ∂ψ , X2
9 = K1

9 + 2(q − 1)yψ∂ψ , X2
10 = K1

10 + 2(q − 1)zψ∂ψ , (60)

X2
11 = M eb1x+b2y sin(ℓz)∂ψ , X2

12 = M e−b1x+b2y sin(ℓz)∂ψ , (61)

X2
13 = M eb1x−b2y sin(ℓz)∂ψ , X2

14 = M e−(b1x+b2y) sin(ℓz)∂ψ , (62)

X2
15 = M eb1x+b2y cos(ℓz)∂ψ , X2

16 = M e−b1x+b2y cos(ℓz)∂ψ , (63)

X2
17 = M eb1x−b2y cos(ℓz)∂ψ , X2

18 = M e−(b1x+b2y) cos(ℓz)∂ψ , (64)

X2
19 = N eb1x+b2y sin(ℓz)∂ψ , X2

20 = N e−b1x+b2y sin(ℓz)∂ψ , (65)

X2
21 = N eb1x−b2y sin(ℓz)∂ψ , X2

22 = N e−(b1x+b2y) sin(ℓz)∂ψ , (66)

X2
23 = N eb1x+b2y cos(ℓz)∂ψ , X2

24 = N e−b1x+b2y cos(ℓz)∂ψ , (67)

X2
25 = N eb1x−b2y cos(ℓz)∂ψ , X2

26 = N e−(b1x+b2y) cos(ℓz)∂ψ , (68)

in which the vector fields K5, K6, K7, K1
8, K1

9 and K1
10 have the form
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K5 = y∂x − x∂y , K6 = z∂x − x∂z , K7 = z∂y − y∂z , (69)

K1
8 = 2(q − 1)x

[
−t∂t + (q − 1)(y∂y + z∂z)

]
+
[
(q − 1)2(x2 − y2 − z2) + t2(1−q)

]
∂x , (70)

K1
9 = 2(q − 1)y[−t∂t + (q − 1)(x∂x + z∂z)] +

[
(q − 1)2(−x2 + y2 − z2) + t2(1−q)

]
∂y , (71)

K1
10 = 2(q − 1)z

[
−t∂t + (q − 1)(x∂x + y∂y)

]
+
[
(q − 1)2(−x2 − y2 + z2) + t2(1−q)

]
∂z , (72)

and M = M(t) and N = N(t) are defined by

M(t) =
(q + 1)

b3
t−

(q+1)
2 Jν1(τ) + t

(1−3q)
2 Jν2(τ) , N(t) =

(q + 1)
b3

t−
(q+1)

2 Yν1(τ) + t
(1−3q)

2 Yν2(τ) , (73)

where b1, b2 and b3( ̸= 0) are constant parameters, q ̸= 0, 1, 1/2, ν1 = −(q + 1)/(2(q − 1)),

ν2 = (q − 3)/(2(q − 1)), ℓ =
√

b2
1 + b2

2 + b2
3, τ = (b3/(q − 1))t1−q, {Jν1(τ), Jν2(τ)} and

{Yν1(τ), Yν2(τ)} are first and second kind Bessel functions, respectively. We note here
that the vector fields K5, K6, K7 in (69) are the KVs, and the other ones K1

8, K1
9, and K1

10
in (70)–(72) are the SCKVs with the conformal factors σ = 2(q − 1)x, σ = 2(q − 1)y, and
σ = 2(q − 1)z, respectively. Furthermore, the gauge vectors for X2

8, ..., X2
26 are

f2
8 = (q − 1)tqψ2 ∂x , f2

9 = (q − 1)tqψ2 ∂y , f2
10 = (q − 1)tqψ2 ∂z ,

f2
11,12 = ψ e±b1x+b2y sin(ℓz)

(
b3 t

q+1
2 Jν1(τ) , tq M

(
± b1 , b2 , ℓ cot(ℓz)

))
,

f2
13,14 = ψ e±b1x−b2y sin(ℓz)

(
b3 t

q+1
2 Jν1(τ) , tq M

(
± b1 , −b2 , ℓ cot(ℓz)

))
,

f2
15,16 = ψ e±b1x+b2y cos(ℓz)

(
b3 t

q+1
2 Jν1(τ) , tq M

(
± b1 , b2 , −ℓ tan(ℓz)

))
,

f2
17,18 = ψ e±b1x−b2y cos(ℓz)

(
b3 t

q+1
2 Jν1(τ) , tq M

(
± b1 , −b2 , −ℓ tan(ℓz)

))
, (74)

f2
19,20 = ψ e±b1x+b2y sin(ℓz)

(
b3 t

q+1
2 Yν1(τ) , tq N

(
± b1 , b2 , ℓ cot(ℓz)

))
,

f2
21,22 = ψ e±b1x−b2y sin(ℓz)

(
b3 t

q+1
2 Yν1(τ) , tq N

(
± b1 , −b2 , ℓ cot(ℓz)

))
,

f2
23,24 = ψ e±b1x+b2y cos(ℓz)

(
b3 t

q+1
2 Yν1(τ) , tq N

(
± b1 , b2 , −ℓ tan(ℓz)

))
,

f2
25,26 = ψ e±b1x−b2y cos(ℓz)

(
b3 t

q+1
2 Yν1(τ) , tq N

(
± b1 , −b2 , −ℓ tan(ℓz)

))
.

Then, in addition to the conserved flow vectors for X1, X2, X3, and X2
4 obtained in

(44) and (45), the conserved vector fields for the remaining Noether symmetries of this
subcase become

T2
5 = −1

2
t3q W K5 + (yψx − xψy)T0 , T2

6 = −1
2

t3q W K6 + (zψx − xψz)T0 ,

T2
7 = −1

2
t3q W K7 + (zψy − yψz)T0 , T2

8 = −1
2

t3q W K1
8 + [2(q − 1)xψ − Q1]T0 + f2

8 ,

T2
9 = −1

2
t3q W K1

9 + [2(q − 1)yψ − Q2]T0 + f2
9 ,

T2
10 = −1

2
t3q W K1

10 + [2(q − 1)zψ − Q3)]T0 + f2
10 , (75)

T2
11,12 = M e±b1x+b2y sin(ℓz)T0 + f2

11,12 , T2
13,14 = M e±b1x−b2y sin(ℓz)T0 + f2

13,14

T2
15,16 = M e±b1x+b2y cos(ℓz)T0 + f2

15,16 , T2
17,18 = M e±b1x−b2y cos(ℓz)T0 + f2

17,18

T2
19,20 = N e±b1x+b2y sin(ℓz)T0 + f2

19,20 , T2
21,22 = N e±b1x−b2y sin(ℓz)T0 + f2

21,22

T2
23,24 = N e±b1x+b2y cos(ℓz)T0 + f2

23,24 , T2
25,26 = N e±b1x−b2y cos(ℓz)T0 + f2

25,26



Symmetry 2024, 16, 115 14 of 23

where W, T0 are the same as given in (32), in which F = 0 and A = B = C = tq, and Q1, Q2
and Q3 are defined as the following:

Q1 = 2(q − 1)x
[
−tψt + (q − 1)(yψy + zψz)

]
+
[
(q − 1)2(x2 − y2 − z2) + t2(1−q)

]
ψx , (76)

Q2 = 2(q − 1)y[−tψt + (q − 1)(xψx + zψz)] +
[
(q − 1)2(−x2 + y2 − z2) + t2(1−q)

]
ψy , (77)

Q3 = 2(q − 1)z
[
−tψt + (q − 1)(xψx + yψy)

]
+
[
(q − 1)2(−x2 − y2 + z2) + t2(1−q)

]
ψz . (78)

For some values of q in this subcase, one can obtain different Noether symmetry genera-
tors from those above. Now, we will give some examples of this situation, as seen below.

If L = p = q = 1 and F = 0, then there are again twenty six Noether symmetries, such
that the KVs K1, K2, K3, and

X3
4 = −t∂t + ψ∂ψ , X3

5 = K5 , X3
6 = K6 , X2

7 = K7 , (79)

X3
8 = K2

8 − x ψ ∂ψ , X3
9 = K2

9 − y ψ ∂ψ , X3
10 = K2

10 − z ψ ∂ψ , (80)

X3
11 = t−1h1(t)eb1x+b2y sin(ℓz)∂ψ , X3

12 = t−1h1(t)e−b1x+b2y sin(ℓz)∂ψ , (81)

X3
13 = t−1h1(t)eb1x−b2y sin(ℓz)∂ψ , X3

14 = t−1h1(t)e−(b1x+b2y) sin(ℓz)∂ψ , (82)

X3
15 = t−1h1(t)eb1x+b2y cos(ℓz)∂ψ , X3

16 = t−1h1(t)e−b1x+b2y cos(ℓz)∂ψ , (83)

X3
17 = t−1h1(t)eb1x−b2y cos(ℓz)∂ψ , X3

18 = t−1h1(t)e−(b1x+b2y) cos(ℓz)∂ψ , (84)

X3
19 = t−1h2(t)eb1x+b2y sin(ℓz)∂ψ , X3

20 = t−1h2(t)e−b1x+b2y sin(ℓz)∂ψ , (85)

X3
21 = t−1h2(t)eb1x−b2y sin(ℓz)∂ψ , X3

22 = t−1h2(t)e−(b1x+b2y) sin(ℓz)∂ψ , (86)

X3
23 = t−1h2(t)eb1x+b2y cos(ℓz)∂ψ , X3

24 = t−1h2(t)e−b1x+b2y cos(ℓz)∂ψ , (87)

X3
25 = t−1h2(t)eb1x−b2y cos(ℓz)∂ψ , X3

26 = t−1h2(t)e−(b1x+b2y) cos(ℓz)∂ψ , (88)

where K2
8, K2

9 and K2
10 are given by

K2
8 = x t ∂t + ln t ∂x , K2

9 = y t ∂t + ln t ∂y , K2
10 = z t ∂t + ln t ∂z , (89)

which are SCKVs with the conformal factors σ = x for K2
8, σ = y for K2

9, and σ = z for K2
10.

Here, the functions h1(t) and h2(t) are of the forms h1(t) = t
√

1−b2
3 and h2(t) = t−

√
1−b2

3 .
The corresponding gauge vector fields of the above Noether symmetries are

f3
8 = − t

2
ψ2∂x , f3

9 = − t
2

ψ2∂y , f3
10 = − t

2
ψ2∂z ,

f3
11,12 = h1(t)e±b1x+b2y sin(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1, b2, ℓ cot(ℓz)
)

,

f3
13,14 = h1(t)e±b1x−b2y sin(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1,−b2, ℓ cot(ℓz)
)

f3
15,16 = h1(t)e±b1x+b2y cos(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1, b2,−ℓ tan(ℓz)
)

,

f3
17,18 = h1(t)e±b1x−b2y cos(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1,−b2,−ℓ tan(ℓz)
)

, (90)

f3
19,20 = h2(t)e±b1x+b2y sin(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1, b2, ℓ cot(ℓz)
)

,

f3
21,22 = h2(t)e±b1x−b2y sin(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1,−b2, ℓ cot(ℓz)
)

,

f3
23,24 = h2(t)e±b1x+b2y cos(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1, b2,−ℓ tan(ℓz)
)

,

f3
25,26 = h2(t)e±b1x−b2y cos(ℓz)ψ

(
(1 −

√
1 − b2

3)t,±b1,−b2,−ℓ tan(ℓz)
)

.
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Using the conservation law relation (7), the conserved flow vectors for X3
4, . . . , X3

26 become

T3
4 =

1
2

t3 W ∂t + (tψt + ψ)T0 , T3
5 = −1

2
t3 W K5 + (xψy − yψx)T0 ,

T3
6 = −1

2
t3 W K6 + (xψz − ψx)T0 , T3

7 = −1
2

t3 W K7 + (yψz − zψy)T0 ,

T3
8 = −1

2
t3 W K2

8 − (x(tψt + ψ) + ln t ψx)T0 + f3
8 ,

T3
9 = −1

2
t3 W K2

9 −
(
y(tψt + ψ) + ln t ψy

)
T0 + f3

9 , (91)

T3
10 = −1

2
t3 W K2

10 − (z(tψt + ψ) + ln t ψz)T0 + f3
10 ,

T3
11,12 = t−1h1(t)e±b1x+b2y sin(ℓz)T0 + f3

11,12 , T3
13,14 = t−1h1(t)e±b1x−b2y sin(ℓz)T0 + f3

13,14

T3
15,16 = t−1h1(t)e±b1x+b2y cos(ℓz)T0 + f3

15,16 , T3
17,18 = t−1h1(t)e±b1x−b2y cos(ℓz)T0 + f3

17,18

T3
19,20 = t−1h2(t)e±b1x+b2y sin(ℓz)T0 + f3

19,20 , T3
21,22 = t−1h2(t)e±b1x−b2y sin(ℓz)T0 + f3

21,22

T3
23,24 = t−1h2(t)e±b1x+b2y cos(ℓz)T0 + f3

23,24 , T3
25,26 = t−1h2(t)e±b1x−b2y cos(ℓz)T0 + f3

25,26

where T0 and W are the same as given in (32) by taking A = B = C = t and F = 0.
When L = p = q = 1/2 and F = 0, we obtain thirty one Noether symmetries, which is

the maximum number of symmetries, and these include six KVs K1, K2, K3, K5, K6, K7 and
the following:

X4
7 = X2

4 , X4
8 = X2

8 , X4
9 = X2

9 , X4
10 = X2

10 , (92)

X4
11 = K11 −

ψ

2
√

t
∂ψ , X4

12 = K12 −
x ψ

2
√

t
∂ψ , X4

13 = K13 −
y ψ

2
√

t
∂ψ , (93)

X4
14 = K14 −

z ψ

2
√

t
∂ψ , X4

15 = K15 −
1

2
√

t

[
3t +

1
4
(x2 + y2 + z2)

]
ψ∂ψ , (94)

X4
16 = h3(t)eb1x+b2y sin(βz)∂ψ , X4

17 = h3(t)e−b1x+b2y sin(βz)∂ψ , (95)

X4
18 = h3(t)eb1x−b2y sin(βz)∂ψ , X4

19 = h3(t)e−(b1x+b2y) sin(βz)∂ψ , (96)

X4
20 = h7(t)eb1x+b2y cos(βz)∂ψ , X4

21 = h3(t)e−b1x+b2y cos(βz)∂ψ , (97)

X4
22 = h3(t)eb1x−b2y cos(βz)∂ψ , X4

23 = h3(t)e−(b1x+b2y) cos(βz)∂ψ , (98)

X4
24 = h4(t)eb1x+b2y sin(βz)∂ψ , X4

25 = h4(t)e−b1x+b2y sin(βz)∂ψ , (99)

X4
26 = h4(t)eb1x−b2y sin(βz)∂ψ , X4

27 = h4(t)e−(b1x+b2y) sin(βz)∂ψ , (100)

X4
28 = h4(t)eb1x+b2y cos(βz)∂ψ , X4

29 = h4(t)e−b1x+b2y cos(βz)∂ψ , (101)

X4
30 = h4(t)eb1x−b2y cos(βz)∂ψ , X4

31 = h4(t)e−(b1x+b2y) cos(βz)∂ψ , (102)

where β =
√

b2
1 + b2

2 − b2
3, h3(t) = sinh(2b3

√
t)/

√
t, and h4(t) = cosh(2b3

√
t)/

√
t. Fur-

thermore, K11, K12, K13, K14, and K15 are defined as follows:

K11 =
√

t ∂t , K12 =
√

t(x∂t + 2∂x) , K13 =
√

t(y∂t + 2∂y) , K14 =
√

t(z∂t + 2∂z) , (103)

K15 =
√

t
[(

t +
1
4
(x2 + y2 + z2)

)
∂t + x∂x + y∂y + z∂z

]
, (104)

which are CKVs of Bianchi I spacetime and the conformal factors are σ = 1/(2
√

t) for K11,
σ = x/(2

√
t) for K12, σ = y/(2

√
t) for K13, σ = z/(2

√
t) for K14, and σ = [3t + (x2 + y2 +

z2)/4]/
√

t for K15. Here, the gauge vector fields for the Noether symmetries obtained in
(92)–(102) are
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f4
8 =

1
2

√
t ψ2∂x , f4

9 =
1
2

√
t ψ2∂y , f4

10 =
1
2

√
t ψ2∂z , f4

11 = −1
8

ψ2∂t ,

f4
12 = −1

8
ψ2(x∂t + 2∂x) , f4

13 = −1
8

ψ2(y∂t + 2∂y) , f4
14 = −1

8
ψ2(z∂t + 2∂z) ,

f4
15 = −1

8
ψ2
([

3 t − 1
4
(x2 + y2 + z2)

]
∂t + x∂x + y∂y + z∂z

)
,

f4
16,17 =

√
t h3(t)e±b1+b2y sin(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1, b2, β cot(βz)

)
,

f4
18,19 =

√
t h3(t)e±b1−b2y sin(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1,−b2, β cot(βz)

)
,

f4
20,21 =

√
t h3(t)e±b1+b2y cos(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1, b2,−β tan(βz)

)
, (105)

f4
22,23 =

√
t h3(t)e±b1−b2y cos(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1,−b2,−β tan(βz)

)
,

f4
24,25 =

√
t h4(t)e±b1+b2y sin(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1, b2, β cot(βz)

)
,

f4
26,27 =

√
t h4(t)e±b1−b2y sin(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1,−b2, β cot(βz)

)
,

f4
28,29 =

√
t h4(t)e±b1+b2y cos(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1, b2,−β tan(βz)

)
,

f4
30,31 =

√
t h4(t)e±b1−b2y cos(βz)ψ

(
1
2
− b3

√
t coth(2b3

√
t),±b1,−b2,−β tan(βz)

)
.

Then, the corresponding conserved flow vectors for the Noether symmetries given in
(92)–(102) yield

T4
8 = T2

8 with q = 1/2 , T4
9 = T2

9 with q = 1/2 ,

T4
10 = T2

10 with q = 1/2 , T4
11 = −1

2
t3/2 W K11 −

√
t
(

ψt +
ψ

2 t

)
T0 + f4

11 ,

T4
12 = −1

2
t3/2 W K12 −

√
t
(

x(ψt +
ψ

2 t
) + 2 ψx

)
T0 + f4

12 ,

T4
13 = −1

2
t3/2 W K13 −

√
t
(

y(ψt +
ψ

2 t
) + 2ψy

)
T0 + f4

13 ,

T4
14 = −1

2
t3/2 W K14 −

√
t
(

z(ψt +
ψ

2 t
) + 2ψz

)
T0 + f4

14 , (106)

T4
15 = −1

2
t3/2 W K15 −

√
t
[

Q4 +
1

2 t

(
3 t +

1
4
(x2 + y2 + z2)

)
ψ
]
T0 + f4

15 ,

T4
16,17 = h3(t)e±b1x+b2y sin(βz)T0 + f4

16,17 , T4
18,19 = h3(t)e±b1x−b2y sin(βz)T0 + f4

18,19

T4
20,21 = h3(t)e±b1x+b2y cos(βz)T0 + f4

20,21 , T4
22,23 = h3(t)e±b1x−b2y cos(βz)T0 + f4

22,23

T4
24,25 = h4(t)e±b1x+b2y sin(βz)T0 + f4

24,25 , T4
26,27 = h4(t)e±b1x−b2y sin(βz)T0 + f4

26,27

T4
28,29 = h4(t)e±b1x+b2y cos(βz)T0 + f4

28,29 , T4
30,31 = h4(t)e±b1x−b2y cos(βz)T0 + f4

30,31

where T0 and W are given in (32) through F = 0, A = B = C = t1/2, and Q4 is defined by

Q4 =

[
t +

1
4
(x2 + y2 + z2)

]
ψt + xψx + yψy + zψz . (107)
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Subcase (ii.3). If A(t) = B(t) = C(t) = tq through F = (bψ + c)4 (see Ref. [11] for selection
of this function to study the Noether symmetries in the flat FLRW spacetime), where b and
c are constants, then we find that there are ten Noether symmetries:

X6
1 = K1 , X6

2 = K2 , X6
3 = K3 , X6

4 = K4 +
1
b
(bψ + c)∂ψ , (108)

X6
5 = K5 , X6

6 = K6 , X6
7 = K7 , (109)

X6
8 = K1

8 +
2
b
(q − 1)(bψ + c) x ∂ψ, with f6

8 =
1
b
(q − 1)tqψ(bψ + c)∂x , (110)

X6
9 = K1

9 +
2
b
(q − 1)(bψ + c) y ∂ψ, with f6

9 =
1
b
(q − 1)tqψ(bψ + c)∂y , (111)

X6
10 = K1

10 +
2
b
(q − 1)(bψ + c) z ∂ψ, with f6

10 =
1
b
(q − 1)tqψ(bψ + c)∂z , (112)

where K1
8, K1

9, and K1
10 are the same as given in (70), (71), and (72), respectively. Then, the

conserved vectors of X6
4, ..., X6

10 are

T6
4 = −1

2
t3q W K4 +

(
ψ +

c
b
− Q

)
T0 , T6

5 = T2
5 , T6

6 = T2
6 , T6

7 = T2
7 ,

T6
8 = −1

2
t3q W K1

8 +

[
2
b
(q − 1)x(bψ + c)− Q1

]
T0 + f6

8 ,

T6
9 = −1

2
t3q W K1

9 +

[
2
b
(q − 1)y(bψ + c)− Q2

]
T0 + f6

9 , (113)

T6
10 = −1

2
t3q W K1

10 +

[
2
b
(q − 1)z(bψ + c)− Q3

]
T0 + f6

10 ,

where W = −ψ2
t + t−2q(ψ2

x +ψ2
y +ψ2

z)− 2(bψ+ c)4, Q = −tψt + (q− 1)(xψx + yψy + zψz),
Qi’s (i = 1, 2, 3) are the same as in (76)–(78), and q ̸= 0, 1, 1/2. For certain values of q, one
can obtain either ten or fifteen Noether symmetry generators. Now, we will provide some
examples illustrating this situation below.
(ii.3.1): For q = 1, there are again ten Noether symmetries, such that X7

1 = K1, X7
2 = K2,

X7
3 = K3 and

X7
4 = −t ∂t +

1
b
(bψ + c) ∂ψ , X7

5 = K5 , X7
6 = K6 , X7

7 = K7 , (114)

X7
8 = K2

8 −
x
b
(bψ + c) ∂ψ with f7

8 = − t
2b

ψ(bψ + c) ∂x , (115)

X7
9 = K2

9 −
y
b
(bψ + c) ∂ψ with f7

9 = − t
2b

ψ(bψ + c) ∂y , (116)

X7
10 = K2

10 −
z
b
(bψ + c) ∂ψ with f7

10 = − t
2b

ψ(bψ + c) ∂z , (117)

where K2
8, K2

9, K2
10 are the same vector fields defined in (89). The conserved flow vectors for

the above Noether symmetries are

T7
5 = T3

5 , T7
6 = T3

6 , T7
7 = T3

7 , T7
8 = −1

2
t3 W K2

8 −
[

x(tψt +
1
b
(bψ + c)) + ln t ψx

]
T0 + f7

8 ,

T7
9 = −1

2
t3 W K2

9 −
[
y(tψt +

1
b
(bψ + c)) + ln t ψy

]
T0 + f7

9 , (118)

T7
10 = −1

2
t3 W K2

10 −
[
z(tψt +

1
b
(bψ + c)) + ln t ψz

]
T0 + f7

10 ,

where T3
5, T3

6, T3
7 are of the same form as obtained in (91), and W = −ψ2

t + t−2(ψ2
x + ψ2

y +

ψ2
z)− (bψ + c)4.

(ii.3.2): For q = 1/2, we find that the number of Noether symmetries is fifteen, which are
the KVs K1, K2, K3, K5, K6, K7 and



Symmetry 2024, 16, 115 18 of 23

X8
4 = K4 +

1
b
(bψ + c)∂ψ , X8

8 = K1
8 −

x
b
(bψ + c)∂ψ , (119)

X8
9 = K1

9 −
y
b
(bψ + c)∂ψ , X8

10 = K1
10 −

z
b
(bψ + c)∂ψ , (120)

X8
11 = K11 −

(bψ + c)
2 b

√
t

∂ψ , X8
12 = K12 −

x (bψ + c)
2 b

√
t

∂ψ , X8
13 = K13 −

y (bψ + c)
2
√

t
∂ψ , (121)

X8
14 = K14 −

z (bψ + c)
2 b

√
t

∂ψ , X8
15 = K15 −

1
2 b

√
t

[
3t +

1
4
(x2 + y2 + z2)

]
(bψ + c)∂ψ , (122)

where K11, . . . , K15 are of the form given in Equations (103) and (104). Then, one can obtain
the corresponding non-zero gauge vectors, such that

f8
8 = −

√
t

2 b
ψ(bψ + 2 c)∂x , f8

9 = −
√

t
2 b

ψ(bψ + 2 c)∂y , f8
10 = −

√
t

2 b
ψ(bψ + 2 c)∂z ,

f8
11 = − 1

8 b
ψ(bψ + 2 c)∂x , f8

12 = − 1
8 b

ψ(bψ + 2 c)(x∂t + 2 ∂x) ,

f8
13 = − 1

8 b
ψ(bψ + 2 c)(y∂t + 2 ∂y) , f8

14 = − 1
8 b

ψ(bψ + 2 c)(z∂t + 2 ∂z) , (123)

f8
15 = − 1

4 b
ψ(bψ + 2 c)

[(
−3t +

1
4
(x2 + y2 + z2)

)
+ x∂x + y∂y + z∂z

]
.

The conserved vectors for the Noether symmetries obtained in (119)–(122) yield

T8
4 = −1

2
t3/2 W K4 +

(
ψ +

c
b
− Q

)
T0 , T8

8 = −1
2

t3/2 W K1
8 −

(
Q1 +

x
b
(b ψ + c)

)
T0 + f8

8 ,

T8
9 = −1

2
t3/2 W K1

9 −
(

Q2 +
y
b
(b ψ + c)

)
T0 + f8

19 ,

T8
10 = −1

2
t3/2 W K1

10 −
(

Q3 +
z
b
(b ψ + c)

)
T0 + f8

10 ,

T4
11 = −1

2
t3/2 W K11 −

√
t
(

ψt +
ψ

2 t

)
T0 + f4

11 , (124)

T8
12 = −1

2
t3/2 W K12 −

√
t
[

x
(

ψt +
1

2 b t
(b ψ + c)

)
+ 2 ψx

]
T0 + f8

12 ,

T8
13 = −1

2
t3/2 W K13 −

√
t
[
y
(

ψt +
1

2 b t
(b ψ + c)

)
+ 2 ψy

]
T0 + f8

13 ,

T8
14 = −1

2
t3/2 W K14 −

√
t
[
z
(

ψt +
1

2 b t
(b ψ + c)

)
+ 2 ψz

]
T0 + f8

14 ,

T8
15 = −1

2
t3/2 W K15 −

√
t
[

Q4 +
1

2 b t

(
3 t +

1
4
(x2 + y2 + z2)

)
(b ψ + c)

]
T0 + f8

15 ,

where Q0, Q1, Q2, Q3, and Q4 are given in Equations (49), (76), (77), (78), and (107), respectively.

4. The Field Equations

In this section, we briefly examine the gravitational field equations of the Bianchi I
spacetime when influenced by an imperfect fluid source. The general expression for the
energy-momentum tensor of an imperfect fluid is given by

Tij = (ρ + P)uiuj + P gij + (Px − P)χiχj + (Py − P)yiyj + (Pz − P)zizj , (125)

where ρ is the energy density; and Px, Py, and Pz are the anisotropic pressures in the
x, y, and z directions, respectively. P represents the isotropic pressure and is defined as
P = (Px + Py + Pz)/3. The energy density ρ is measured using a comoving observer
with the timelike unit four-velocity ui, satisfying the normalization condition uiui = −1.
Additionally, χi, yi, zi are spacelike vectors with orthonormality conditions: χiχi = 1,
yiyi = 1, zizi = 1, χiyi = 0, χizi = 0, yizi = 0, χiui = 0, yiui = 0 and ziui = 0. When
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Px = Py = Pz = P, the energy-momentum tensor Tij for the imperfect fluid, as given
in (125), reduces to that of a perfect fluid. The pressure is treated as a vectorial quantity,
consistent with the nature of anisotropic fluids. The equation of state (EoS) parameter for
the imperfect fluid in the Bianchi I spacetime may be determined separately along each
spatial axis, denoted as wi = Pi/ρ, where Pi = {Px, Py, Pz}. The average EoS parameter for
the imperfect fluid in the Bianchi I spacetime is defined as w = P/ρ = (wx + wy + wz)/3.
A well-known example of dark energy occurs within the range w < − 1

3 , indicating an
accelerating phase for the universe. This form of dark energy is termed quintessence when
− 1

3 > w > −1, and labeled a phantom fluid if w < −1.
In the geometry described by the Bianchi I metric given in (2), the timelike four-velocity

in comoving coordinates is ui = δi
0. From the properties of the spacelike vectors, it follows

that χi = A−1δi
1, yi = B−1δi

2, and zi = C−1δi
3. Subsequently, the Einstein field equations

Gij = 8πTij in natural units (G = 1 and c = 1) can be expressed as follows:

ȦḂ
AB

+
ȦĊ
AC

+
ḂĊ
BC

= 8π ρ , (126)

Ä
A

+
B̈
B
+

ȦḂ
AB

= −8πPx , (127)

Ä
A

+
C̈
C
+

ȦĊ
AC

= −8πPy , (128)

B̈
B
+

C̈
C
+

ḂĊ
BC

= −8πPz , (129)

where Gij = Rij − 1
2 Rgij is the Einstein tensor, Rij is the Ricci tensor, and R is the Ricci

scalar, which has the form

R = 2
(

Ä
A

+
B̈
B
+

C̈
C
+

ȦḂ
AB

+
ȦĊ
AC

+
ḂĊ
BC

)
. (130)

A curvature scalar characterizes the spacetime curvature. One of the important
curvature scalars is the Kretschmann scalar, defined by K = Rijkl Rijkl , which is a quadratic
scalar invariant of the Riemann tensor Rijkl . It is crucial for measuring curvature in a
vacuum. This curvature scalar also characterizes the spacetime curvature of a realistic
rotating black hole, allowing us to mathematically perceive the black hole. Additionally,
we consider an important curvature scalar, the so-called Gauss–Bonnet (GB) invariant G,
defined as G = R2 − 4RijRij + Rijkl Rijkl . Apart from emerging in the context of defining
quantum fields in curved spacetimes, the GB invariant G can encapsulate all the curvature
information stemming from the Riemann tensor in dynamical equations. For the Bianchi I
spacetime, both the K and G take the following forms

K = 4
[

Ä2

A2 +
B̈2

B2 +
C̈2

C2 +
(ȦḂ)2

(AB)2 +
(ȦĊ)2

(AC)2 +
(ḂĊ)2

(BC)2

]
, (131)

G = 8
(

Ä
A

+
B̈
B
+

C̈
C

)
. (132)

In the previous section, we investigated the power law form of metric functions, such
as A(t) = tL, B(t) = tp, and C(t) = tq in specific cases. With this form of the Bianchi I
metric, analysis of the field Equations (126) to (128) reveals the expressions for the physical
variables ρ, Px, Py and Pz to be

ρ =
(Lp + Lq + pq)

8π t2 , Px = − (p2 + pq + q2 − p − q)
8π t2 , (133)

Py = − (L2 + Lq + q2 − L − q)
8π t2 , Pz = − (L2 + Lp + p2 − L − p)

8π t2 , (134)
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As a result, the directional EoS parameters wx, wy, and wz along the x, y, and z axes,
respectively, are determined as follows:

wx = p+q−p2−pq−q2

Lp+Lq+pq , wy = L+q−L2−Lq−q2

Lp+Lq+pq , wz =
L+p−L2−Lp−p2

Lp+Lq+pq . (135)

Subsequently, the average EoS parameter w is expressed as

w = 1 +
2
3
(L + p + q)(1 − L − p − q)

Lp + Lq + pq
, (136)

where Lp + Lq + pq ̸= 0. Finally, the Ricci, Kretschmann, and the GB scalars for the power
law form of metric coefficients are obtained as follows:

R =
4
t2

(
L2 + p2 + q2 + Lp + Lq + pq − L − p − q

)
, G =

8Lp q (L + p + q − 3)
t4 , (137)

K =
8
t4

[
L4 + p4 + q4 − 2(L3 + p3 + q3) + L2 p2 + L2q2 + p2q2 + L2 + p2 + q2

]
. (138)

If Lp + Lq + pq = 0, both p and q should be zero, and there is no need for vanishing of
the power L. This means that the energy density ρ is zero, while the anisotropic pressures
in x, y and z directions are Px = 0, Py = L(1 − L)/(8πt2) and Pz = Py, respectively. In
theoretical physics and cosmology, scenarios where the energy density vanishes (or is
extremely low) while the pressure is different from zero are less common. However, there
are still certain contexts where this can occur, often involving exotic fields or conditions.
In certain models of the early universe, there is a concept known as the false vacuum. The
vacuum state of a field can be thought of as the state of lowest energy. In a false vacuum,
the energy density is very close to zero, but the field is in a metastable state rather than the
true vacuum state.

When considering a perfect fluid source (Px = Py = Pz = P), Equations (133) to (134)
imply the following constraint relations:

L(L − 1)− p(p − 1) + q(L − p) = 0 , L(L − 1)− q(q − 1) + p(L − q) = 0 . (139)

For cases where L = p = q, as seen in cases (ii.2) and (ii.3), these constraint equations
are precisely satisfied. Consequently, the physical quantities ρ and P take the forms

ρ =
3q2

8π t2 , P =
q(2 − 3q)

8π t2 , (140)

yielding the EoS parameter w = (2 − 3q)/(3q) where q ̸= 0. So, dark energy occurs
when q > 1, which mentions that a well-known example of dark energy (w = −1), the
cosmological constant, is not possible for the power law Bianchi I spacetime with a perfect
fluid. In addition, we have dust fluid if q = 1/3, and a stiff fluid if q = 1/2. Additionally,
the curvature scalars R, K and G for cases (ii.1) and (ii.3) are given by

R =
6q(2q − 1)

t2 , K =
12 q2(2q2 − 2q + 1)

t4 , G =
24q3(q − 1)

t4 . (141)

Moreover, when L = p = q = 2/3, the spacetime corresponds to the Einstein–de Sitter
model, a solution of field Equations (126) to (128) with P = 0 and ρ = 1/(6π t2), i.e., w = 0
(representing a dust fluid).

Kasner spacetimes, non-trivial Bianchi I solutions satisfying Einstein’s vacuum equa-
tions (Rij = 0, or ρ = 0 and P = 0), are characterized using the Kasner metric. In this
metric, the three constant parameters L, p, and q are termed the Kasner components. These
components adhere to the following relations:

L + p + q = 1 , L2 + p2 + q2 = 1 , (142)
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resulting in Lp + Lq + pq = 0. Kasner spacetimes exhibit spatial anisotropy, potentially
expanding along one direction while contracting along another. In the Kasner scenario, the
three parameters cannot all be equal. Thus, at least one of L, p, q must satisfy 0 ≤ L, p, q ≤ 1.
If any of the parameters L, p, or q equals one, the other two must be zero, resulting in a
flat Kasner spacetime. Conversely, if L, p, q ̸= 1 are all not equal to one, indicating all are
non-zero, the Kasner spacetime is non-flat [17].

5. Discussions and Concluding Remarks

Though the standard procedure for determining Lie and Noether symmetry generators
can be cumbersome, it is feasible to consider reduction or obtaining conservation laws
through Noether’s theorem. This paper delved into the geometric nature of the Klein–
Gordon/wave equation within the framework of the Lagrangian for the Bianchi I spacetime.
We demonstrated that computing Noether symmetries of the first-order Lagrangian (14)
for the Klein–Gordon Equation (15) is simplified to solving a set of differential conditions
outlined by (17). For the Bianchi I spacetime, employing this method to find Noether
symmetries yields solutions encompassing scenarios where F(t, x, y, z, ψ) = U0 (let us say,
U0 = 0 for convenience), reducing Equation (15) to the wave equation. Conversely, when
F(t, x, y, z, ψ) ̸= const., Equation (15) represents the Klein–Gordon equation. Exploring
various functional forms of metric coefficients, we derived exact solutions of the Noether
symmetry Equations (17) for the Bianchi I spacetime.

In case (i), for F = U0 + U1ψ2 + 1
2 U2

2 ψ2, we obtained the Noether symmetry gener-
ators and gauge vector components for arbitrary metric coefficients. Additionally, we
constructed conserved vector fields corresponding to these Noether symmetries. Selected
solutions of Equation (25) are presented in Table 1 for specific trigonometric or hyperbolic
metric functions other than power-law forms, involving the unknown function Y(t) in the
components of Noether symmetry generators.

In case (ii), utilizing power-law forms of metric coefficients, we derived Noether
symmetries in terms of constant powers L, p, and q. In Table 2, a set of nontrivial solutions
of Equation (43), which solve Y(t) akin to Equation (25), is provided for a specific class of
Bianchi I metrics. In subcases of (ii), particularly (ii.1), (ii.2), and (ii.3), we discovered special
values of powers L, p, and q, resulting in various dimensions of Noether symmetry groups.
Additionally, Einstein field equations incorporating an imperfect fluid were derived for
arbitrary metric functions within the context of Bianchi I spacetime and particularly studied
for the power-law form of that geometry.

Let us briefly discuss a comparison and contrast between this study and some related
references. In [15], the study focused on the Lie symmetries applied to the Klein–Gordon
and wave equations within Bianchi I spacetime in terms of the potential function V(xi).
They considered the function F as F = V(xi)ψ2/2, which gives G(xi, ψ) = −V(xi)ψ,
specifically for the Klein–Gordon equation. In this context, the investigation in [14] re-
vealed that for F = V(xi)ψ2/2, the Noether symmetry component of the scalar field ψ is
Φ = −2 σ ψ + b(xk), with b(xk) being a solution of (3). Then, it follows from the Noether
symmetry condition (13) that the equation Ai

,i = 0 and the relationship

V,iξ
i + 2 σ V − 2□ σ = 0 , (143)

were established, incorporating the potential function V(xi) and the conformal factor σ(xi).
In contrast, our study directly delved into the Noether symmetry Equations (17) employing
an arbitrary function F(xi, ψ), bypassing the need to solve condition (143) to find potentials
V(xi) concerning point symmetries generated by the spacetime symmetries of Bianchi I
metric (2). We obtained solutions for these equations, including components of Noether
symmetry generators, employing specific solvable forms of the function F within Bianchi
I spacetime. Consequently, we not only acquired conserved Noether currents but also
derived non-trivial gauge vectors for each Noether symmetry. Moreover, in the paper [30],
the author presented solutions for the classification problem concerning the Klein–Gordon
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equation with a non-constant potential function V(xi) within the framework of Bianchi I,
Bianchi III, and Bianchi V spacetimes. This investigation showcased that the Klein–Gordon
equation admits non-trivial Lie symmetries derived from conformal algebra. However, the
metric tensor provided for Bianchi I spacetime in that reference, given as

gij = diag
[
−C2(t), e−

2
c tC2(t), e−

2α1
c tC2(t), C2(t)

]
,

is less general compared to the one employed in our study, described by (2). This study
investigated the Klein–Gordon equation for Bianchi I spacetime, employing the Noether
symmetry approach as a means to derive conservation laws. The novelty of this research
lies in utilizing the Noether symmetry method to discern the symmetries inherent in the
Lagrangian, thereby establishing the associated conservation laws for the Klein–Gordon
equation of Bianchi I spacetime.

It is widely recognized that Lie point symmetries serve as a tool for reducing the
Klein–Gordon/wave equation, thereby identifying corresponding invariant solutions. The
reduction based on the Lie invariants of the symmetry vector leads to a solution of the
Klein–Gordon/wave equation, coupled with a constraint equation related to an arbitrary
integration function within the solution. In the paper [22], invariant solutions of the wave
equation on Bianchi I spacetime using the Lie symmetry method were investigated. In
our study, we used the power-law form of metric coefficients outlined in this reference.
However, we extended the investigation by exploring both the Noether symmetries of
the wave and Klein–Gordon equations, obtaining conserved quantities for each Noether
symmetry. Considering that every Noether symmetry should be a Lie symmetry, we aimed
to utilize Noether symmetries for reducing both the wave equation and Klein–Gordon
equation. Meanwhile, the common Lie symmetry vector for Bianchi I spacetime is ψ∂ψ [15],
which is not a Noether symmetry vector. Based on this observation, we inferred that the
scalar field ψ, representing the solution of the Klein–Gordon equation, should be equal to
the component Φ of the Noether symmetry generator X; that is, ψ = Φ. Further exploration
of this relationship will be the focus of another paper.
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