Synthesis of 2,6-Diaminotriptycene Conjugates with Chiral Auxiliaries: Towards the Scalable Resolution of Crucial Triptycene Intermediates
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental
2.2. Synthetic Procedures
3. Results
3.1. Synthesis
3.2. Chromatographic Separation of Diastereoisomers
3.3. Computational Investigation
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eelkema, R.; Pollard, M.M.; Vicario, J.; Katsonis, N.; Ramon, B.S.; Bastiaansen, C.W.M.; Broer, D.J.; Feringa, B.L. Nanomotor Rotates Microscale Objects. Nature 2006, 440, 163. [Google Scholar] [CrossRef]
- Caricato, M.; Sharma, A.K.; Coluccini, C.; Pasini, D. Nanostructuring with Chirality: Binaphthyl-Based Synthons for the Production of Functional Oriented Nanomaterials. Nanoscale 2014, 6, 7165–7174. [Google Scholar] [CrossRef]
- Jeong, H.-H.; Mark, A.G.; Alarcón-Correa, M.; Kim, I.; Oswald, P.; Lee, T.-C.; Fischer, P. Dispersion and Shape Engineered Plasmonic Nanosensors. Nat. Commun. 2016, 7, 11331. [Google Scholar] [CrossRef]
- Kim, Y.; Yeom, B.; Arteaga, O.; Jo Yoo, S.; Lee, S.-G.; Kim, J.-G.; Kotov, N.A. Reconfigurable Chiroptical Nanocomposites with Chirality Transfer from the Macro- to the Nanoscale. Nat. Mater. 2016, 15, 461–468. [Google Scholar] [CrossRef]
- Hembury, G.A.; Borovkov, V.V.; Inoue, Y. Chirality-Sensing Supramolecular Systems. Chem. Rev. 2008, 108, 1–73. [Google Scholar] [CrossRef]
- Ren, Y.; Jamagne, R.; Tetlow, D.J.; Leigh, D.A. A Tape-Reading Molecular Ratchet. Nature 2022, 612, 78–82. [Google Scholar] [CrossRef]
- Nitti, A.; Pasini, D. Aggregation-Induced Circularly Polarized Luminescence: Chiral Organic Materials for Emerging Optical Technologies. Adv. Mater. 2020, 32, 1908021. [Google Scholar] [CrossRef] [PubMed]
- Brunel, J.M. BINOL: A Versatile Chiral Reagent. Chem. Rev. 2005, 105, 857–898. [Google Scholar] [CrossRef]
- Zou, Y.-Q.; Zhang, D.; Ronson, T.K.; Tarzia, A.; Lu, Z.; Jelfs, K.E.; Nitschke, J.R. Sterics and Hydrogen Bonding Control Stereochemistry and Self-Sorting in BINOL-Based Assemblies. J. Am. Chem. Soc. 2021, 143, 9009–9015. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Zhao, Q.-Y.; Han, H.; Li, W.-L.; Chen, F.-Y.; Tang, C.; Zhang, W.; Guo, S.-D.; Li, D.-Y.; Geng, W.-C.; et al. A Chiral Emissive Conjugated Corral for High-Affinity and Highly Enantioselective Recognition in Water. Angew. Chem. Int. Ed. 2023, 62, e202315990. [Google Scholar] [CrossRef] [PubMed]
- Swager, T.M. Iptycenes in the Design of High Performance Polymers. Acc. Chem. Res. 2008, 41, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Woźny, M.; Mames, A.; Ratajczyk, T. Triptycene Derivatives: From Their Synthesis to Their Unique Properties. Molecules 2022, 27, 250. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.-J.; Wang, Y.-F.; Han, Y.; Chen, C.-F. Recent Advances on Triptycene Derivatives in Supramolecular and Materials Chemistry. Org. Biomol. Chem. 2021, 19, 10047–10067. [Google Scholar] [CrossRef]
- Chen, C.-F.; Han, Y. Triptycene-Derived Macrocyclic Arenes: From Calixarenes to Helicarenes. Acc. Chem. Res. 2018, 51, 2093–2106. [Google Scholar] [CrossRef]
- Chong, J.H.; MacLachlan, M.J. Iptycenes in Supramolecular and Materials Chemistry. Chem. Soc. Rev. 2009, 38, 3301–3315. [Google Scholar] [CrossRef]
- Preda, G.; Nitti, A.; Pasini, D. Chiral Triptycenes in Supramolecular and Materials Chemistry. ChemistryOpen 2020, 9, 719–727. [Google Scholar] [CrossRef]
- Khan, M.N.; Wirth, T. Chiral Triptycenes: Concepts, Progress and Prospects. Chem. A Eur. J. 2021, 27, 7059–7068. [Google Scholar] [CrossRef] [PubMed]
- Ammenhäuser, R.; Lupton, J.M.; Scherf, U. Chain-Length Dependence of the Optical Activity of Helical Triptycene-Based π-Conjugated Ladder Polymers. Adv. Opt. Mater. 2024, 12, 2301857. [Google Scholar] [CrossRef]
- Ikai, T.; Yoshida, T.; Shinohara, K.; Taniguchi, T.; Wada, Y.; Swager, T.M. Triptycene-Based Ladder Polymers with One-Handed Helical Geometry. J. Am. Chem. Soc. 2019, 141, 4696–4703. [Google Scholar] [CrossRef]
- Oki, K.; Zheng, W.; Yashima, E.; Ikai, T. Optically-Pure Triptycene-Based Metallomacrocycles and Homochiral Self-Sorting Assisted by Ladder Formation. Chem. Commun. 2023, 59, 8989–8992. [Google Scholar] [CrossRef]
- Ikai, T.; Yoshida, T.; Awata, S.; Wada, Y.; Maeda, K.; Mizuno, M.; Swager, T.M. Circularly Polarized Luminescent Triptycene-Based Polymers. ACS Macro Lett. 2018, 7, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Ikai, T.; Wada, Y.; Awata, S.; Yun, C.; Maeda, K.; Mizuno, M.; Swager, T.M. Chiral Triptycene-Pyrene π-Conjugated Chromophores with Circularly Polarized Luminescence. Org. Biomol. Chem. 2017, 15, 8440–8447. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.-F.; Hu, G.; Zhang, N.; Wang, N.; Yin, X.; Chen, P. Synthesis, Characterization, and Photophysical Properties of Triptycene-Based Chiral Organoboranes. Organometallics 2022, 41, 99–104. [Google Scholar] [CrossRef]
- Han, X.-N.; Li, P.-F.; Han, Y.; Chen, C.-F. Enantiomeric Water-Soluble Octopus[3]Arenes for Highly Enantioselective Recognition of Chiral Ammonium Salts in Water. Angew. Chem. Int. Ed. 2022, 61, e202202527. [Google Scholar] [CrossRef]
- Ogura, F.; Sakata, Y.; Nakagawa, M. Optically Active Triptycenes. II. Synthesis of Optically Active 7-Substituted 2,5-Dimethoxytriptycenes. Bull. Chem. Soc. Jpn. 1972, 45, 3646–3651. [Google Scholar] [CrossRef]
- Ogura, F.; Nakagawa, M. The Optical Rotatory Dispersion of Triptycene Derivatives. The Direction of Electronic Polarization as a Determining Factor of the Sign of the RD Curve. Bull. Chem. Soc. Jpn. 1965, 38, 155–156. [Google Scholar] [CrossRef]
- Sonoda, A.; Ogura, F.; Nakagawa, M. Synthesis of Trisubstituted Triptycenes and the Optical Resolution of 7-Carboxy-2,5-Diacetoxytriptycene. Bull. Chem. Soc. Jpn. 1962, 35, 853–857. [Google Scholar] [CrossRef]
- Liu, G.; Guo, S.; Liu, L.; Fan, Y.; Lian, Z.; Chen, X.; Jiang, H. Shape-Persistent Triptycene-Derived Pillar[6]Arenes: Synthesis, Host–Guest Complexation, and Enantioselective Recognitions of Chiral Ammonium Salts. J. Org. Chem. 2023, 88, 10171–10179. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Kamimura, Y. Asymmetric Synthesis of Multi-Substituted Triptycenes via Enantioselective Alkynylation of 1,5-Dibromoanthracene-9,10-Dione. Tetrahedron Asymmetry 2015, 26, 41–45. [Google Scholar] [CrossRef]
- Aida, Y.; Shibata, Y.; Tanaka, K. Enantioselective Synthesis of Distorted π-Extended Chiral Triptycenes Consisting of Three Distinct Aromatic Rings by Rhodium-Catalyzed [2+2+2] Cycloaddition Available. Chem. Eur. J. 2020, 26, 3004–3009. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Chen, C.; Cui, L.; Teng, J.-M.; Li, M.; Lu, H.-Y.; Chen, C.-F. Triptycene-Derived TADF Enantiomers Displaying Circularly Polarized Luminescence and High-Efficiency Electroluminescence. Org. Electron. 2021, 99, 106355. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Li, M.; Teng, J.-M.; Zhou, H.-Y.; Chen, C.-F. High-Performance Solution-Processed Nondoped Circularly Polarized OLEDs with Chiral Triptycene Scaffold-Based TADF Emitters Realizing Over 20% External Quantum Efficiency. Adv. Funct. Mater. 2021, 31, 2106418. [Google Scholar] [CrossRef]
- Zhang, Q.-P.; Wang, Z.; Zhang, Z.-W.; Zhai, T.-L.; Chen, J.-J.; Ma, H.; Tan, B.; Zhang, C. Triptycene-Based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angew. Chem. Int. Ed. Engl. 2021, 60, 12781–12785. [Google Scholar] [CrossRef]
- Zhang, G.-W.; Li, P.-F.; Meng, Z.; Wang, H.-X.; Han, Y.; Chen, C.-F. Triptycene-Based Chiral Macrocyclic Hosts for Highly Enantioselective Recognition of Chiral Guests Containing a Trimethylamino Group. Angew. Chem. Int. Ed. 2016, 55, 5304–5308. [Google Scholar] [CrossRef]
- Wang, X.; Kohl, B.; Rominger, F.; Elbert, S.M.; Mastalerz, M. A Triptycene-Based Enantiopure Bis(Diazadibenzoanthracene) by a Chirality-Assisted Synthesis Approach. Chem. Eur. J. 2020, 26, 16036–16042. [Google Scholar] [CrossRef]
- Ma, Y.-X.; Meng, Z.; Chen, C.-F. Synthesis of Substituted Iptycenes. Syn. Lett. 2015, 26, 6–30. [Google Scholar]
- Zhao, L.; Li, Z.; Wirth, T. Triptycene Derivatives: Synthesis and Applications. Chem. Lett. 2010, 39, 658–667. [Google Scholar] [CrossRef]
- Chen, C.-F.; Ma, Y.-X. Iptycenes Chemistry: From Synthesis to Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rosetti, A.; Preda, G.; Villani, C.; Pierini, M.; Pasini, D.; Cirilli, R. Triptycene Derivatives as Chiral Probes for Studying the Molecular Enantiorecognition on Sub-2-Μm Particle Cellulose Tris(3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. Chirality 2021, 33, 883–890. [Google Scholar] [CrossRef]
- Rizzo, S.; Benincori, T.; Fontana, F.; Pasini, D.; Cirilli, R. HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. Molecules 2022, 27, 8527. [Google Scholar] [CrossRef]
- Preda, G.; Aricò, A.; Botta, C.; Ravelli, D.; Merli, D.; Mattiello, S.; Beverina, L.; Pasini, D. Activation of Solid-State Emission and Photostability through Molecular Confinement: The Case of Triptycene-Fused Quinacridone Dyes. Org. Lett. 2023, 25, 6490–6494. [Google Scholar] [CrossRef]
- Granda, J.M.; Grabowski, J.; Jurczak, J. Synthesis, Structure, and Complexation Properties of a C3-Symmetrical Triptycene-Based Anion Receptor: Selectivity for Dihydrogen Phosphate. Org. Lett. 2015, 17, 5882–5885. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Swager, T.M. Synthesis and Characterization of Poly(2,6-Triptycene). Macromolecules 2008, 41, 6880–6885. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian16, Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M.; Tan, Y.; Ma, Y.P.; Cao, X.P.; Chow, H.F.; Kuck, D. Chiral Derivatives of 2-Aminotribenzotriquinacene: Synthesis and Optical Resolution. J. Org. Chem. 2020, 85, 6478–6488. [Google Scholar] [CrossRef]
- Hrdina, R.; Larrosa, M.; Logemann, C. Triflic Acid Promoted Decarboxylation of Adamantane-Oxazolidine-2-One: Access to Chiral Amines and Heterocycles. J. Org. Chem. 2017, 82, 4891–4899. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Singh, K.; Kaur, H. Chemical Resolution of Enantiomers of 3,4-Dihydropyrimidin-2(1H)-Ones Using Chiral Auxiliary Approach. Tetrahedron 2012, 68, 6169–6176. [Google Scholar] [CrossRef]
- Vries, T.; Wynberg, H.; van Echten, E.; Koek, J.; ten Hoeve, W.; Kellogg, R.M.; Broxterman, Q.B.; Minnaard, A.; Kaptein, B.; van der Sluis, S.; et al. The Family Approach to the Resolution of Racemates. Angew. Chem. Int. Ed. 1998, 37, 2349–2354. [Google Scholar] [CrossRef]
- Colombo, S.; Coluccini, C.; Caricato, M.; Gargiulli, C.; Gattuso, G.; Pasini, D. Shape Selectivity in the Synthesis of Chiral Macrocyclic Amides. Tetrahedron 2010, 66, 4206–4211. [Google Scholar] [CrossRef]
- Coluccini, C.; Mazzanti, A.; Pasini, D. Locked Chromophores as CD and NMR Probes for the Helical Conformation of Tetraamidic Macrocycles. Org. Biomol. Chem. 2010, 8, 1807–1815. [Google Scholar] [CrossRef]
- Diaz-Muñoz, G.; Miranda, I.L.; Sartori, S.K.; Cristina Rezende, D.; Alves Nogueira Diaz, M. Use of chiral auxiliaries in the asymmetric synthesis of biologically active compounds: A review. Chirality 2019, 31, 776–812. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Y.; Li, Z.; Meng, X. Stereoselective and regioselective one-pot synthesis of polyhydroxy bicyclic diazenes and hydrazones from methyl 6-deoxy-6-iodo-hexosides. Tetrahedron 2015, 71, 5385–5390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preda, G.; Casali, E.; Porta, A.; Pasini, D. Synthesis of 2,6-Diaminotriptycene Conjugates with Chiral Auxiliaries: Towards the Scalable Resolution of Crucial Triptycene Intermediates. Symmetry 2024, 16, 116. https://doi.org/10.3390/sym16010116
Preda G, Casali E, Porta A, Pasini D. Synthesis of 2,6-Diaminotriptycene Conjugates with Chiral Auxiliaries: Towards the Scalable Resolution of Crucial Triptycene Intermediates. Symmetry. 2024; 16(1):116. https://doi.org/10.3390/sym16010116
Chicago/Turabian StylePreda, Giovanni, Emanuele Casali, Alessio Porta, and Dario Pasini. 2024. "Synthesis of 2,6-Diaminotriptycene Conjugates with Chiral Auxiliaries: Towards the Scalable Resolution of Crucial Triptycene Intermediates" Symmetry 16, no. 1: 116. https://doi.org/10.3390/sym16010116
APA StylePreda, G., Casali, E., Porta, A., & Pasini, D. (2024). Synthesis of 2,6-Diaminotriptycene Conjugates with Chiral Auxiliaries: Towards the Scalable Resolution of Crucial Triptycene Intermediates. Symmetry, 16(1), 116. https://doi.org/10.3390/sym16010116