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Abstract: This article reviews recent progress in computational quantum gravity caused by the
framework that efficiently computes Feynman’s rules. The framework is implemented in the Feyn-
Grav package, which extends the functionality of the widely used FeynCalc package. FeynGrav
provides all the tools to study quantum gravitational effects within the standard model. We review
the framework, provide the theoretical background for the efficient computation of Feynman rules,
and present the proof of its completeness. We review the derivation of Feynman rules for general rel-
ativity, Horndeski gravity, Dirac fermions, Proca field, electromagnetic field, and SU(N) Yang–Mills
model. We conclude with a discussion of the current state of the FeynGrav package and discuss its
further development.
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1. Introduction

Perturbative quantum gravity is one of several approaches to quantum gravity. It
exists in the effective field theory paradigm, and describes gravitational phenomena at
energies below the Planck scale [1–3]. To a certain extent, the theory associates gravity with
small metric perturbations propagating about the flat spacetime. The Planck scale arises
naturally as the characteristic scale of small perturbations. Consequently, the theory can
perturbatively treat perturbations with small amplitudes. However, the structure of the
theory is more sophisticated and extends beyond this simple setup, as we discuss below.

Perturbation theory operates with propagating degrees of freedom, polarisation op-
erators, and interaction operators describing the interaction between different degrees of
freedom. On the practical ground, defining a theory means explicitly providing these com-
ponents. The graviton propagator and the polarisation operators were derived and studied
in classical papers [4–6]. The derivation of the interaction rules was the most challenging
part of the theory. Because of the effective nature of the theory, it generates an infinite set of
interaction operators suppressed by different powers of the same gravitational coupling.
For a given level of the perturbation theory, only a finite number of operators contribute to
a given matrix element. However, the number of operators grows with each perturbation
order. Consequently, calculations become incredibly challenging without an algorithm
describing how to obtain the interaction rules at any given order of perturbation theory.

The interaction rules for the first two orders of perturbation theory are published in the
literature [7–10]. These rules were sufficient for one-loop calculations and allowed for signif-
icant advancement in perturbative quantum gravity [2,7–9,11–18]. Nonetheless, the general
algorithm producing the interaction rules at a given order remained unknown. Several
research directions were focused on creating such an algorithm. The most well-known
ones proposed to use Ward–Takahashi identities [7–9] and to bootstrap gravity [19–23].
However, to our knowledge, they never resulted in a practical tool. An additional problem
was the complexity of the interaction rules. The paper [9] derived interaction rules for three
and four graviton vertices (see also [10], as the mentioned paper contained a misprint).
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In that particular parameterisation, the three graviton vertex contains 171 terms, while
the four graviton vertex contains 2850. While it is exceptionally challenging to manually
operate with interaction terms having hundreds and thousands of terms, the contemporary
computational packages can (relatively) easily manipulate such expressions.

The recent publications [24,25] created the desirable algorithm. It was implemented
in a computational package “FeynGrav”, created at the base of the widely used “Feyn-
Calc” [26–28]. This article reviews the constructed theoretical framework, touching upon its
application and perspective for further development. For the discussion of the theoretical
framework, we focus on the original papers [24,25]. We briefly discuss how FeynGrav can
significantly simplify the derivation of the well-known results [2,13,29–31] and is used to
obtain new results [32–35]. We conclude with a discussion of the future development of
the package.

The structure of this paper is as follows. Section 2 discusses the theoretical background
behind the perturbative quantum gravity. Namely, we discuss the role of the perturbative
quantum gravity together with the limits of its applicability. We discuss the theory in the
context of renormalisation and argue, supporting the growing consensus, that its effective
nature leaves no room for any “renormalisation issues”. Section 3 discusses the practical
tools to develop the theoretical and computational framework. We discuss how to factorise
an action describing gravity or a model coupled to gravity in a way most suitable for
optimal computations. We separate some fundamental structures defining perturbative
expansions and derive recursive relations that significantly improve their computation.
Section 4 devoted to the derivation of the Feynman rules for general relativity, scalar field,
Horndeski theory, Dirac fermions, Proca field, electromagnetic field, and SU(N) Yang–Mills
model. Section 5 discusses the FeynGrav package, its structure, and rules implemented in
the existing version. We present a few explicit examples of perturbative calculations made
with FeynGrav. Section 6 summarises the material presented in this paper and highlights
perspective further development.

2. Perturbative Quantum Gravity

We divide the discussion of perturbative quantum gravity into two parts. The first
part explores the theory’s mathematical and technical aspects, while the second focuses
on its physical content. We start with the technical aspects, as they help to explain the
premises behind its physical interpretation.

Perturbative quantum gravity is a quantum theory of small perturbation of metric hµν

existing about the flat spacetime with the Minkowski metric ηµν. To preserve the canonical
mass dimension of the field variable, one must introduce the gravitational coupling κ with
mass dimension −1. One defines the spacetime metric as a combination of the background
metric and perturbations:

gµν = ηµν + κ hµν. (1)

The gravitational coupling κ is associated with the Newton constant GN:

κ2 = 32 π GN. (2)

It is important to highlight that the perturbative expansion (1) is finite in κ, and should
not be interpreted as a truncation of an infinite series. Despite (1) being finite, it spawns an
infinite series in κ for the inverse metric:

gµν = ηµν − κ hµν + κ2 hµσ hσ
ν +O

(
κ3
)

. (3)

Consequently, all quantities involving the inverse metric are infinite series in κ.
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Let us look at the two most important examples. The first example is the Christoffel
symbol. If the symbol has all lower indices, then it is a finite expression linear in κ:

Γαµν =
1
2
[
∂µgνα + ∂νgµα − ∂αgµν

]
=

κ

2
[
∂µhνα + ∂νhµα − ∂αhµν

]
. (4)

On the contrary, the standard Christoffel symbol with a single upper index is an
infinite series, since it involves the inverse metric:

Γα
µν =

1
2

gαβ
[
∂µgνβ + ∂νgµβ − ∂βhµν

]
=

κ

2

[
ηµν − κ hµν + κ2 hµσ hσ

ν +O
(

κ3
)][

∂µhνβ + ∂νhµβ − ∂βhµν

]
.

(5)

The second example is the volume factor
√−g. The metric determinant itself is a

finite expression in κ (see [17]), but the volume factor is an infinite series because of the
square root:

√
−g = 1 +

κ

2
ηµνhµν −

κ2

4

(
hµσhσ

ν −
1
2

ηµνηαβhµνhαβ

)
+O

(
κ3
)

. (6)

The action of any gravity model is an infinite series in κ, since it includes the volume
factor

√−g for the coordinate invariance. Moreover, a typical action of a gravity model
includes invariants constructed from the Riemann tensor. Christoffel symbols constitute
the Riemann tensor, introducing additional infinite series to the theory. From the technical
point of view, this is the reason why the action of any gravity model contains an infinite
number of interaction operators.

The path integral formalism provides a way to construct a perturbative quantum
theory. The generating functional Z provides a way to calculate matrix elements:

Z =
∫

D[g] exp
[
i A[g]

]
. (7)

Here, A is the microscopic action of the model. Within the perturbative approach, one
uses (1) in the path integral, expanding it in an infinite series. Metric (1) performs a simple
shift of integration variables by a constant value:

Z =
∫

D[η + κ h] exp
[
i A[η + κ h]

]
=
∫

D[h] exp

[
i A[η] + i

δA
δgµν

∣∣∣∣∣
g=η

κhµν + i
δ2A

δgµνδgαβ

∣∣∣∣∣
g=η

κ2 hµνhαβ

+ i
δ3A

δgµνδgαβδgρσ

∣∣∣∣∣
g=η

κ3hµνhαβgρσ +O
(

κ4
)]

.

(8)

The first term of this expansion is irrelevant. The multiplier does not depend on the
integration variables hµν and factorises out of the path integral. In turn, while calculating a
matrix element, the multiplier will be cancelled entirely because of the normalisation.

It is safe to assume that the second term shall also vanish. The term disappears
if the flat spacetime makes the microscopic action stationary, which occurs when the
classical field equations derived from the microscopic action A have flat spacetime as a
solution. Consequently, the discussed approach only applies to some gravity models with
further modifications. One can always extend it to the case of an arbitrary background
spacetime [36,37]. Further, we will discuss the physical content of the theory and argue
that it may not be necessary. Let us postpone the discussion, assume that the term vanishes,
and proceed with the technical discussion.
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The other terms of the expansion do not vanish, but describe the propagation of
perturbations and their interactions. It is helpful to present Z in the following form, making
its structure explicit. The action naturally contains κ−2 factor, similar to the Einstein–Hilbert
action. Therefore, the generating functional takes the following form:

Z =
∫

D[h] exp

[
−

i
2

hµνOµναβ□hαβ + i κ V̂µ1ν1µ2ν2µ3ν3
(3) hµ1ν1 hµ2ν2 hµ3ν3 +O

(
κ2
)]

. (9)

Here, Oµναβ is the differential operator defining the structure of the graviton propaga-
tor well-established in the literature [4,38]. Operator V̂(3) is the differential operator defining
the structure of interaction between three perturbations. The term O

(
κ2) includes all other

interaction terms, each suppressed by a different power of the gravitational coupling.
The standard prescription provides a way to calculate a given matrix element. One

shall introduce a formal external current Jµν linearly coupled to the metric perturbation:

Z [J] =
∫

D[h] exp
[
i A[η + κ h] + i hµν Jµν

]
=
∫

D[h] exp

[
−

i
2

hµνOµναβ□hαβ + i hµν Jµν + i κ V̂µ1ν1µ2ν2µ3ν3
(3) hµ1ν1 hµ2ν2 hµ3ν3 +O

(
κ2
)] (10)

The path integral reduces to the Gaussian integral, which can be solved explicitly:

Z [J] = exp

[
i κ V̂µ1ν1µ2ν2µ3ν3

(3)
δ

δJµ1ν1

δ

δJµ2ν2

δ

δJµ3ν3
+O

(
κ2
)]

exp

[
i
2

JµνO−1
µναβ□Jαβ

]
. (11)

Finally, each matrix element links to a variational derivative of the functional:

⟨0|hµ1ν1 · · · hµN νN |0⟩ =
1
Z

∫
D[h]hµν · · · hµN νN exp

[
i A
]

=
1

Z [J]

∫
D[h]hµν · · · hµN νN exp

[
i A+ i hρσ Jρσ

]∣∣∣∣∣
J=0

=

δ

δJµ1ν1
· · ·

δ

δJµN νN
exp

[
i κV̂ρ1σ1ρ2σ2ρ3σ3

(3)

δ

δJρ1σ1

δ

δJρ2σ2

δ

δJρ3σ3
+O

(
κ2)] exp

[
i
2 JµνO−1

µναβ□Jαβ
]

exp

[
i κ V̂ρ1σ1ρ2σ2ρ3σ3

(3)

δ

δJρ1σ1

δ

δJρ2σ2

δ

δJρ3σ3
+O(κ2)

]
exp

[
i
2 JµνO−1

µναβ□Jαβ
]

∣∣∣∣∣
J=0

.

(12)

The following comments are due. First and foremost, gravity is a gauge theory, so
operator O−1 does not exist. In analogy with other gauge theories, one uses the Faddeev–
Popov ghosts [39,40] or the BRST technique [41–44] to obtain the propagator. We discuss this
issue in detail in another section, since it is irrelevant to the principal discussion. Secondly,
the discussed scheme is the standard scheme used within the conventional quantum
field theory. In that sense, perturbative quantum gravity is the most general attempt to
study quantum gravitational effects while remaining within the standard quantum field
theory without any modifications. Lastly, the discussed calculations pose no principal
difficulty but a severe computational challenge. The issue is not specific to quantum gravity
itself. Even within renormalisable quantum field theories, for instance, within quantum
chromodynamics, with each order of perturbation theory, calculations become increasingly
complicated and involve more and more contributions [45]. In that sense, perturbative
quantum gravity is not an exception to this rule, but rather presents a limiting case with
the faster-growing complexity.

Let us turn to a discussion of the physical content of the theory. Three physical
premises behind the perturbative approach within the quantum field theory are crucial for
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the perturbative quantum gravity. Firstly, the perturbation theory only requires propaga-
tors, interaction operators, and polarisation operators to generate perturbative expansions.
Secondly, propagating and external states are not necessarily free states of a theory. Thirdly,
the Poincare group is necessary for the perturbative theory within the conventional quan-
tum field theory. Below, we elaborate on these points.

Firstly, the core of a perturbative theory is propagating degrees of freedom, their
interactions, and polarisation operators. Indeed, when given these objects, one can use
the standard Feynman graphs technique to generate any perturbative expansion up to any
desired order. From the physical point of view, these objects provide all the information
about the content of the theory. The polarisation operators describe the states of quantum
fields in the initial and final states. Propagators describe how perturbations propagate in
the spacetime, while the interaction operators describe their interactions. The perturbative
expansion approximates a matrix element as a series of consecutive interactions. These
series allow one to define the S matrix, the evolution operator of the theory, describing it
in the most general way possible. Therefore, one requires no other objects to create and
implement the perturbation theory.

Secondly, one shall distinguish propagating, external and free states. Propagating
states are those states described by propagators of the theory. External states are those states
described by polarisation operators. Free states are those states which can be separated and
captured or measured in a (conceivable) physical experiment. The following considerations
show the need to make such a distinguishment.

It is well-established that propagating states differ from those present in initial and
final states. The Faddeev–Popov ghosts provide the best example [40]. These ghosts are
non-physical, since they enter a theory due to the mathematical redefinition of the path
integral integration volume. Consequently, these ghosts do not enter initial or final states,
and cannot be separated or detected in any physical experiment. Nevertheless, they must
be presented in a perturbation theory to ensure the gauge invariance and unitarity of the
theory. This example alone shows the need to distinguish between states that propagate
and states that can exist in the initial and final states.

The neutrino mixing mechanism [46,47] explicitly shows the difference between prop-
agating states and states that can be registered. The mechanism explicitly states that there
are three neutrino states ν1, ν2, and ν3, which are eigenstates of the mass operator. At the
same time, exist three neutrino states νe, νµ, and ντ , which are eigenstates of the interaction
operators. These states are not the same but are linearly related via the Pontecorvo–Maki–
Nakagawa–Sakata matrix. Neutrino propagators correspond to the eigenstates of the mass
operator. However, these states cannot be registered by any physical apparatus, since the
eigenstates of the interaction operator are coupled to the matter states. Therefore, this
model provides an explicit example of a difference between propagating states and states
that can be registered.

Quantum chromodynamics provides the most vivid justification for the need for
such a distinction [48–50]. Within the theory, quarks experience mixing [51,52], so the
same logic is applicable. Quark propagators correspond to the mass operator eigenstates,
which differ from the interaction operator eigenstates. The Cabibbo–Kobayashi–Maskawa
matrix linearly connects these eigenstates. Further, the confinement makes it impossible to
observe quark states directly. The spectrum of observed states is colourless, and does not
match the spectrum of propagating states. One uses the distribution functions technique to
relate calculations within quantum chromodynamics with observational quantities [53–55].
A distribution function describes an external probe’s probability of interacting with a quark
or a gluon composing a non-perturbative state, such as atomic nuclei. In other words,
one operates with matrix elements having interaction operator eigenstates in the initial
or finite states. In this way, quantum chromodynamics not only points to the necessity
to distinguish between these states, but actively requires such a distinguishment for all
computational purposes.
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Lastly, the Poincare group is essential for quantum field theory. The group admits
two Casimir operators. A Casimir operator is an operator that commutates with all other
operators of the group algebra. Consequently, the eigenstates of a Casimir operator remain
invariant under the Poincare group transformations. Two Casimir operators of the Poincare
group define the notions of mass and spin, which is the basis for constructing and classifying
all quantum fields [56–58]. Therefore, without the Poincare group, one shall construct a
new field theory significantly different from the standard one. This reasoning does not
imply that such theories do not exist, shall not be constructed, or are irrelevant to quantum
gravity. On the contrary, such theories are widely developed, with the conformal field
theory being (perhaps) the most well-known [59–63]. However, the discussion of their
possible implementations for quantum gravity lies far beyond the scope of this paper.

The crucial role of the Poincare group found an implementation within the rapidly
developing scattering amplitude techniques [64–67]. In contrast with the conventional
quantum field theory, the scattering amplitude technique does not appeal to the notion of a
quantum field. One classifies the initial and final states of the theory as eigenstates of the
Poincare group Casimir operators without any references to quantum fields. Transforma-
tion features of a matrix element with respect to the Lorentz transformation provide a way
to fix the matrix element’s general structure uniquely. The optical theorem shows that a
given matrix element has multiple contributions. The consecutive application of the theo-
rem recovers the perturbative expansion as the unavoidable consequence of the unitarity.
In this way, the scattering amplitude description allows one to recover the perturbative
approach to quantum field theory without directly referencing quantum fields but using
only the Poincare group.

These premises point to the following features in understanding perturbative quantum
gravity. Firstly, choosing a flat background is necessary to construct a perturbative quantum
theory of gravity within the standard quantum field theory framework. Secondly, the theory
applies to a scattering of separated gravitational perturbations and matter states, but its
applicability may extend beyond this setup.

The existence of the flat background is crucial due to the role of the Poincare group.
Let us highlight one more time that it is possible to work within a theory with a different
background, both from fundamental and technical points of view. However, such theories
will bring us outside the standard quantum field theory formalism. The flat background
allows one to use the Poincare group and to define eigenstates of mass and spin operators.
In turn, one can define the scattering problem in the standard way described in many
textbooks [36,37]. One associates initial and final states with past and future spatial infinity
while assuming that interaction occurs in the flat spatial region between these states.

The formalism of perturbative quantum gravity extends beyond the standard scat-
tering problem. Firstly, propagating graviton states may not be associated with the states
registered by physical apparatus. Gravitons are propagating states because they are asso-
ciated with eigenstates of mass and chirality operators. As was pointed out above, this
does not imply that these exact states are registered by physical apparatus. The graviton
propagator receives highly non-trivial quantum corrections altering its structure [68,69],
further indicating that propagating graviton states shall not be associated with states regis-
tered by physical apparatus. Finally, there is an ongoing discussion concerning the mere
possibility of detecting graviton states directly [70]. Although the main point of this article
is related to the subject of our discussion, it will bring us far away from our main aim, so
we will not discuss this claim further. Still, even without a discussion about graviton’s
detectability, there are enough reasons to believe that graviton states shall be viewed only
as propagating states.

These arguments allow one to use perturbative quantum gravity beyond the narrow
scope of the scattering problem. There are many branches of research where such an exten-
sion of perturbative quantum gravity is assumed implicitly. Perhaps the most recognised
one is the calculation of the effective action. Although the detailed discussion of effective
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action in quantum gravity lies far beyond the scope of this paper (and was done in many
publications, for instance [71]), we will touch upon its two most important features.

The effective action technique provides a tool to calculate the classical value (the
expectation value) of a quantum field. In other words, one expects to recover the classical
dynamics of a system driven by its quantum behaviour. From the technical point of
view, to calculate the (n-loop) effective action, one sums (n-loop) one-particle irreducible
diagrams. It is well-recognised that even one-loop effective action for a gauge theory
(including gravity) is gauge-dependent. In response to this finding, the unique effective
action technique was developed [72,73]. It treats the gauge-fixing parameter of a theory as
a generalised coordinate and constructs a description of internal field space with curved
geometry. In turn, it is possible to define a generalisation of the variational derivative
similar to the standard covariant derivative. The unique effective action is defined in
terms of such derivatives, which makes it gauge-independent. At the same time, such
generalisation of the variational derivative introduces new terms to the effective action.
These terms cannot be obtained from one-particle irreducible diagrams, which seems to
contradict the original setup. One shall only consider the on-shell effective action to resolve
this apparent contradiction. The situation is similar to the calculation of scattering cross
sections. Although it is possible to calculate an off-shell scattering cross section, physical
apparatus can produce and register only on-shell states. Similarly, the classical value of
a quantum field can only be associated with an on-shell object. In this way, the unique
effective action removes the gauge dependence from calculations while the fixation of the
effective action on the mass shell recovers the classical dynamic of quantum fields.

Lastly, we shall comment on the renormalisation of perturbative quantum gravity.
The term “renormalisation” is commonly used in the literature, although it may not be
the most suitable for this discussion. For the sake of consistency, we will continue to
use this term. However, it is worth noting that the discussion below goes far beyond
renormalisation as it is understood in conventional renormalisable models such as quantum
electrodynamics, SU(N) Yang–Mills theory, and the standard model.

The growing consensus is that perturbative quantum gravity does not experience
any problems with renormalisation. This point of view does not imply that the theory
is well-renormalisable. On the contrary, it is believed that extending the perturbative
quantum gravity to a conventionally renormalisable theory is impossible. Consequently, all
“problems” of the theory shall be viewed as features, while the complete theory of quantum
gravity development shall be performed separately.

The main feature of the perturbative quantum gravity defining its renormalisation
behaviour is that it generates a new set of higher dimensional operators at each loop order.
This feature was first observed in the classic paper [74], where the one-loop divergences of
perturbative quantum gravity were studied. At the one-loop level, the theory generates
divergences proportional to operators R2, R2

µν, and R2
µναβ. The divergence of the Riemann

tensor squared term is irrelevant, since the term can always be brought to the Gauss–Bonnet
term, which is the complete derivative in D = 4.

These divergences vanish for pure general relativity without matter for on-shell
amplitudes. On shall states satisfy the vacuum Einstein equations Rµν = 0, so all the
divergent contributions are cancelled. This feature is accidental, since it requires the
theory to exist in D = 4, has no matter degrees of freedom, and works only for on-
shell amplitudes. Many other results later confirmed this general theory feature (see,
for instance, [12,29,75,76]).

The fact that the theory generates new operators at each level of perturbation theory
can be negated from the technical point of view, but the theory loses its predictability.
Indeed, let us assume that we calculated a gravitational scattering cross section at the
tree level and compared it with empirical data. At the tree level, the theory has a single
coupling, the gravitational coupling, and we shall recover its value from the experiment.
When we go at the one-loop level, the value of the gravitational coupling is not affected by
quantum effects [68,69]. However, the theory develops divergences proportional to R2 and
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R2
µν operators. From the technical point of view, these divergences can be subtracted and

replaced by two new couplings. In turn, the values of these new couplings shall once again
be recovered from the experiment. Consequently, by increasing the level of perturbation
theory (the number of loop corrections), we do not increase the precision of calculations.
On the contrary, we require more data to match experimental results with each iteration.

These arguments show that perturbative quantum gravity cannot be treated like the
conventionally renormalisable theory. From the physical point of view, the root of the
problem lies in the fact that the theory is effective. Since it admits a separated energy
scale, the Planck scale, it marks the natural limit of its applicability. In full agreement with
the standard effective field theory logic [1,2,77], the theory shall include the term terms
suppressed by the gravitational coupling the closer to the Planck energy it approaches.

We shall summarise this section to conclude the discussion of the perturbative quan-
tum gravity. Perturbative quantum gravity is a perturbatively constructed quantum field
theory with the following distinctive features:

• Gravitons are propagating massless degrees of freedom with chirality ±2.
• There are no reasons to believe that gravitons shall be associated with degrees of

freedom measured by physical apparatus.
• The theory is equivalent to a quantum theory of small metric perturbations.
• The theory has infinite interaction operators, but the same gravitational coupling

parametrises them.
• The theory is effective. It develops new operators at each new order of perturbation

theory.
• The theory does not experience problems with renormalisation, since it shall not be

renormalised due to its effective nature.

Although the discussion can be extended further, especially considering the ongoing
study of its quantum features, this section describes the core of the theory relevant to the
main aim of the article. With the given background, we can meaningfully address the
problem of generating Feynman rules within perturbative quantum gravity.

3. Computational Tools

This section discusses technical tools that make an efficient calculation of the interac-
tion rules for perturbative quantum gravity possible. The main feature of the theory is the
factorisation that allows one to separate a quantum gravity action into factors of two types.
Factors of the first type contain derivatives and a finite number of terms. The others are
free from derivatives, but are infinite series. We discuss this factorisation in the following
subsection. Factors of the first type are easy to calculate and require no sophisticated
techniques, so we will not discuss them in detail. Factors of the second type present a more
significant challenge. Nonetheless, it is possible to establish certain recursive relations,
which highly improve the efficiency of their calculations. The second subsection discusses
such relations.

We will present results in a series of definitions and theorems. Detailed proofs for
many theorems are omitted, as they are not this paper’s primary focus and can be found in
other publications.

3.1. Factorisation

We begin with the formal definition of the perturbative metric.

Definition 1. The perturbative metric gµν is defined as follows:

gµν
def
= ηµν + κ hµν. (13)
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Here, hµν is the small metric perturbations, ηµν = diag(+−−−) is the Minkowski metric
used to raise and lower indices, and κ is the gravity coupling related with the Newton’s constant GN

κ2 def
= 32 π GN. (14)

This formula is not a truncation of an infinite series, but a finite expression with no
omitted terms. The metric still introduces infinite series in the theory.

Theorem 1.

gµν =
∞

∑
n=0

(−κ)n(hn)µν,

√
−g =

∞

∑
n=0

(−κ)n
n

∑
m=1

1
m!

(
−1

2

)m
[

∑
k1+···+km=n

tr(hk1) · · · tr(hkm)

k1 · · · km

]
,

em
µ =

∞

∑
n=0

κn
( 1

2
n

)
(hn)m

µ,

em
µ =

∞

∑
n=0

κn
(
− 1

2
n

)
(hn)m

µ,

(15)

Here, e is the vierbein, (n
m) is the binomial coefficients defined via the Γ function, and the

following notations are used:

(hn)µν = hµ
σ1 hσ1

σ2 · · · hσn−1ν,

(hn) = hσ1
σ2 hσ2

σ3 · · · hσn
σ1 .

(16)

Proof. The proof of the first expression is trivial. One should use the given expression to
calculate gµσgσν and verify its correctness. The papers [17,24,25] provide a more detailed
discussion of the proof.

Proof of the second expression is much more complicated. Firstly, one shall use the
relation between the determinant and trace of a matrix:

√
−g =

(
−det[gµν]

)1/2
=

(
− exp

[
tr
{

ln
(
ηµν + κhµν

)}])1/2

. (17)

Secondly, one shall factorise one flat spacetime metric and reduce the expression to a
single exponent:

√
−g =

(
− exp

[
tr
{

ln
(
ηµσ[δ

σ
ν + κhσ

ν]
)}])1/2

= exp
[

1
2

tr
{

ln(δσ
ν + κ hσ

ν)
}]

. (18)

Lastly, one expands both exp and ln functions as Taylor series. The resulting expres-
sion is an infinite power series, with each term also being a power series. Nonetheless, it is
possible to rearrange the terms of this series to obtain the desired expression. The publica-
tion [24] provides a detailed explanation of the derivation.

Lastly, the expression for vierbein was first obtained in [17]. One assumes the vierbein
admits a power series expansion with unknown coefficients. The values of coefficients are
fixed uniquely, so the expansion fits well-known relations for the vierbein.

Only these objects and their combinations generate all infinite expansions that may
enter a quantum gravity action within Riemann geometry. However, these are not all
the objects present in the theory. We still have to discuss the Christoffel symbols and the
Riemann tensor. The following theorem gives their structure.
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Theorem 2.

Γαµν =
κ

2
[
∂µhνα + ∂νhµα − ∂αhµν

]
,

Γα
µν =

κ

2

[
ηµν − κ hµν + κ2 hµσ hσ

ν +O
(

κ3
)][

∂µhνβ + ∂νhµβ − ∂βhµν

]
,(

Γµ

)
ab =ea

αeb
β κ
[
∂βhαµ − ∂αhβµ

]
.

(19)

Proof. Proof of the first two expressions is trivial, and relies only on the definition of the
Christoffel symbols

Γα
µν

def
=

1
2

gαβ
[
∂µgνβ + ∂νgµβ − ∂βgµν

]
. (20)

The last expression is proved as follows. Firstly, one shall use the definition of the spin
connection: (

Γµ

)
ab

def
= ea

αeb
β Γαµβ + gρσ ea

ρ ∂µeb
σ. (21)

The spin connection is antisymmetric for indices a and b. For the perturbative metric,
the last term is constituted only by symmetric matrices, so it is symmetric with respect to a
and b. Therefore, the last term does not contribute to the spin connection. For the first term,
one shall use the explicit expression for the Christoffel symbol and make it antisymmetric.
Similarly, paper [24] discusses the derivation in more detail.

The obtained expressions allow us to describe the structure of the Riemann tensor
with the following theorem.

Theorem 3.

Rµν
α

β = gαλ
[
∂µΓλνβ − ∂νΓλµβ + gρσ

{
ΓρνλΓσµβ − ΓρµλΓσνβ

}]
,

Rµναβ = ∂µΓανβ − ∂νΓαµβ + gρσ
{

ΓρναΓσµβ − ΓρµαΓσνβ

}
,

Rµν = gρσ
[
∂ρΓσµν − ∂µΓσρν

]
+ gρσgλτ

[
ΓτµνΓλρσ − ΓλµσΓτνρ

]
,

R = gµνgαβ∂µ

[
Γναβ − Γανβ

]
+ gµνgαβgρσ

[
ΓαµνΓβρσ − ΓαµρΓβνσ

]
.

(22)

Proof. Expressions for the Ricci tensor and the scalar curvature can be derived directly
from the expressions for the Riemann tensor, making their derivation purely technical.
The derivation of the first two formulas is technically straightforward, but requires lengthy
computations. To obtain the desired result, one shall use a single relation for the inverse
metric derivative:

∂µgαβ = −gαρgβσ∂µgρσ. (23)

The remaining part of the proof relies on the manipulation of indices.

These theorems constitute the factorisation theorem crucial for the perturbative quan-
tum gravity.

Theorem 4. In Riemann geometry, a gravity action evaluated with the perturbative metric can
always take a form where all terms that begin infinite series are free from derivatives and expressed
via

√−g, gµν, and em
µ.

In other words, as long as we operate within Riemann geometry, we can always split
a gravity action into two different parts. The part that involves derivatives is finite, and
can be calculated explicitly. The other part is an infinite series, but it is always expressed
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in terms of elementary series for the volume factors
√−g, the inverse metric gµν, and the

vierbein em
µ.

3.2. Recursive Relations

The previous section provides a way to factorise a gravity action, but we must still
address calculational challenges. Namely, we shall elaborate on the method to describe the
structure of perturbative expansions for the inverse metric, volume factor, and vierbein.
We address this challenge in this section.

Definition 2. We define the plain I-tensor of the n-th order as follows:

Iρ1σ1···ρnσn
(n)

def
= ησ1ρ2 ησ2ρ3 · · · ησnρ1 . (24)

The tensor has no additional symmetries. We introduce an additional tensor to account
for the essential symmetries of the interaction rules.

Definition 3. We define the I-tensor of the n-th order as follows:

Iρ1σ1···ρnσn
(n)

def
=

1
2n

1
n!

[
Iρ1σ1···ρnσn
(n) + permutations

]
. (25)

Permutations account for all terms that make the I-tensor symmetric with respect to permuta-
tions of indices within each index pair µi ↔ νi, and with respect to permutations of any two index
pairs {µi, νi} ↔ {µj, νj}.

The I tensor of the n-th order has n! 2n terms. In other words, the number of terms
grows faster than the factorial. This feature holds for tensors discussed below. Although this
feature presents a computational challenge, it is an essential part of the standard pertur-
bative approach. The final expression for a gravity interaction vertex shall be symmetric
with respect to graviton permutations, so it is necessary to operate with tensor structures
respecting this symmetry.

The plain I-tensor provides a way to operate with powers of hµν and its traces given
by the following theorem. The theorem is trivial, so we omit the proof.

Theorem 5. The plain I-tensor defines the structure of powers of hµν and its traces.

(hn)µν = Iµνρ1σ1···ρnσn
(1+n) hρ1σ1 · · · hρnσn ,

tr(hn) = Iρ1σ1···ρnσn
(n) hρ1σ1 · · · hρnσn .

(26)

Using this theorem, one can demonstrate how the plain I-tensor describes the pertur-
bative structure of the inverse metric. The following theorem, which describes this relation,
is a direct corollary of previous theorems, so we omit its proof.

Theorem 6. The inverse metric perturbative expansion in terms of the plain I tensor reads:

gµν =
∞

∑
n=0

(−1)n κn Iµνρ1σ1···ρnσn
(1+n) hρ1σ1 · · · hρnσn . (27)

This theorem provides an easy way to study the features of the I-tensor, such as the
following easily proven contraction feature.

Theorem 7. The I-tensor admits the following contraction feature:

ηµν Iµνρ1σ1···ρnσn = Iρ1σ1···ρnσn . (28)
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Proof. We shall start with the following general relation:

d = gµν gµν. (29)

This relation can be expanded:

d =
(
ηµν + κ hµν

) ∞

∑
n=0

(−1)nκn Iµνρ1σ1···ρnσn
(1+n) hρ1σ1 · · · hρnσn

=ηµνηµν +
∞

∑
n=1

(−1)nκn ηµν Iµνρ1σ1···ρnσn
(1+n) hρ1σ1 · · · hρnσn

+
∞

∑
n=0

(−1)nκn+1 Iµνρ1σ1···ρnσn
(1+n) hµνhρ1σ1 · · · hρnσn .

(30)

The desired relation holds as each term in the infinite sums is cancelled.

We uncover the perturbative structure of the volume factor in a similar way. Initially,
we give a non-constructive definition of the plain C-tensor. Further, we demonstrate a
specific recursive relation between C-tensors of different orders. This relation allows one to
calculate a given order’s plain C-tensor.

Definition 4. We define the plain C-tensor of n-th order in such a way to describe the perturbative
structure of the volume factor:

√
−g

def
=

∞

∑
n=0

κn Cρ1σ1···ρnσn
(n) hρ1σ1 · · · hρnσn . (31)

Similarly to the previous case, the definition does not require specific symmetries
among the indices. The next definition of the C-tensor introduces a tensor with suitable sym-
metries.

Definition 5. We defined the C-tensor of the n-th order as follows:

Cρ1σ1···ρnσn
(n)

def
=

1
2n

1
n!

[
Cρ1σ1···ρnσn
(n) + permutations

]
. (32)

Permutations ensure C-tensor is symmetric with respect to index pair and pair permutations.

The definition is not constructive, since it does not show a way to compute the tensor
explicitly; instead, it only describes its function. However, obtaining a recursive relation
that facilitates an uncomplicated method to construct C-tensors is possible.

Theorem 8. The following recursive relation holds.

Cρ1σ1···ρnσn
(n) =

1
2 n

n

∑
k=1

(−1)k−1 Iρ1σ1···ρkσk
(k) Cρk+1σk+1···ρnσn

(n−k) . (33)

Proof. Firstly, we introduce an auxiliary metric:

gµν = ηµν + z κ hµν . (34)

Here, z is an arbitrary positive real number. This metric has no physical or mathemati-
cal meaning except to obtain the discussed relation. It matches the original metric when
z = 1.
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Secondly, we compute the following derivative:

d
dz
√
−g

∣∣∣∣∣
z=1

=
κ

2
√
−g gµν hµν. (35)

We applied Jacobi’s formula for a non-degenerate matrix X:

d det X = det X tr
[

X−1 dX
]
. (36)

Let us calculate the same derivative using the perturbative expansion:

d
dz
√
−g

∣∣∣∣∣
z=1

=
∞

∑
n=1

n κn Cρ1σ1···ρnσn
(n) hρ1σ1 · · · hρnσn . (37)

Comparing these expressions, we obtain a relationship that does involve g:

κ

2
√
−g gµν hµν =

∞

∑
n=1

n κn Cρ1σ1···ρnσn
(n) hρ1σ1 · · · hρnσn . (38)

The left-hand side of this expression can be calculated perturbatively:

κ

2
√
−g gµν hµν =

κ

2

∞

∑
p1=0

κp1 C
ρ1σ1···ρp1 σp1
(p1)

hρ1σ1 · · · hρp1 σp1

∞

∑
p2=0

(−1)p2 κp2 I
µνλ1τ1···λp2 τp2
(p2+1) hλ1τ1 · · · hλp2 τp2

hµν

=
∞

∑
n=1

n

∑
k=1

(−1)k−1

2
κn Iρ1σ1···ρkσk

(k) Cρk+1σk+1···ρnσn
(n−k) hρ1σ1 · · · hρnσn

=
∞

∑
n=1

κn
n

∑
k=1

(−1)k−1

2
Iρ1σ1···ρkσk
(k) Cρk+1σk+1···ρnσn

(n−k) hρ1σ1 · · · hρnσn .

(39)

After comparing these expressions, we can derive the required recursive relation.

Cρ1σ1···ρnσn
(n) =

1
2 n

n

∑
k=1

(−1)k−1 Iρ1σ1···ρkσk
(k) Cρk+1σk+1···ρnσn

(n−k) . (40)

Equation (33) defines a plain C-tensor of n-th order recursively using plain C-tensors
of lower orders. One would desire to express C(n) using C(n−1) alone, but unfortunately,
it appears to be impossible. The reason is that formula (33) involves all low orders that
must contribute to the plain C-tensor. Since the volume factor

√−g is the simple object, we
conjecture that no simpler recursive formula exists.

The same logic shall be used to construct more complicated structures generated by
the volume factor and the inverse metric. Firstly, we give a non-constructive definition of a
tensor. Secondly, we find a recursive relation that defines the required tensor iteratively.
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Definition 6. We define the family of plain C(n)-tensors as follows:

√
−g gµν def

=
∞

∑
n=0

κn Cµν,ρ1σ1···ρnσn
(1;n) hρ1σ1 · · · hρnσn ,

√
−g gµν gαβ def

=
∞

∑
n=0

κn Cµναβ,ρ1σ1···ρnσn
(2;n) hρ1σ1 · · · hρnσn ,

√
−g gµν gαβ gρσ def

=
∞

∑
n=0

κn Cµναβρσ,ρ1σ1···ρnσn
(3;n) hρ1σ1 · · · hρnσn ,

√
−g gµ1ν1 · · · gµl νl

def
=

∞

∑
n=0

κn Cµ1ν1···µlνl ,ρ1σ1···ρnσn
(l;n) hρ1σ1 · · · hρnσn .

(41)

These tensors do not have any additional symmetry. The corresponding symmetric
tensors are defined as follows.

Definition 7.

Cµ1ν1···µlνl ,ρ1σ1···ρnσn
(l;n)

def
=

1
2n

1
n!

[
Cµ1ν1···µl νl ,ρ1σ1···ρnσn
(l;n) + permutations

]
. (42)

Permutations ensure symmetric C-tensor with respect to index pair and pair permutation. It is
important to note that symmetrisation accounts only for indices contracted with the perturbation
indices.

Theorem 9. The following recursive relation holds for plain C(l)-tensors.

Cµ1ν1µ2ν2···µl νl ,ρ1σ1···ρnσn
(l;n) =

n

∑
p=0

(−1)p I
µ1ν1ρ1σ1···ρpσp
(1+p) C

µ2ν2···µlνl ,ρp+1σp+1···ρnσn

(l−1;n−p) . (43)

Proof. The proof relies on the possibility of factorising a single metric from the perturbative
expression. We can use this fact to define the C(l) tensors.

√
−g gµ1ν1 · · · gµlνl def

=
∞

∑
n=0

κn Cµ1ν1···µl νl ,ρ1σ1···ρnσn
(l;n) hρ1σ1 · · · hρnσn . (44)

At the same time, we can perform the perturbative expansion of gµ1ν1 separately.√
−g gµ1ν1 gµ2ν2 · · · gµlνl = gµ1ν1

√
−g gµ2ν2 · · · gµl νl

=
∞

∑
n1=0

(−1)n1 κn1 I
µ1ν1ρ1σ1···ρn1 σn1
(n1+1) hρ1σ1 · · · hρn1 σn1

∞

∑
n2=0

κn2 C
µ2ν2···µlνl ,λ1τ1···λn2 τn2
(l−1;n2)

hλ1τ1 · · · hλn2 τn2

=
∞

∑
n1=0

∞

∑
n2=0

(−1)n1 κn1+n2 I
µ1ν1ρ1σ1···ρn1 σn1
(n1+1) C

µ2ν2···µlνl ,ρn1+1σn1+1···ρn1+n2 σn1+n2
(l−1;n2)

hρ1σ1 · · · hρn1+n2 σn1+n2
.

(45)

One can decouple the summation indices by redefining them, resulting in the following
formula:

√
−g gµ1ν1 gµ2ν2 · · · gµl νl =

∞

∑
n=0

n

∑
p=0

κn(−1)p I
µ1ν1ρ1σ1···ρpσp
(1+p) C

µ2ν2···µl νl ,ρp+1σp+1···ρnσn

(l−1;n2)
hρ1σ1 · · · hρnσn . (46)

The proof is concluded by making a direct comparison with the definition of the
original tensor C(l).

Finally, we treat vierbein similarly. We define the plain E-tensor and plain CE-tensor
to encapsulate the structure of the following factors.
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Theorem 10.

eµ
ν def
=

∞

∑
n=0

κnE νρ1σ1···ρnσn
µ (n) hρ1σ1 · · · hρnσn

=
∞

∑
n=0

κn
(
− 1

2
n

)
I νρ1σ1···ρnσn
µ (n) hρ1σ1 · · · hρnσn ,

(47)

√
−g eµ

ν def
=

∞

∑
n=0

κnCE
ν,ρ1σ1···ρnσn
µ (n) hρ1σ1 · · · hρnσn

=
∞

∑
n=0

κn
n

∑
p=0

(
− 1

2
n

)
C

ρ1σ1···ρpσp
(p) I

νρp+1σp+1···ρnσn

µ (1+n−p) hρ1σ1 · · · hρnσn .
(48)

These tensors do not possess any additional symmetry. In practice, we never use the
plain E-tensor, so we do not discuss it further. Moreover, the plain E-tensor match the
plain I-tensor up to a constant. On the contrary, the plain CE-tensor is relevant for Dirac
fermions, so we define its symmetric generalisation.

Definition 8.

CE
ν,ρ1σ1···ρnσn

µ (n)
def
=

1
2n

1
n!

[
CE

ν,ρ1σ1···ρnσn
µ (n) + permutations

]
. (49)

Permutations account for all terms that make the CE-tensor symmetric with respect to permu-
tations of indices within each index pair µi ↔ νi, and with respect to permutations of any two index
pairs {µi, νi} ↔ {µj, νj}.

The recursive relation for the CE tensor holds similarly to the C(l) tensor. The proof for
CE-tensor is constructed the same way as the proof for C(l)-tensor and is omitted.

Theorem 11.

CE
ν,ρ1σ1···ρnσn
µ (n) =

n

∑
p=0

E
νρ1σ1···ρpσp

µ (1+p) C
ρp+1σp+1···ρnσn

(n−p) . (50)

The main result of this section is Theorems 8, 9 and 11. They are essential from the
computational point of view, since their implementation significantly improves the code
performance. We believe no simpler formula can be found based on the

√−g perturba-
tive expansion structure. All the factors discussed above contain

√−g, which makes it
impossible to construct recursive relations for them without a recursive relation for

√−g.
Theorem 8 shows that the n-th perturbative order incorporates all lower orders, making it
impossible to establish a relation between the n-th and (n − 1)-th orders alone. Therefore,
we believe it is impossible to construct truly recursive relations for all other factors.

4. Feynman Rules

The computational tools discussed in the previous section provide a comprehensive
framework for deriving Feynman’s rules for perturbative quantum gravity. This section
covers the derivation of interaction rules for simple scalars, Horndeski gravity, Dirac
fermions, massive and massless vector fields, SU(N) Yang–Mills model, and general
relativity. This collection of models is sufficient to account for quantum effects within the
standard model.

We handle all interaction rules as follows. We use the factorisation theorem to separate
terms that are infinite series from terms that are finite but contain derivatives. The finite
part is calculated explicitly, while the infinite part is expanded in the infinite perturbative
series. The discussed recursive relations provide a way to evaluate each term in such
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a perturbative expansion. Therefore, pointing to the structure contributing to a given
perturbative order is sufficient.

We will not discuss the derivation of the Feynman rules from the action via the path
integral formalism. The procedure is discussed in multiple sources, including classical
textbooks [78–81]. The procedure also uses Fourier transformation to generate rules in
the momentum representation. We also do not discuss the Fourier transformation for the
same reason.

Lastly, we shall introduce new notations for the practical sake. In perturbative expan-
sions considered below, using I , C, and other previously defined tensors is not optimal.
These tensors play a crucial role in the technical side of the calculation, but they do not
provide the most practical description.

If the quantity X admits a perturbative expansion in small metric perturbations, then
we shall use the following notations:

X note
=

∞

∑
n=0

κn(X)ρ1σ1···ρnσn hρ1σ1 · · · hρnσn . (51)

Here, (X)ρ1σ1···ρnσn is the contribution to the n-th order of the expansion. One can
define via derivatives:

(X)ρ1σ1···ρnσn =
δ

δhρ1σ1

· · ·
δ

δhρnσn

X

∣∣∣∣∣
h=0

. (52)

Let us present the following expressions to illustrate these notations. The components
of the inverse metric are noted as follows:

gµν =
∞

∑
n=0

κn(gµν)ρ1σ1···ρnσn hρ1σ1 · · · hρnσn . (53)

The explicit values of the first few of these components are:

(gµν) = ηµν = Iµν , (gµν)αβ = −
1
2

(
ηµαηνβ + ηµβηνα

)
= −Iµναβ . (54)

Implementation of these notations for the volume factor produces the following:

√
−g =

∞

∑
n=0

κn(√−g
)ρ1σ1···ρnσn hρ1σ1 · · · hρnσn , (55)

(√
−g
)
= 1 ,

(√
−g
)µν

=
1
2

ηµν = Cµν ,
(√

−g
)µναβ

=
1
8

(
−ηµαηνβ − ηµβηνα + ηµνηαβ

)
= Cµναβ . (56)

4.1. Scalar Field with a Potential

The action for a single free scalar field with mass m with the minimal coupling to
gravity reads:

As=0 =
∫

d4x
√
−g

[
1
2
(∇ϕ)2 −

m2

2
ϕ2

]
. (57)

Following the factorisation theorem, the action takes the following form:

As=0 =
∫

d4x

[
1
2
√
−g gµν ∂µϕ ∂νϕ −

m2

2
√
−g ϕ2

]
. (58)

The following theorem describes its structure in the Fourier representation.
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Theorem 12.

As=0 =
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn)

× κn

[
−

1
2
(√

−g gµν
)ρ1σ1···ρnσnIµναβ(p1)

α(p2)
β −

m2

2
(√

−g
)ρ1σ1···ρnσn

]
ϕ(p1)ϕ(p2) .

(59)

Here, ki are momenta of gravitons, p1 and p2 are momenta of scalars, and the same definition
of I tensor is used:

Iµναβ =
1
2

(
ηµαηνβ + ηµβηνα

)
. (60)

The contribution of order O
(
κ0) describes the standard scalar propagator:

= i
1

p2 − m2 . (61)

The other terms define the coupling of scalar field kinetic energy to gravity:

ρ1σ1

ρnσn

p1

p2

= −i κn
[(√

−g gµν
)ρ1σ1···ρnσn Iµναβ(p1)

α(p2)
β + m2 (√−g

)ρ1σ1···ρnσn
]
. (62)

The dotted line on the left side of the diagram notes the presence of n ≥ 1 gravi-
ton lines.

We can derive the equation for the scalar field potential similarly. The potential V(ϕ)
is a Taylor series in the scalar field ϕ. Each term in this expansion represents a scalar
field self-interaction coupled with gravity. Thus, deriving the interaction rule for a single
power-law potential is sufficient.

We consider a power-law potential with p ≥ 3 being a whole number and λp being a
coupling with the mass dimension 4 − p:

A =
∫

d4x
√
−g

[
λp

p!
ϕp

]
=
∫

d4x

[√
−g

λp

p!
ϕp

]
. (63)

The following theorem describes the action in Fourier representation.

Theorem 13.

A =
∞

∑
n=0

∫ p

∏
j=1

d4qj

(2π)4

n

∏
i=0

d4ki

(2π)4 (2π)4 δ
(

∑ qj + ∑ ki

)
hρ1σ1(k1) · · · hρnσn(kn)

× κn λp

p!
(√

−g
)ρ1σ1···ρnσn ϕ(q1) · · · ϕ(qp) .

(64)
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This results in the following interaction rule:

ρ1σ1

ρnσn

q1

qp

= i κn λp
(√

−g
)ρ1σ1···ρnσn . (65)

This expression fully describes the gravitational coupling of scalar field potentials for
any whole p ≥ 3.

4.2. Horndeski’s Gravity

The Horndeski theory is the most general scalar–tensor theory of gravity that admits
second-order field equations and minimal coupling to matter. It was discovered in [82], and
independently rediscovered in [83]. Because of the second-order field equations, the theory
is free from the Ostrogradsky instability [84–86].

A combination of the following Lagrangians gives the theory:

A =
∫

d4x
√
−g[L2 + L3 + L4 + L5], (66)

L2 = G2(ϕ, X) ,

L3 = G3(ϕ, X)□ϕ ,

L4 = G4(ϕ, X) R + G4,X

[
(□ϕ)2 −

(
∇µ∇νϕ

)2
]

,

L5 = G5(ϕ, X) Gµν∇µ∇νϕ −
1
6

G5,X

[
(□ϕ)3 − 3□ϕ

(
∇µ∇νϕ

)2
+ 2
(
∇µ∇νϕ

)3
]
.

(67)

Here, Gi = Gi(ϕ, X) are functions of the scalar field ϕ and its kinetic term X =
gµν ∇µϕ∇νϕ, while G4,X and G5,X note derivatives with respect to the kinetic term. La-
grangians L2 and L3 describe scalar field self-interaction with the minimal coupling to
gravity. In turn, L4 and L5 describe healthy non-minimal coupling to gravity. Terms con-
taining G4,X and G5,X are relevant only when G4 and G5 depend on the scalar field kinetic
term. In that case, they cancel out higher derivative contributions to the field equations.

4.2.1. Horndeski G2 Class

The G2 class of Horndeski theory describes a minimal coupling between the scalar
field and gravity. This coupling is minimal because it does not involve graviton momenta.

The function G2 shall be smooth enough to admit a Taylor expansion:

G2(ϕ, X) =
∞

∑
a=0

∞

∑
b=0

λ(a,b) ϕa Xb =
∞

∑
a=0

∞

∑
b=0

λ(a,b) ϕa gµ1ν1 · · · gµbνb ∂µ1 ϕ ∂ν1 ϕ · · · ∂µb ϕ ∂νb ϕ. (68)

Here, λ(a,b) is the dimensional coupling with the mass dimension 4(1 − b)− a. With-
out the loss of generality, one can consider a single term of this expansion and consider the
following action: ∫

d4x
√
−g G2(ϕ, X) →

∫
d4x
√
−g λ(a,b) ϕa Xb . (69)

The perturbative expansion is given by the following theorem.
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Theorem 14.∫
d4x
√
−g λ(a,b) ϕa Xb =

∫
d4x
√
−g gµ1ν1 · · · gµbνb ϕa ∂µ1 ϕ ∂ν1 ϕ · · · ∂µb ϕ∂νb ϕ

=
∞

∑
n=0

∫ n

∏
i=0

d4ki

(2π)4 hρiσi (ki)
a+2b

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pi

)
× κn (−1)b λ(a,b)

(√
−g gµ1ν1 · · · gµbνb

)ρ1σ1···ρnσn(p1)µ1(p2)ν1 · · · (p2b−1)µb(p2b)νb .

(70)

Lastly, the Feynman rule corresponding to that action reads

ρ1σ1, k1

ρnσn, kn

p1

p2b+a

λa,b = i κn(−1)b λa,b
(√

−g gµ1ν1 · · · gµbνb
)ρ1σ1···ρnσn(p1)µ1(p2)ν1 · · · (p2b−1)µb(p2b)νb

+ permutations.

(71)

The permutation terms account for all possible permutations of the scalar field momenta.
Let us also note that for the b = 0 case, the interaction reduces the scalar field potential.

4.2.2. Horndeski G3 Class

The interactions of the G3 class of Horndeski theory represent the simplest non-
minimal coupling between the scalar field and gravity. The final expression of this interac-
tion contains a single Christoffel symbol, which allows for the explicit inclusion of a single
graviton momentum in the corresponding Feynman rule.

We shall first simplify the expression and make the Christoffel symbol explicit.

Theorem 15.∫
d4x
√
−g G3 □ϕ =

∫
d4x
√
−g gµνG3 ∂µ∂νϕ −

∫
d4x
√
−g gµνgαβ ΓαµνG3 ∂βϕ. (72)

Secondly, G3 should be expanded in a Taylor series:

G3(ϕ, X) =
∞

∑
a=0

∞

∑
b=0

Θ(a,b) ϕa Xb. (73)

We can study a single term of the expansion without the loss of generality:∫
d4x
√
−g G3(ϕ, X)□ϕ →

∫
d4x
√
−g Θ(a,b) ϕa Xb □ϕ. (74)

The following theorem gives the perturbative structure of this interaction.
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Theorem 16.∫
d4x
√
−g Θ(a,b) ϕa Xb □ϕ

=
∫

d4x
√
−g gµνΘ(a,b) ϕa Xb ∂µ∂νϕ −

∫
d4x
√
−g gµνgαβΓαµνΘ(a,b) ϕa Xb ∂βϕ

=
∞

∑
n=0

∫ n

∏
i=0

d4ki

(2π)4 hρiσi (ki)
a+2b+1

∏
j=0

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pi

)
× κn(−1)b+1Θ(a,b)

(√
−g gµνgα1β1 · · ·gαb βb

)ρ1σ1···ρnσn
(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)µ(p2b+1)ν

+
∞

∑
n=1

∫ n

∏
i=1

d4ki

(2π)4 hρiσi (ki)
a+2b+1

∏
j=0

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pi

)
× κn(−1)b+2Θ(a,b)

(√
−g gµνgρσgα1β1 · · · gαb βb

)ρ1σ1···ρn−1σn−1
(Γρµν)

λρnσn(kn)λ

× (p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)σ.

(75)

It should be noted that the second part of the expression does not contribute at the κ0

level, since the Christoffel symbol vanishes on the background.
The corresponding interaction rule is given by the following:

ρ1σ1, k1

ρnσn, kn

p1

p2b+a+1

Θa,b = i κn(−1)b+1Θ(a,b)

[(√
−g gµν gα1β1 · · ·gαb βb

)ρ1σ1···ρnσn
(p2b+1)µ(p2b+1)ν

−
(√

−g gµνgρσ· · ·gαb βb
)ρ1σ1···σn−1ρn−1

(Γρµν)
λρnσn(kn)λ(p2b+1)σ

]
(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb

+ permutations.

(76)

The permutation terms account for all possible permutations of the scalar field and
graviton momenta.

4.2.3. Horndeski G4 Class

Interactions of the G4 class describe more sophisticated coupling of the scalar field to
gravity. Similarly to the previous case, it involves Christoffel symbols. In contrast with the
previous case, Christoffel symbols are present implicitly in the scalar curvature. Moreover,
the interaction is described by two related terms, with the second term cancelling higher
derivative contributions to the classical equations of motion.

We assume G4 is smooth enough to admit a Taylor expansion. To ensure that the theory
admits general relativity in the corresponding limit, one shall assume that the expansion
takes the following form:

G4 = −
2
κ2 + ∑

a,b
Υ(a,b)ϕ

a Xb. (77)

The first term corresponds to pure general relativity, while the other terms describe
the interaction between gravity and the scalar field. We discuss the part corresponding to
general relativity in another section, so we do not discuss it here. Without loss of generality,
we will use a single term from this expansion:∫

d4x
√
−g
[
Υ(a,b) ϕa Xb R + b Υ(a,b) ϕa Xb−1

[
(□ϕ)2 −

(
∇µ∇νϕ

)2
]]

. (78)
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The following theorems give the structure of this action.

Theorem 17.∫
d4x
√
−g Υ(a,b) ϕaXbR =

∫
d4x
√
−g gµνgαβ∂α

[
Γβµν−Γµβν

]
Υ(a,b)ϕ

aXb

+
∫

d4x
√
−g gµνgαβgρσ

[
ΓαµρΓβνσ−ΓαµνΓβρσ

]
Υ(a,b)ϕ

aXb

=
∞

∑
n=1

∫ n

∏
i=1

d4ki

(2π)4hρiσi (ki)
a+2b

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pj

)
× κn(−1)b+1Υ(a,b)

(√
−g gµνgαβgα1β1 · · ·gαb βb

)ρ1σ1···ρn−1σn−1
(p1)α1(p2)β1 · · · (p2b−1)αb(p2n)βb

×
[(

Γβµν

)λρnσn −
(
Γµβν

)λρnσn
]
(kn)α(kn)λ

+
∞

∑
n=2

∫ n

∏
i=1

d4ki

(2π)4hρiσi (ki)
a+2b

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pj

)
× κn(−1)b+2Υ(a,b)

(√
−g gµνgαβgρσgα1β1 · · ·gαb βb

)ρ1σ1···ρn−2σn−2
(p1)α(p2)β · · · (p2b−1)αb(p2b)2b

×
[(

Γαµρ

)λ1ρn−1σn−1
(
Γβνσ

)λ2ρnσn −
(
Γαµν

)λ1ρn−1σn−1
(
Γβρσ

)λ2ρnσn
]
(kn−1)λ1(kn)λ2 .

(79)

The expression consists of two parts. The first part contributes at the O
(
κ1) level and

describes the interaction between a few scalars and a single graviton. The second part does
not contribute to O

(
κ1), and describes the interaction between two or more gravitons with

a few scalars.
The following theorem describes the structure of the term containing G4,X .

Theorem 18.∫
d4x
√
−g ϕaXb−1

[
(□ϕ)2 −

(
∇µ∇νϕ

)2
]

=
∫

d4x
√
−g

[
gµνgαβ −

1
2

(
gµαgνβ + gµβgνα

)]
ϕaXb∂µ∂νϕ∂α∂βϕ

+
∫

d4x
√
−g

[
gµνgαβ −

1
2

(
gµαgνβ + gµβgνα

)]
gρσΓρµν ϕaXb∂σϕ∂α∂βϕ

+
∫

d4x
√
−g

[
gµνgαβ −

1
2

(
gµαgνβ + gµβgνα

)]
gρσgλτΓρµνΓλαβϕaXb∂σϕ∂τϕ.

(80)

In turn, the Fourier structure of this contribution is given by the following:
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Theorem 19.∫
d4x
√
−g b Υ(a,b)ϕ

aXb−1
[
(□ϕ)2 −

(
∇µ∇νϕ

)2
]

=
∞

∑
n=0

∫ n

∏
i=0

d4ki

(2π)4hρiσi (ki)
a+2b

∏
j=1

d4 pj

(2π)4 (2π)4δ
(
∑ ki + ∑ pj

)
× κn(−1)b−1 bΥ(a,b)

(√
−g

[
gµνgαβ −

1
2

(
gµαgνβ + gµβgνα

)]
gα1β1 · · · gαb βb

)ρ1σ1···ρnσn

× (p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)µ(p2b+1)ν(p2b+2)α(p2b+2)β

+
∞

∑
n=1

∫ n

∏
i=0

d4ki

(2π)4hρiσi (ki)
a+2b

∏
j=1

d4 pj

(2π)4 (2π)4δ
(
∑ ki + ∑ pj

)
× κn(−1)b 2 bΥ(a,b)

(√
−g

[
gµνgαβ −

1
2

(
gµαgνβ + gµβgνα

)]
gρσgα1β1 · · · gαb βb

)ρ1σ1···ρn−1σn−1

× (Γρµν)
λρnσn(kn)λ(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)σ(p2b+2)α(p2b+2)β

+
∞

∑
n=2

∫ n

∏
i=0

d4ki

(2π)4hρiσi (ki)
a+2b

∏
j=1

d4 pj

(2π)4 (2π)4δ
(
∑ ki + ∑ pj

)
× κn(−1)b bΥ(a,b)

(√
−g

[
gµνgαβ −

1
2

(
gµαgνβ + gµβgνα

)]
gρσgλτ gα1β1 · · · gαb βb

)ρ1σ1···ρn−2σn−2

× (Γρµν)
λ1ρn−1σn−1(Γλαβ)

λ2ρnσn(kn−1)λ1(kn)λ2(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)σ(p2b+2)ρ.

(81)

The first part of the expression contributes to the background at order O
(
κ0). The sec-

ond part contributes to O
(
κ1) and describes the interaction of a single graviton with a few

scalars. The last part contributes to order O
(
κ2), and its leading contribution represents

the interaction of two gravitons with a few scalars.
The following sophisticated expression gives the resulting expression for the interaction rule.

ρ1σ1, k1

ρnσn, kn

p1

p2b+a

Υa,b = i κn (−1)b+1Υ(a,b)(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb

×
[(√

−g gµνgαβgα1β1 · · ·gαb βb
)ρ1σ1···ρn−1σn−1

(kn)α(kn)λ

[
(Γβµν)

λρnσn − (Γµβν)
λρnσn

]
−
(√

−g gµνgαβgρσgα1β1 · · · gρbσb
)ρ1σ1···ρn−2σn−2

(kn−1)λ1(kn)λ2

×
[
(Γαµρ)

λ1ρn−1σn−1(Γβνσ)
λ2ρnσn − (Γαµν)

λ1ρn−1σn−1(Γβρσ)
λ2ρnσn

]
+ b
(√

−g gµνgαβ − 1
2
√
−g gµαgνβ − 1

2
√
−g gµβgνα

)ρ1σ1···ρnσn

(p2b+1)µ(p2b+1)ν(p2b+2)α(p2b+2)β

− 2 b
(√

−g gµνgαβgρσ − 1
2
√
−g gµαgνβgρσ − 1

2
√
−g gµβgναgρσ

)ρ1σ1···ρn−1σn−1

× (kn)λ(Γρµν)
λρnσn(p2b+1)σ(p2b+2)α(p2b+2)β

+ b
(√

−g gµνgαβgρσ gλτ − 1
2
√
−g gµαgνβgρσ gλτ − 1

2
√
−g gµβgναgρσ gλτ

)ρ1σ1···ρn−2σn−2

× (kn−1)λ1(kn−2)λ2(Γρµν)
λ1ρn−1σn−1(Γλαβ)

λ2ρnσn(p2b+1)σ(p2b+2)τ

]
+ permutations.

(82)
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Let us note that the second and last terms in the square brackets contribute only to
vertices with two or more gravitons.

4.2.4. Horndeski G5 Class

The final class of Horndeski interaction also describes a non-minimal coupling between
the scalar field and gravity. This interaction involves the most derivatives, which still do
not result in the higher-order classical field equations. We study this term similar to the
others and make its structure explicit.

The following theorem describes the structure of the non-minimal coupling. It does
not involve any integration by parts and relies purely on calculating derivatives.

Theorem 20.

Gµν∇µ∇νϕ =−
1
2

[
gµνgαβ − gµαgνβ − gµβgνα

]
gρσ
{

∂ρΓσαβ − ∂αΓρβσ

}
∂µ∂νϕ

+
1
2

[
gµνgαβ − gµαgνβ − gµβgνα

]
gρσgλτ

{
∂ρΓσαβ − ∂αΓρβσ

}
Γλµν∂τϕ

−
1
2

[
gµνgαβ − gµαgνβ − gµβgνα

]
gρσgλτ

{
ΓραλΓσβτ − ΓραβΓσλτ

}
∂µ∂νϕ

+
1
2

[
gµνgαβ − gµαgνβ − gµβgνα

]
gρσgλτ gϵω

{
ΓραλΓσβτ − ΓραβΓσλτ

}
Γϵµν∂ωϕ.

(83)

The coupling function G5 = G5(ϕ, X) shall be smooth enough to admit a power
series expansion

G5 = ∑
a,b

Ψ(a,b)ϕ
aXb. (84)

Similarly to the previous cases, we can study the following coupling function without
the loss of generality:

G5 = Ψ(a,b)ϕ
aXb. (85)

This results in the following theorem describing the Fourier structure of the first part
of the interaction.
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Theorem 21.∫
d4x
√
−g G5 Gµν∇µ∇νϕ

=
∞

∑
n=1

∫ n

∏
i=1

d4ki

(2π)4 hρiσi (ki)
a+2b+1

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pj

)
×

1
2

κn(−1)b+1Ψ(a,b)

{(
gµνgαβ − gµαgνβ − gµβgνα

)
gρσ
}ρ1σ1···ρn−1σn−1

× (kn)λ

{
(kn)ρ(Γσαβ)

λρnσn − (kn)α(Γρβσ)
λρnσn

}
(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)µ(p2b+1)ν

+
∞

∑
n=2

∫ n

∏
i=2

d4ki

(2π)4 hρiσi (ki)
a+2b+1

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pj

)
×

1
2

κn(−1)bΨ(a,b)

{(
gµνgαβ − gµαgνβ − gµβgνα

)
gρσgλτ

}ρ1σ1···ρn−2σn−2
(kn−1)λ1(Γλµν)

λ1ρn−1σn−1

× (kn)λ

{
(kn)ρ(Γσαβ)

λρnσn − (kn)α(Γρβσ)
λρnσn

}
(p1)α1(p2)β1 · · · (p2b−1)αb(p2b)βb(p2b+1)τ

+
∞

∑
n=2

∫ n

∏
i=2

d4ki

(2π)4 hρiσi (ki)
a+2b+1

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pj

)
×

1
2

κn(−1)b+1Ψ(a,b)

{(
gµνgαβ − gµαgνβ − gµβgνα

)
gρσgλτ

}ρ1σ1···ρn−2σn−2
(kn−1)λ1(kn)λ2

×
{
(Γραλ)

λ1ρn−1σn−1(Γσβτ)
λ2ρnσn− (Γραβ)

λ1ρn−1σn−1(Γσλτ)
λ2ρnσn

}
(p1)α1 · · · (p2b)βb(p2b+1)µ(p2b+1)ν

+
∞

∑
n=3

∫ n

∏
i=3

d4ki

(2π)4 hρiσi (ki)
a+2b+1

∏
j=1

d4 pj

(2π)4 ϕ(pj) (2π)4δ
(
∑ ki + ∑ pj

)
×

1
2

κn(−1)bΨ(a,b)

{(
gµνgαβ − gµαgνβ − gµβgνα

)
gρσgλτ gϵω

}ρ1σ1···ρn−3σn−3
(kn−2)λ1(kn−1)λ2(kn)λ3

×
{
(Γραλ)

λ2ρn−1σn−1(Γσβτ)
λ3ρnσn−(Γραβ)

λ2ρn−1σn−1(Γσλτ)
λ3ρnσn

}
(Γϵµν)

λ1ρn−2σn−2(p1)α1· · ·(p2b)βb(p2b+1)ω.

(86)

First, we describe the structure involving scalar field derivatives to proceed with the
second part of the interaction.

Theorem 22.

(□ϕ)3 − 3□ϕ
(
∇µ∇νϕ

)2
+ 2
(
∇µ∇νϕ

)3

=
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]
∂µ∂νϕ ∂α∂βϕ ∂ρ∂σϕ

+ 3
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]

gωτΓωµν∂τϕ ∂α∂βϕ ∂ρ∂σϕ

+ 3
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]

gω1τ1 gω2τ2 Γω1µνΓω2αβ∂τ1 ϕ ∂τ2 ϕ ∂ρ∂σϕ

+
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]

gω1τ1 gω2τ2 gω3τ3 Γω1µνΓω2αβΓω3ρσ∂τ1 ϕ ∂τ2 ϕ ∂τ3 ϕ.

(87)

The following theorem gives the perturbative structure of the second part of the
interaction.
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Theorem 23.∫
d4x
√
−g

[
−

1
6

G5,X

{
(□ϕ)3 − 3□ϕ

(
∇µ∇νϕ

)2
+ 2
(
∇µ∇νϕ

)3
}]

=
∞

∑
n=0

∫ n

∏
i=1

d4ki

(2π)4hρiσi (ki)
a+2b+1

∏
j=1

ϕ(pj)(2π)4δ
(
∑ ki + ∑ pj

)
×

1
6

κn(−1)b b Ψ(a,b)

{√
−g
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]}ρ1σ1···ρnσn

× (p1)α1(p2)β2 · · · (p2b−1)αb(p2b)βb(p2b+1)µ(p2b+1)ν(p2b+2)α(p2b+2)β(p2b+3)ρ(p2b+3)σ

+
∞

∑
n=1

∫ n

∏
i=1

d4ki

(2π)4hρiσi (ki)
a+2b+1

∏
j=1

ϕ(pj)(2π)4δ
(
∑ ki + ∑ pj

)
×

1
3

κn(−1)b b Ψ(a,b)

{√
−g
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]

gωτ
}ρ1σ1···ρn−1σn−1

× (p1)α1(p2)β2 · · · (p2b−1)αb(p2b)βb(kn)λ

(
Γωµν

)λρnσn(p2b+1)τ(p2b+2)α(p2b+2)β(p2b+3)ρ(p2b+3)σ

(88)

+
∞

∑
n=2

∫ n

∏
i=1

d4ki

(2π)4hρiσi (ki)
a+2b+1

∏
j=1

ϕ(pj)(2π)4δ
(
∑ ki + ∑ pj

)
×

1
3

κn(−1)b b Ψ(a,b)

{√
−g
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]

gω1τ1 gω2τ2
}ρ1σ1···ρn−2σn−2

× (p1)α1(p2)β2 · · · (p2b−1)αb(p2b)βb(kn−1)λ1(kn)λ2

(
Γω1µν

)λ1ρn−1σn−1
(
Γω2αβ

)λ2ρnσn

× (p2b+1)τ1(p2b+2)τ2(p2b+3)ρ(p2b+3)σ

+
∞

∑
n=3

∫ n

∏
i=1

d4ki

(2π)4hρiσi (ki)
a+2b+1

∏
j=1

ϕ(pj)(2π)4δ
(
∑ ki + ∑ pj

)
×

1
6

κn(−1)b b Ψ(a,b)

{√
−g
[

gµνgαβgρσ − 3 gµνgαρgβσ + 2gναgβρgσµ
]

gω1τ1 gω2τ2 gω3τ3
}ρ1σ1···ρn−3σn−3

× (p1)α1(p2)β2 · · · (p2b−1)αb(p2b)βb(kn−2)λ1(kn−1)λ2(kn)λ3

×
(
Γω1µν

)λ1ρn−2σn−2
(
Γω2αβ

)λ2ρn−1σn−1
(
Γω3ρσ

)λ3ρnσn(p2b+1)τ1(p2b+2)τ2(p2b+3)τ3 .

The theorems explain the entire structure of the G5 interaction class. However, we
will not explicitly express the corresponding interaction vertex. Because the expression is
exceptionally long, it would not be constructive.

4.3. Dirac Spinors

The standard way to describe fermions in curved spacetime uses vierbein and γ
matrices [87]. Firstly, γ matrices are introduced to construct a representation of the Lorentz
algebra. Dirac matrices satisfy the following relations:

{γm, γn}
note
= γmγn + γnγm = 2 ηmn , γ0γmγ0 = (γm)+ . (89)

They form the following representation of the Lorentz algebra:

Smn
def
=

i
4
[γm, γn] , [Smn, Sab] = −i(ηmaSnb − ηmbSna + ηnbSma − ηnaSmb). (90)

The standard vector representation of the Lorentz algebra is given by Jmn matrices:

(Jmn)ab = i (ηmaηnb − ηmbηna) , [Jmn, Jab] = −i(ηma Jnb − ηmb Jna + ηnb Jma − ηna Jmb). (91)
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The following relation connects these representations:

[γa, Smn] = (Jmn)ab γb . (92)

One can define Dirac spinors ψ and ψ = ψ+γ0 subject to Lorentz group action

δψ =
i
2

ωab Sab ψ , δψ = −
i
2

ωab ψSab , (93)

and to construct the well-known Lorentz invariant action in a flat spacetime

As= 1
2 ,m ̸=0 =

∫
d4x

[
i
2
(

ψ γm∂mψ − ∂mψ γmψ
)
− m ψ ψ

]
. (94)

The action is generalised for curved spacetime via vierbein em
µ. In a curved spacetime,

one relates an arbitrary frame with a local inertial frame via vierbein em
µ. Its Latin indices

are subjected to the Lorentz transformation; Greek indices are subjected to the general coor-
dinate transformations. In turn, vierbein satisfies the following normalisation condition:

em
µ en

ν gµν =ηmn, em
µ en

ν ηmn =gµν. (95)

They define an anti-symmetric spin-connection (Γµ)ab = −(Γµ)ba that is related to the
Christoffel symbols. (

Γµ

)
ab = eaαeb

βΓα
µβ + eaσ∂µeb

σ. (96)

Since the vierbein em
µ connects Lorentz transformations and general coordinate trans-

formations, one uses it to manipulate indices. This construction forms a set of γ matrices
that are subject to the general coordinate transformation group:

γµ = em
µ γm . (97)

Spinor transformations (93) are generalized as follows:

δψ =
i
2

ωµν Sµν ψ =
i
2

ωab(x) Sab ψ , δψ = −
i
2

ωµν ψ Sµν = −
i
2

ωab(x)ψ Sab . (98)

This generalisation promotes transformation (93) to gauge transformations.
Regular derivatives are replaced with covariant derivatives defined as follows:

∇µψ = ∂µψ −
i
2
(
Γµ

)ab Sab ψ ,∇µψ = ∂µψ +
i
2
(
Γµ

)ab
ψ Sab . (99)

Covariant derivatives defined in such a way satisfy the following relations:

∇µ(ψ ψ) = ∂µ(ψ ψ) ∇µ

(
ψ γµψ

)
= ∂µ

(
ψ γµψ

)
+ Γα

µβ ψ γβ ψ . (100)

This construction produces the following generalisation of the Dirac action

As=1/2 =
∫

d4x
[√

−g em
µ 1

2
(
i ψ γm ∇µψ − i ∇µψ γm ψ

)
− m

√
−g ψ ψ

]
. (101)

Here, m is the fermion mass, em
µ is the vierbein, and ∇ is the fermionic covariant

derivative. We shall note that we omit a few steps in deriving this action. Namely, the action
does not contain either Christoffel or spin connection. The reason for this is discussed in
detail in [24].

The following theorem describes the perturbative structure of the Dirac action.
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Theorem 24.

As=1/2 =
∫

d4x
[√

−g em
µ 1

2
(
i ψ γm ∂µψ − i ∂µψ γm ψ

)
− m

√
−g ψ ψ

]
=

∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=0

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn)

× κn ψ(p2)

[(√
−g em

µ
)ρ1σ1···ρnσn 1

2
(p1 − p2)µγm −

(√
−g
)ρ1σ1···ρnσn m

]
ψ(p1).

(102)

The background contribution describes the standard fermion propagator:

= i
pm γm + m

p2 − m2 . (103)

The other terms describe the following interaction rules:

ρ1σ1

ρnσn

p1

p2

= i κn

[
1
2
(√

−g em
µ
)ρ1σ1···ρnσn (p1 − p2)µγm −

(√
−g
)ρ1σ1···ρnσn m

]
. (104)

This expression also holds in the SU(N) Yang–Mills model considered below.

4.4. Proca Field

For quantum field theory, the existence of a vector field mass is crucial. A vector field
with zero mass admits a gauge symmetry, which means gauge fixing must be performed.
On the other hand, a vector field with a non-vanishing mass, the Proca field, has no gauge
symmetry, and the gauge fixing is not an issue. We begin the discussion with the Proca case
for the sake of simplicity.

The action describing a Proca field reads:

As=1,m =
∫

d4x
√
−g

[
−

1
4

FµνFµν +
m2

2
Aµ Aµ

]
. (105)

Here, Fµν = ∂µ Aν − ∂ν Aµ is the field tensor, m is the vector field mass. The action
admits the following factorisation:

As=1,m =
∫

d4x

[
−

1
4
√
−g gµαgνβFµνFαβ +

√
−g gµν m2

2
Aµ Aν

]
. (106)

The following theorem describes the Fourier structure of the action.

Theorem 25.

As=1,m =
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=0

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn)

× κn

[
1
4

(√
−g gµαgνβ

)ρ1σ1···ρnσn
(p1)µ1(p2)µ2

(
Fµν

)µ1λ1
(

Fαβ

)µ2λ2

+
m2

2

(√
−g gλ1λ2

)ρ1σ1···ρnσn

]
Aλ1(p1) Aλ2(p2).

(107)
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Here, we introduced the following notations:

Fµν = −i pσ

(
Fµν

)σλ Aλ(p),
(

Fµν

)σλ def
= δσ

µ δλ
ν − δσ

ν δλ
µ . (108)

This expression generates the Proca propagator:

µ ν = (−i)
ηµν −

pµ pν

m2

p2 − m2 . (109)

The expression describing the interaction rules between gravitons and the Proca field
kinetic energy is as follows:

ρ1σ1

ρnσn

p1, λ1, m

p2, λ2, m

= i κn

[
1
2

(√
−g gµαgνβ

)ρ1σ1···ρnσn
(p1)µ1(p2)µ2

(
Fµν

)µ1λ1
(

Fαβ

)µ2λ2

+ m2(√−g gλ1λ2

)ρ1σ1···ρnσn

]
.

(110)

4.5. Vector Field

Before discussing the massless case, we shall recall the Faddeev–Popov prescrip-
tion [39]. The following generating functional describes a quantum massless vector field:

Z =
∫

D[A] exp
[
i A[A]

]
. (111)

The integration space includes all conceivable configurations of the vector field. Firstly,
we shall add a new term to the microscopic action:

Z =
∫

D[A] exp
[
i A[A]

] ∫
D[ω] exp

[
i
2

ϵ ω2

]
=
∫

D[A]D[ω] exp

[
i A+

i
2

ϵ ω2

]
. (112)

Here, ω is an arbitrary scalar, and ϵ is a free gauge fixing parameter. The new contri-
bution is a Gauss-like integral, so its introduction merely changes the omitted normalisa-
tion factor.

Secondly, we split the integration volume:∫
D[A] =

∫
D[ζ]

∫
D[A]δ(G − ω)det ∆ . (113)

In this expression, G is the gauge fixing condition, ζ is the gauge transformation
parameter, and the new field variable A and the field variable A are related as follows:

Aµ = Aµ + ∂µζ. (114)

The integration over A is performed over all conceivable fields. Because of the δ
function, only a single representative from each class of physically equivalent potentials
contributes to the integral. Lastly, the Faddeev–Popov determinant det ∆ preserves the
invariance of the integration measure. The corresponding differential operator ∆ is defined
as follows:

∆ def
=

δG
δζ

. (115)
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Finally, we perform integrations and obtain the following expression for the generat-
ing functional:

Z =
∫

D[A]D[ω]D[ζ](det ∆) δ(G − ω) exp

[
i A+

i
2

ϵ ω2

]

=
∫

D[A](det ∆) exp

[
i A+

i
2

ϵ G2

]

=
∫

D[c]D[c]D[A] exp

[
i c ∆ c + i A+

i
2

ϵ G2

]
.

(116)

Here, c and c are scalar anticommuting Faddeev–Popov ghosts introduced to account
for the Faddeev–Popov determinant. We omit the integration over the gauge parameter ζ,
as it is irrelevant due to the normalisation.

This prescription generates a functional suitable for treating gauge models. We chose
the standard Lorentz gauge fixing condition for simplicity. In a curved spacetime, it reads:

gµν ∇µ Aν = 0 ↔ gµν ∂µ Aν − gµν Γσ
µν Aσ = 0. (117)

The following theorem describes the perturbative structure of the gauge invariant part
of the action.

Theorem 26.

As=1,mv=0 =
∫

d4x
√
−g

[
−

1
4

gµαgνβ FµνFαβ

]

=
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4 δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn)

× κn

[
1
4

(√
−g gµαgνβ

)ρ1σ1···ρnσn
(p1)µ1(p2)µ2

(
Fµν

)µ1λ1
(

Fαβ

)µ2λ2

]
Aλ1(p1)Aλ2(p2).

(118)

This expression matches the expression for the Proca field with m = 0.
The structure of the gauge fixing term is more sophisticated.

Theorem 27.

Agf =
∫

d4x
√
−g

[
ϵ

2
∇λ1 Aλ1 ∇λ2 Aλ2

]

=
ϵ

2

∫
d4x
(√

−g gσ1λ1 gσ2λ2
)

∂σ1 Aλ1 ∂σ2 Aλ2 − ϵ
∫

d4x
(√

−g gµνgσ1λ1 gσ2λ2
)

Γσ1µν Aλ1 ∂σ2 Aλ2

+
ϵ

2

∫
d4x
(√

−g gµνgαβgσ1λ1 gσ2λ2
)

Γσ1µνΓσ2αβ Aλ1 Aλ2 .

(119)

The following theorem gives the Fourier structure of the gauge fixing term.
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Theorem 28.

Agf =
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn)Aλ1(p1)Aλ2(p2)

× κn
(√

−g gµ1λ1 gµ2λ2
)ρ1σ1···ρnσn

[
−

ϵ

2
(p1)µ1(p2)µ2

]

+
∞

∑
n=1

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn)Aλ1(p1)Aλ2(p2)

× κn
(√

−g gµνgµ1λ1 gµ2λ2
)ρ2σ2···ρnσn[

ϵ
(
Γµ1µν

)σρ1σ1 (k1)σ (p2)µ2

]
+

∞

∑
n=2

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn) Aλ1(p1)Aλ2(p2)

× κn
(√

−g gµνgαβgµ1λ1 gµ2λ2
)ρ3σ3···ρnσn

[
−

ϵ

2
(k1)τ1(k2)τ2

(
Γµ1µν

)τ1ρ1σ1
(
Γµ2αβ

)τ2ρ2σ2

]
.

(120)

The following notations for the Christoffel symbols were used.

Γµαβ =
κ

2
[
∂αhβµ + ∂βhαµ − ∂µhαβ

]
⇔ κ (−i) pλ

(
Γµαβ

)λρσhρσ(p) ,

(
Γµαβ

)λρσ
=

1
2

[
δλ

α Iβµ
ρσ + δλ

β Iαµ
ρσ − δλ

µ Iαβ
ρσ
]
.

(121)

The background part of this expression corresponds to the standard propagator:

µ ν = i

− ηµν +

(
1 +

1
ϵ

)
pµ pν

p2

p2 . (122)

The corresponding interaction rule reads:

ρ1σ1, k1

ρnσn, kn

p1, λ1

p2, λ2

= i κn

[
1
2

(√
−g gµαgνβ

)ρ1σ1···ρnσn
(p1)σ1(p2)σ2

(
Fµν

)σ1λ1
(

Fαβ

)σ2λ2

− ϵ
(√

−g gµ1λ1 gµ2λ2
)ρ1σ1···ρnσn

(p1)µ1(p2)µ2

+ ϵ
{(√

−g gµνgµ1λ1 gµ2λ2
)ρ2σ2···ρnσn

(k1)σ

[
(p2)µ2

(
Γµ1µν

)σρ1σ1 + (p1)µ1

(
Γµ2µν

)σρ1σ1
]
+ · · ·

}
−

ϵ

2

{(√
−g gµνgαβgµ1λ1 gµ2λ2

)ρ3σ3···ρnσn[
(k1)τ1 (k2)τ2

(
Γµ1µν

)τ1ρ1σ1
(
Γµ2αβ

)τ2ρ2σ2

+(k1)τ2 (k2)τ1

(
Γµ2µν

)τ1ρ2σ2
(
Γµ1αβ

)τ2ρ1σ1
]
+ · · ·

}]
.

(123)

The dots in this expression represent terms that create symmetry with respect to
graviton momenta. The final term only affects vertices with two or more gravitons.

We treat the ghost sector of the theory as follows. The Faddeev–Popov differential
operator ∆ reduces to the D’Alamber operator in curved spacetime:

∆ =
δ

δζ
∇µ(Aµ +∇µζ) = gµν∇µ∇ν . (124)
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The ghost part of the functional describes a single massless scalar ghost coupled to
gravity:

Zghost =
∫

D[c]D[c] exp
[

i
∫

d4x
√
−g (c□ c)

]
=
∫

D[c]D[c] exp
[
−i

∫
d4x

√
−g gµν ∇µc∇νc

]
. (125)

The following theorem gives the corresponding perturbative expansion.

Theorem 29.

Aghost =−
∫

d4x
√
−g gµν∂µc ∂νc

=
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn)

× κn c(p1)
[(√

−g gµν
)ρ1σ1···ρnσn(p1)µ(p2)ν

]
c(p2).

(126)

We recover the standard ghost propagator:

= i
− 1
p2 , (127)

and in the following interaction rule:

ρ1σ1

ρnσn

p1

p2

= i κn (√−g gµν
)ρ1σ1···ρnσn Iµν

αβ(p1)α(p2)β. (128)

Let us note again that the discussed ghosts are the standard Faddeev–Popov ones.
In the context of gravity, there is one additional reason to account for them. The vertex in a
diagram represents the interaction between gravitons and vectors, including physical and
non-physical vector field polarisations. The coupling of Faddeev–Popov ghosts to gravity
cancels out the energy contribution from non-physical polarisations.

4.6. SU(N) Yang–Mills

Let us turn to the gravitational interaction of the SU(N) Yang–Mills model. In the flat
spacetime, the SU(N) Yang–Mills model is given by the following action:

A =
∫

d4x

[
ψ
(

i D̂ − m
)

ψ −
1
4

Fa
µν Faµν

]

=
∫

d4x

[
ψ(i ∂̂ − m)ψ −

1
4

(
f a
µν

)2
+ gs ψÂψ − gs f abc∂µ Aa

ν Abµ Acν −
1
4

g2
s f amn f aij (Am·Ai)(An·Aj)

]
.

(129)

The fermion covariant derivative is defined in the standard way:

Dµψ = ∂µψ − i gs Aµ ψ. (130)

Field tensor Fµν reads

Fµν = ∂µ Aν − ∂ν Aµ − i gs[Aµ, Aν]. (131)
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The gauge field Aµ takes value in SU(N) algebra:

Aµ = Aa
µ Ta, (132)

where Ta are generators. In turn, field tensor components are given by the following:

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν . (133)

Here f abc are the structure constants of the algebra:

[Ta, Tb] = i f abc Tc . (134)

Action (129) is generalised for the curved spacetime case as follows. One replaces all
derivatives with covariant derivatives and makes explicit the invariant volume factor. Such
a generalisation results in the following action:

A =
∫

d4x
√
−g

[
ψ
(
i em

µ γm Dµ − m
)
ψ −

1
4

Fa
µν Faµν

]
. (135)

Here, em
µ is a vierbein. The covariant derivative for fermions now reads

Dµψ = ∇µψ − i gs Aµ ψ, (136)

with ∇µ begin the part accounting for the spacetime curvature via the spin connection.
The field tensor Fµν is defined via covariant derivatives. However, it does not involve
Christoffel symbols due to its structure:

Fµν = ∇µ Aν −∇ν Aµ − i gs [Aµ, Aν] = ∂µ Aν − ∂ν Aµ − i gs[Aµ, Aν] . (137)

This results in the following SU(N) Yang–Mills action in curved spacetime:

A =
∫

d4x
√
−g

[
ψ
(
i em

µ γm ∇µ − m
)
ψ −

1
4

(
f a
µν

)2

+ gs ψ(em
µγm)ψ Aµ − gµνgαβ gs f abc∂µ Aa

α Ab
ν Ac

β −
1
4

g2
s f amn f aij gµνgαβ Am

µ Ai
ν An

α Aj
β

]
.

(138)

The perturbative quantisation of kinetic parts of the action is discussed above. The fol-
lowing theorem gives the perturbative expansion for the coupling of fermions to a gauge
vector.

Theorem 30.∫
d4x
√
−g gs ψ(em

µγm)ψ Aµ

=
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

d4k
(2π)4

n

∏
i=0

d4ki

(2π)4 (2π)4 δ
(

p1 + p2 + k + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn)

× κn ψ(p2)
[
gs γm Ta (√−g em

µ
)ρ1σ1···ρnσn

]
ψ(p1) Aa

µ(k) .

(139)

This expression produces the following Feynman rule:
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ρ1σ1

ρnσn

µ, a = i κn gs γm Ta (√−g em
µ
)ρ1σ1···ρnσn . (140)

The perturbative expansion for the cubic term in gauge vectors takes a similar form.

Theorem 31.∫
d4x
√
−g (−gs) f abc gµνgαβ ∂µ Aa

α Ab
ν Ac

β

=
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

d4 p3

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4 δ
(

p1 + p2 + p3 + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn)

× κn
[
(−i gs) f abc (p1)σ

(√
−g gµ1µ3 gµ2σ

)ρ1σ1···ρnσn
]

Aa
µ1
(p1) Ab

µ2
(p2) Ac

µ3
(p3) .

(141)

This expression produces the following rule:

ρ1σ1

ρnσn

µ1, a, p1

µ2, b, p2

µ3, c, p3

= κn gs f abc
[
(p1 − p2)σ

(√
−g gµ1µ2 gµ3σ

)ρ1σ1···ρnσn

+ (p3 − p1)σ

(√
−g gµ1µ3 gµ2σ

)ρ1σ1···ρnσn + (p2 − p3)σ

(√
−g gµ2µ3 gµ1σ

)ρ1σ1···ρnσn
]
.

(142)

Lastly, the four-vector coupling term has the following perturbative structure.

Theorem 32.∫
d4x
√
−g

(
−

1
4

g2
s

)
f amn f aij gµνgαβ Am

µ Ai
ν An

α Aj
β

=
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

d4 p3

(2π)4

d4 p4

(2π)4

n

∏
i=0

d4ki

(2π)4 (2π)4 δ
(

p1 + p2 + p3 + p4 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn)

×
(
−

1
4

)
g2

s κn f amn f aij(√−g gµ1µ3 gµ2µ4
)ρ1σ1···ρnσn Am

µ1
(p1)An

µ2
(p2)Ai

µ3
(p3)Aj

µ4(p4).

(143)

This results in the following interaction rule:

ρ1σ1

ρnσn

µ1, a1

µ2, a2

µ3, a3

µ4, a4

= −i g2
s κn

[
f a1a4s f a2a3s

((√
−g gµ1µ2 gµ3µ4

)ρ1···σn −
(√

−g gµ1µ3 gµ2µ4
))ρ1···σn

+ f a1a3s f a2a4s
((√

−g gµ1µ2 gµ3µ4
)ρ1···σn −

(√
−g gµ1µ4 gµ2µ3

))ρ1···σn

+ f a1a2s f a3a4s
((√

−g gµ1µ3 gµ2µ4
)ρ1···σn −

(√
−g gµ1µ4 gµ2µ3

))ρ1···σn

]
.

(144)
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Finally, we are going to discuss gauge fixing. The Yang–Mills action respects the
following gauge transformations:

δψ =i θa Taψ,

δAµ =i θa [Ta, Aµ] +
1
gs

∂µθa Ta,

δAa
µ =

1
gs

[
∂µθa − g f abc θb Ac

µ

]
.

(145)

Here, θa are the gauge parameters. The standard Lorentz gauge fixing conditions
simplify calculations in a flat spacetime.

∂µ Aa
µ = 0. (146)

For the case of curved spacetime, the covariant derivative replaces the standard
derivative, which produces the new form of the Lorentz gauge fixing conditions:

gµν∇µ Aa
ν = 0. (147)

Introducing this gauge fixing term will bring the kinetic part of the vector field to the
same form discussed in the previous section.

The ghost action is defined by the Faddeev–Popov determinant obtained from the
gauge fixing condition:

det

[
δ

δθb

{
gµν∇µ Aa

ν

}]
= det

[
1
gs

gµν ∇µ

(
δab∇ν − gs f abc Ac

ν

)]
. (148)

It results in the following action:

AFP =
∫

d4x
[
−gµν ∇µca∇νca + gs gµν∇µca f abccb Ac

ν

]
. (149)

The action’s kinetic part is similar to a massless vector field. The section describing
the interaction between ghosts, vectors, and gravitons allows for a perturbative expansion.

Theorem 33.∫
d4x
√
−g
[
gs ∂µca f abc cb Ac µ

]
=

∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

d4k
(2π)4

n

∏
i=0

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + k + ∑ ki
)

hρ1σ1(k1) · · · hρnσn(kn)

× i κn gs (p1)ν f abc ca(p1) cb(p2)
(√

−g gµν
)ρ1σ1···ρnσn Ac

µ(k).

(150)

This expression produced the following rule:

ρ1σ1

ρnσn

b

µ, c

p1, a

=− κn gs f abc (p1)ν

(√
−g gµν

)ρ1σ1···ρnσn . (151)

4.7. General Relativity

General relativity is invariant with respect to local transformations spawned by coor-
dinate transformations, so a gauge fixing procedure shall be performed. The perturbative
approach describes gravity as small metric perturbations over a flat background. Therefore,
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it may seem that the theory is reduced to a gauge theory of rank-2 symmetric tensor, but this
is not the case.

One shall distinguish a geometric theory from a theory of a rank-2 symmetric tensor.
The difference dictates how to treat the gauge fixing condition. First, let us consider the
case of a symmetric hµν tensor theory that admits the following gauge symmetry:

δhµν = ∂µζν + ∂νζµ. (152)

The hµν tensor is fundamental to this theory, and a gauge fixing condition can be ex-
pressed solely in terms of it. For example, one can use the following gauge fixing condition:

∂µhµν −
1
2

∂νh = 0 . (153)

This condition, along with others, determines the composition of the Faddeev–Popov
ghosts. Because hµν is the fundamental object of the theory, the structure of divergences can
only be expressed in terms of hµν alone. All geometric quantities, such as the Riemann ten-
sor, Ricci tensor, scalar curvature, and others, are expressed via small metric perturbations,
but the opposite is not true. Operators given in terms of hµν alone may not represent any
geometric quantities. Therefore, in a gauge theory of a rank-2 symmetric tensor, one can
expect to find divergences that cannot be described by geometric quantities, which makes
it a non-geometric theory.

On the contrary, gauge transformations are generated by coordinate frame transforma-
tions within the geometric approach. This has two immediate implications. Firstly, within a
geometrical theory, gauge transformations are given by the so-called Lie derivatives:

δgµν
def
= Lζ gµν = ∇µζν +∇νζµ. (154)

Here, Lζ is the Lie derivative with respect to an arbitrary vector field ζ, which con-
tains the gauge transformation parameters. Secondly, the gauge fixing condition must be
expressed in geometrical quantities. Thus, gauge fixing conditions (153) are inconsistent
with the geometrical approach and cannot be implemented. Instead, we use the following
gauge fixing conditions:

Gµ note
= gαβΓµ

αβ = 0. (155)

Combined with the perturbative expansion given by Equation (1), the gauge fixing
conditions represented by Equation (155) produce an infinite series.

Gν =
κ

2
gµνgαβ

[
∂αhβµ + ∂βhαµ − ∂µhαβ

]
= κ

[
∂µhµν −

1
2

∂νh

]
+O(κ2), (156)

The infinite expansion defines the ghost sector, and the leading term reproduces naive
gauge fixing (153).

The difference between geometrical theories of gravity and a gauge theory of hµν

tensor is marked by the need to use gauge fixing condition (155), and not conditions (153).
Proceeding with The Faddeev–Popov prescription, firstly, we shall note that the gauge
fixing condition Gµ defined by (155) is a vector with mass dimension +1. Thus, one shall
introduce an additional dimensional parameter in the gauge fixing term:

AH+gf =
∫

d4x
√
−g

[
−

2
κ2 R +

ϵ

2 κ2 gµν GµGν

]
. (157)

Secondly, the Faddeev–Popov ghosts are also vectors. The structure of their action is
defined by the variation in the gauge fixing term given by Equation (155):
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δGµ = Lζ

[
gαβ Γµ

αβ

]
= □ζµ − 2 Γµ

αβ ∇
αζβ + Rµ

νζν (158)

with Rµν begin the Ricci tensor. Consequently, the ghost action reads:

Aghost =
∫

d4x
√
−g
[
−gαβgµν∇αcµ∇βcν − 2 Γµ

αβ cµ ∇αcβ + Rµν cµ cν
]
. (159)

In all other respects, the handling of the Faddeev–Popov ghosts is unchanged.
The standard perturbative expansion generates the interaction rules. The structure of

graviton interactions is given by action (157):

AH+gf =
∫

d4x
√
−g

[
−

2
κ2 R +

ϵ

2 κ2 gµν gαβ gρσ Γµ
αβ Γν

ρσ

]
=

=
∫

d4x
√
−g gµνgαβgρσ

(
−

2
κ2

)[
ΓαµρΓσνβ − ΓαµνΓρβσ −

ϵ

4
ΓµαβΓνρσ

]
.

(160)

It admits the following perturbative expansion:

Theorem 34.

AH+gf =
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4 δ
(

p1 + p2 + ∑ ki

)
hρ1σ1(k1) · · · hρnσn(kn)

× (2 κn)
(√

−g gµνgαβgρσ
)ρ1σ1···ρnσn

(p1)λ1(p2)λ2 hµ1ν1(p1)hµ2ν2(p2)

×
[(

Γαµρ

)λ1µ1ν1
(
Γσνβ

)λ2µ2ν2 −
(
Γαµν

)λ1µ1ν1
(
Γρβσ

)λ2µ2ν2 −
ϵ

4
(
Γµαβ

)λ1µ1ν1
(
Γνρσ

)λ2µ2ν2

]
.

(161)

The following formula gives the complete expression for the graviton vertex:

µ3ν3, p3

µnνn, pn

µ1ν1, p1

µ2ν2, p2

= i 2 κn−2
(√

−g gµνgαβgρσ
)µ3ν3···µnνn

(p1)λ1(p2)λ2

×
[(

Γαµρ

)λ1µ1ν1
(
Γσνβ

)λ2µ2ν2 −
(
Γαµν

)λ1µ1ν1
(
Γρβσ

)λ2µ2ν2 −
ϵ

4
(
Γµαβ

)λ1µ1ν1
(
Γνρσ

)λ2µ2ν2

]
+ permutations.

(162)

The sum goes over all possible permutations of graviton parameters {µi νi pi}.
The ghost action is treated similarly.

Aghost =
∫

d4x
√
−g
[
−gαβgµν∇αcµ∇βcν − 2 Γµ

αβ cµ ∇αcβ + Rµν cµ cν
]

=
∫

d4x
√
−g
[
−gµνgαβ ∂αcµ ∂βcν

]
+
∫

d4x
√
−g gµαgνβgρσ

[
Γβρα∂σcµcν − Γαρβ cµ∂σcν + ∂ρΓσαβ cµ cν − ∂αΓρβσcµcν

]
+
∫

d4x
√
−g gµαgνβgρσgλτ

[
ΓραλΓσβτ − ΓραβΓσλτ + ΓαρλΓβστ

]
cµcν.

(163)

It has the following perturbative expansion:
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Theorem 35.

Aghost =
∞

∑
n=0

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn) cµ(p1)cν(p2)

× κn
(√

−g gµνgαβ
)ρ1σ1···ρnσn

(p1)α(p2)β

+
∞

∑
n=1

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn) cµ(p1)cν(p2)

× κn(−1)
(√

−g gµαgνβgρσ
)ρ2σ2···ρnσn

(k1)λ

[
(p1)σ

(
Γβρα

)λρ1σ1 − (p2)σ

(
Γαρβ

)λρ1σ1

+(k1)ρ

(
Γσαβ

)λρ1σ1 − (k1)α

(
Γρβσ

)λρ1σ1
]

+
∞

∑
n=2

∫ d4 p1

(2π)4

d4 p2

(2π)4

n

∏
i=1

d4ki

(2π)4 (2π)4δ
(

p1 + p2 + ∑ ki
)
hρ1σ1(k1) · · · hρnσn(kn) cµ(p1)cν(p2)

× κn(−1)
(√

−g gµαgνβgρσgλτ
)ρ3σ3···ρnσn

(k1)λ1(k2)λ2

[(
Γραλ

)λ1ρ1σ1
(
Γσβτ

)λ2ρ2σ2

−
(
Γραβ

)λ1ρ1σ1(Γσλτ)
λ2ρ2σ2 +

(
Γαρλ

)λ1ρ1σ1
(
Γβστ

)λ2ρ2σ2
]
.

(164)

The complete expression describing graviton-ghost vertices reads:

ρ1σ1, k1

ρnσn, kn

ν, p2

µ, p1

= i κn

[(√
−g gµνgαβ

)ρ1σ1···ρnσn
(p1)α(p2)β

+

{
−
(√

−g gµαgνβgρσ
)ρ2σ2···ρnσn

(k1)λ

[
(p1)σ(Γβρα)

λρ1σ1 − (p2)σ(Γαρβ)
λρ1σ1

+ (k1)ρ(Γσαβ)
λρ1σ1 − (k1)α(Γρβσ)

λρ1σ1

]
+ permutations

}

+

{
−
(√

−g gµαgνβgρσgλτ
)ρ3σ3···ρnσn

(k1)λ1(k2)λ2

[(
Γραλ

)λ1ρ1σ1
(
Γσβτ

)λ2ρ2σ2

−
(
Γραβ

)λ1ρ1σ1(Γσλτ)
λ2ρ2σ2 +

(
Γαρλ

)λ1ρ1σ1
(
Γβστ

)λ2ρ2σ2
]
+ permutations

}]
.

(165)

The standard procedure derives propagators for ghosts and gravitons. The following
expression gives the ghost propagator.

µ ν = i
ηµν

k2 . (166)

The graviton propagator contains the gauge fixing parameter ϵ. The propagator
corresponds to the part of the microscopic action quadratic in perturbations:

∫
d4x
√
−g

[
−

2
κ2 R +

ϵ

2 κ2 GµGµ

]
=
∫

d4x

[
−

1
2

hµνDµναβ(ϵ)□hαβ

]
+O

(
κ1
)

. (167)

The Nieuwenhuizen operators provide a good mean to express the D operator in the
momentum representation [38,88]
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Dµναβ(ϵ) =
3ϵ − 8

4
P0

µναβ +
ϵ

2
P1

µναβ + P2
µναβ −

ϵ

4
P0

µναβ −
ϵ

4
P

0
µναβ . (168)

Operators P0 and P2 are gauge invariant, making the operator non-invertible unless
ϵ ̸= 0. The inverse operator reads:

D−1
µναβ(ϵ) = −

1
2

P0
µναβ +

2
ϵ

P1
µναβ + P2

µναβ −
3 ϵ − 8

2 ϵ
P0

µναβ −
1
2

P
0
µναβ. (169)

The given formula expresses the graviton propagator in any arbitrary gauge.

µν αβ = i
D−1

µναβ(ϵ)

k2 . (170)

We can discuss the general case, but using ϵ = 2 in practical applications is easier.
With this value, the operator D−1 becomes much simpler in form:

D−1
µναβ(2) =

1
2
[
ηµαηνβ + ηµβηνα − ηµνηαβ

]
. (171)

5. FeynGrav

FeynGrav is a package for Wolfram Mathematica extending FeynCalc functionality[27,28].
FeynCalc provides tools to study both tree and loop-level amplitudes. At the same time,
there are many packages further extending its functionality [87,89,90], which makes it
a platform for different computational tools of high energy physics. Because of these
reasons, FeynCalc was chosen to implement the perturbative quantum gravity framework
described above.

This subsection is split into two parts to discuss two different aspects of FeynGrav.
The first subsection discussed the general features of the package and its published versions.
The second subsection discussed the commands implemented in the latest available version.

5.1. Implementation

We shall begin with a discussion of the existing versions of FeynGrav. There are a
few published versions of the package, each extending its functionality and improving
performance. The package is constantly developing, and the latest version is publicly
available at [91]. We shall briefly discuss the features of all these versions for completeness.

The original version 1.0 of FeynGrav was published in [24]. This version only consid-
ered matter with massless spin 0, 1, 2, and 1/2, and did not include the SU(N) Yang–Mills
model. The recursive relations discussed in this paper were yet to be discovered during the
development of this version. Consequently, the package used a less effective algorithm to
generate all perturbative expansions. The package’s applicability was also limited, since
the gauge-fixing algorithm was not considered in detail.

The second version published in [25] presented a significant update. This version
added interaction rules for massive matter with spins 0, 1, 1/2, and implemented rules
for the SU(N) Yang–Mills. The gauge-fixing procedure was fully addressed, so the imple-
mented interaction rules became applicable at any perturbation theory level. However,
the recursive algorithm still needed to be discovered, so the package used the same algo-
rithm for perturbative expansions.

The recursive relations were discovered after the publication [25], and were imple-
mented in the latest FeynGrav version 2.1. The discovery of the recursive algorithm allowed
expressions for the interaction rules to be generated more efficiently, so the correspond-
ing libraries were updated. This version also implemented the polarisation tensors for
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gravity, discussed below. Lastly, minor misprints were corrected, and the sample file was
significantly updated and improved.

The interaction rules for the Horndeski theory still need to be implemented in any
existing version of FeynGrav. Because of their shared length and complexity, their imple-
mentation takes time and is expected to be published soon.

Let us discuss the package structure that remains similar in all the versions. The pack-
age addressed a few different challenges, consisting of a few semi-independent modules.
The main computational challenge is the generation of the perturbative expansion terms.
The package’s core addresses this problem, but operates separately from the main file.
In turn, the main file of the package only imports the interaction rules in the FeynCalc
environment, allowing a user to operate with them.

The above recursive relations are implemented in a series of sub-packages in a separate
folder. Each package provides a tool to calculate a separate family of tensors, and can be
used independently within FeynCalc. As discussed above, it is essential to introduce tensors
with particular symmetry for the Lorentz indices. With this symmetry imposed, a typical
tensor with 2n pair of Lorentz indices will have approximately 2n n! terms. Because of this
large number of terms, a computation of an interaction rule involving many particles can
take significant time. To soften this issue, the interaction rules are calculated separately.

The interaction rules discussed above are implemented in a single separate sub-
package. Because such rules only require information about perturbative expansions, this
sub-package depends on sub-packages describing perturbative expansions. It shall be run
independently from FeynGrav to generate libraries containing the final expressions for the
interaction rules.

The main package file is directly independent of these sub-packages, since it only
imports the existing libraries and places them in the FeynCalc environment. Because of
this package structure, the final user does not have to perform computationally heavy cal-
culations of the interaction rules, significantly improving the package performance. When
FeynGrav imports the rules, FeynCalc performs index contractions and other operations
that constrain FeynGrav’s performance.

5.2. Interaction Rules

The scalar field kinetic and potential energy interaction rules are implemented with
commands “GravitonScalarVertex” and “GravitonScalarPotentialVertex”. The first com-
mand takes four arguments: the array of graviton indices, two momenta of scalar fields,
and the scalar field mass. The second command takes two arguments: the array of graviton
indices and the scalar field coupling coupling. FeynGrav also contains a command realising
the scalar field propagator. The command is “ScalarPropagator”, and takes two arguments:
the scalar field momentum and mass. Table 1 presents examples of these commands’ usage.

Interaction rules for the Proca field are implemented with a single command “Gravi-
tonMassiveVectorVertex”. The name is chosen for the sake of naming consistency. The com-
mand takes six arguments: the array of graviton indices, the Lorentz index and momentum
of the first vector particle, the Lorentz index and momentum of the second vector particle,
and the Proca field mass. The package also has the Proca propagator implementation.
The command “ProcaPropagator” implements the propagator, and takes four arguments:
two Lorentz indices, and the momentum and mass of the Proca field. Table 1 presents
examples of these commands’ usage.

The interaction rules for a single massless vector field are implemented with two
commands, “GravitonVectorVertex” and “GravitonVectorGhostVertex”. The command
“GravitonVectorVertex” takes five arguments: the array of Lorentz indices and momenta
of gravitons, the Lorentz index and momentum of the first vector particle, the Lorentz
index and momentum of the second particle. The command “GravitonVectorGhostVertex”
takes three arguments: the array of Lorentz indices and momenta of gravitons, and the
momenta of the Faddeev–Popov ghost. Table 1 presents examples of these commands. Let
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us also note that FeynCalc already provides the propagators required to treat a massless
scalar field.

Table 1. Examples of interaction rules for the scalar, Proca, and massless vector fields.

Diagram Command

p, m ScalarPropagator[p, m]

ρ1σ1

p1, m

p2, m

GravitonScalarVertex[{ρ1, σ1}, p1, p2, m]

ρ1σ1

ρ2σ2

p1, m

p2

GravitonScalarVertex[{ρ1, σ1, ρ2, σ2}, p1, p2, m]

ρ1σ1 λ3 GravitonScalarPotentialVertex[{ρ1, σ1}, λ3]

ρ1σ1

ρ2σ2

λ4
GravitonScalarPotentialVertex[{ρ1, σ1, ρ2, σ2}, λ4]

µ ν p, m ProcaPropagator[p, m]

ρ1σ1

p1, λ1, m

p2, λ2, m

GravitonMassiveVectorVertex[{ρ1, σ1}, λ1, p1, λ2, p2, m]

ρ1σ1, k1

λ1, p1

λ2, p2

GravitonVectorVertex[{ρ1, σ1, k1}, λ1, p1, λ2, p2]

ρ1σ1, k1

p1

p2

GravitonVectorGhostVertex[{ρ1, σ1, k1}, p1, p2]

The interaction rules for Dirac fermions are implemented with a single command
“GravitonFermionVertex”. The command takes four arguments: the array of graviton
Lorentz indices, the momentum of the in-going fermion line, the momentum of the out-
going fermion line, and the fermion mass. The fermion propagator has already been
implemented in FeynCalc. Table 2 provides an example of this interaction rule.
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The SU(N) Yang–Mills model implementation is sophisticated and involves sev-
eral commands. The command “GravitonGluonVertex implements a coupling of a few
gluons to gravity. The command’s first argument is an array of Lorentz indices and mo-
menta. The other arguments describe gluons Lorentz indices, momenta, and SU(N) indices.
The command can describe a coupling of two, three, and four gluons to gravity. Gravita-
tional coupling of quarks kinetic energy matches the expression for the coupling of a Dirac
fermion. The coupling of the quark–gluon interaction energy is described by the “Gravi-
tonQuarkGluonVertex” command. It takes only three arguments: the array of graviton
Lorentz indices, the quark–gluon vertex Lorentz index, and the colour index. Lastly, two
commands are responsible for gravitational coupling to the Faddeev–Popov ghosts of the
Yang–Mills theory. The command “GravitonYMGhostVertex” describes the coupling to
the ghost itself. The command takes five arguments: the array of graviton Lorentz indices,
the momentum and colour index of the first ghost, and the momentum and colour index of
the second ghost. The command “GravitonGluonGhostVertex” corresponds to the gravi-
tational coupling of a vertex describing the interaction between two ghosts and one gluon.
The command’s arguments are the array of graviton Lorentz indices, the Lorentz indices,
momenta, and colour indices of other particles. Table 2 lists examples of these commands.

Table 2. Examples of interaction rules for the scalar, Proca, and massless vector fields.

Diagram Command

ρ1σ1

p1, m

p2,m,m

GravitonFermionVertex[{ρ1, σ1}, p1, p2, m]

ρ1σ1, k1

λ1, p1, a1

λ2, p2, a2

GravitonGluonVertex[{ρ1, σ1, k1}, p1, λ1, a1, p2, λ2, a2]

ρ1σ1, k1

λ1, p1, a1

λ2, p2, a2

λ3, p3, a3

GravitonGluonVertex[{ρ1, σ1, k1}, p1, λ1, a1, p2, λ2, a2, λ3, p3, a3]

ρ1σ1, k1

λ1, p1, a1

λ2, p2, a2

λ3, p3, a3

λ4, p4, a4

GravitonGluonVertex[{ρ1, σ1, k1}, p1, λ1, a1, p2, λ2, a2, λ3, p3, a3, λ4, p4, a4]

ρ1σ1, k1 λ, a GravitonQuarkGluonVertex[{ρ1, σ1}, λ, a]

ρ1σ1, k1

p1, a1

p2, a2

GravitonYMGhostVertex[{ρ1, σ1}, p1, a1, p2, a2]
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Table 2. Cont.

Diagram Command

ρ1σ1, k1

p2, a2

λ1, p1, a1

p3, a3

GravitonGluonGhostVertex[{ρ1, σ1}, p1, λ1, a1, p2, λ2, a2, p3, λ3, a3]

Lastly, the following commands describe the gravitational sector. The command
“GravitonPropagator” implements the graviton propagator with “FeynAmpDenominator”
functions from FeynCalc. This command shall be used for loop calculations. The command
“GravitonPropagatorAlternative” implements the graviton propagator with the simple
scalar products in the denominators. This command shall only be used in three-level
calculations. Two more commands, “GravitonPropagatorTop” and “GravitonPropaga-
torTopFAD”, generate the numerator of the graviton propagator alone. The first one uses
simple scalar products, while the second one uses “FeynAmpDenominator”. All these
commands take five arguments: four Lorentz indices and the momenta of a graviton.
The command “GravitonVertex” corresponds to the n-graviton vertex and takes 3n argu-
ments: two Lorentz indices and the momentum of each graviton. The Faddeev–Popov
ghosts are vectors, so their propagator receives an additional Minkowski metric in the
numerator. One can use the command for the Yang–Mills ghost propagator and manually
multiply it on the flat metric. Because of this, no new command corresponding to this
propagator is present in FeynGrav. Lastly, the rules for graviton coupling to the correspond-
ing Faddeev–Popov ghosts are implemented with “GravitonGhostVertex”. It takes five
arguments: the array of Lorentz indices and momenta of the gravitons, and Lorenz indices
and momenta of ghosts. Table 3 presents these rules.

Table 3. Examples of interaction rules for gravitons.

Diagram Command

µν αβ p GravitonPropagator[µ, ν, α, β, p]

ρ1, σ1, p1

ρ2, σ2, p2

ρ3, σ3, p3

GravitonVertex[ρ1, σ1, p1, ρ2, σ2, p2, ρ3, σ3, p3]

ρ1, σ1, p1

ρ2, σ2, p2

ρ3, σ3, p3

ρ4, σ4, p4

GravitonVertex[ρ1, σ1, p1, ρ2, σ2, p2, ρ3, σ3, p3, ρ4, σ4, p4]

ρ1, σ1, k1

λ1, p1

λ2, p2

GravitonGhostVertex[{ρ1, σ1, k1}, λ1, p1, λ2, p2]
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FeynGrav also implements a few additional tools. Firstly, the package provides a
realisation of the standard gauge projectors:

θµν(p) = ηµν −
pµ pν

p2 , θµν =
pµ pν

p2 . (172)

They are realised with commands “GaugeProjector”, “GaugeProjectorBar”, “Gauge-
ProjectorFAD”, and “GaugeProjectorBarFAD”. The first two commands realise these
projectors with the simple scalar products, while the former two commands use “FeynAm-
pDenominator”.

Secondly, the package provides a realisation of the Nieuwenhuizen operators [38,88,92].

These operators P0
µναβ(p), P1

µναβ(p), P2
µναβ(p), P0

µναβ(p), P0
µναβ(p) generalise the standard

projectors for the spin-2 systems. Their features were discussed in detail in a previous
publication [24]. Commands “NieuwenhuizenOperator0”, “NieuwenhuizenOperator1”,
“NieuwenhuizenOperator2”, “NieuwenhuizenOperator0Bar”, and “NieuwenhuizenOp-
erator0BarBar” implement these operators using only the simple scalar product. The set of
command “NieuwenhuizenOperator0FAD”, · · · , “NieuwenhuizenOperator0BarBarFAD”
implements them with “FeynAmpDenominator”.

Lastly, the package implements the polarisation tensors for gravitons. Following
the standard procedure, the polarisation tensor ϵ±µν for gravitons is defined through the
polarisation vector ϵ±µ for the standard vector field:

ϵ±µν = ϵ±µ ϵ±ν . (173)

The command “PolarizationTensor” implements this definition. The command takes
three arguments: two Lorentz indices and one four-momentum. The command directly
multiplies polarisation vectors implemented in FeynCalc. Due to the definitions used in
FeynCalc, the implemented polarisation tensor is neither traceless nor transverse—the
command “SetPolarizationTensor” the tensors traceless and transverse.

5.3. Examples

Several publications have used FeynGrav [24,25,32,33,35]. These publications discuss
the problems in detail, so we will only provide a brief discussion. We also focus on two
vivid examples.

The first illustrative example of FeynGrav usage is the calculation of 2 → 2 graviton
scattering cross sections at the leading order of perturbation theory. The on-shell cross
section was calculated long ago without using any contemporary computational tools [10],
which makes such calculations notoriously complicated. To be exact, in the original arti-
cle [10], the author operated with expressions symmetries in a certain way to make the
calculation more compact. Nonetheless, even the basic description of the calculations takes
a few pages in the original publication.

FeynGrav extremely simplifies such calculations. Firstly, one shall fix all the momenta
on the mass shell and define all relations for scalar products of polarisation tensors and
momenta, since FeynCalc does not do this automatically. Secondly, one calculates the
matrix element for the s-channel amplitude:
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µ1ν1, p1

µ3ν3, p3

µ2ν2, p2

µ4ν4, p4

= PolarizationTensor[µ1, ν1, p1]PolarizationTensor[µ2, ν2, p2]

× ComplexConjugate[PolarizationTensor[µ3, ν3, p3]]ComplexConjugate[PolarizationTensor[µ4, ν4, p4]]

× GravitonVertex[µ1, ν1, p1, µ2, ν2, p2, α1, β1, p1+p2]GravitonVertex[α2, β2, p1+p2, µ3, ν3, p3, µ4, ν4, p4]

× GravitonPropagatorAlternative[α1, β1, α2, β2, p1+p2].

(174)

An average computer not designed for intensive computational tasks can complete
this element in less than five minutes. One obtains the expressions for t and u-channels
similarly. The following expression gives the contact four-graviton interaction:

µ1ν1, p1

µ3ν3, p3

µ2ν2, p2

µ4ν4, p4

= PolarizationTensor[µ1, ν1, p1]PolarizationTensor[µ2, ν2, p2]

× ComplexConjugate[PolarizationTensor[µ3, ν3, p3]]ComplexConjugate[PolarizationTensor[µ4, ν4, p4]]

× GravitonVertex[µ1, ν1, p1, µ2, ν2, p2, µ3, ν3, p3, µ4, ν4, p4].

(175)

This expression takes less than one minute to be computed.
Lastly, one constructs the complete scattering amplitude accounting for all contribu-

tions. It recovers the well-known expressions for chiral amplitudes in d = 4:

M(+ +++) = i
κ2

4
s4

s t u
, M(+−+−) = i

κ2

4
u4

s t u
, M(+−−+) = i

κ2

4
t4

s t u
, (176)

M(+ +−−) = M(+ ++−) = 0.

This example vividly shows that such complicated yet essential calculations are signif-
icant with FeynGrav. Moreover, paper [24] presents an explicit expression for the scattering
amplitude expressed in terms of graviton chiralities.

The second example is the calculation of the one-loop graviton-scalar vertex operator.
Since a scalar field interacts with gravity, the interaction vertex receives correction at the
loop level. The one-loop vertex operator describes these corrections:

p1 p2

µν, k

= i Γµν(p1, p2, k, m) = + + + + + . (177)

In contrast to the previous example, this expression was only calculated with FeynGrav
because it involved hundreds of terms. The expression itself is too long to be presented in
printed form. It is published in an open-access repository [93]. The obtained expression
allows one to study the low energy limit of a gravitational scattering of two scalars [33]:

dσ

dΩ

∣∣∣∣∣
low energy

=
1
4
(GN µ m1 m2)

2 1

p4 sin4 θ
2

[
1 + 32 π2 GN p(m1 + m2) sin

θ

2
+O

(
G2

N

)]
. (178)
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In this expression for the differential cross section, p is the centre of mass scattering
momentum, θ is the scattering angle, m1 and m2 are masses of the scattered particles, and µ
is the reduced mass.

6. Summary and Further Development

This paper reviews a recently developed theoretical framework for efficient compu-
tation of Feynman rules for perturbative quantum gravity. The perturbative approach
to quantum gravity allows one to study quantum gravitational effects within the stan-
dard quantum field theory framework. The resulting theory is effective, so it cannot be
indefinitely extended in the ultraviolet region and treated similarly to other renormalis-
able theories. Due to its effective nature, the theory admits infinite interaction terms, all
parametrised with a single gravitational coupling. The discussed theoretical framework pro-
vides a universal way to compute such interaction rules at any order of perturbation theory.

Perturbative quantum gravity admits the factorisation theorem applicable to any
gravity model within Riemann geometry. The theorem states that the action splits into
two parts in a broad class of gravity models. One part does not involve derivatives, and
is constituted of three independent factors that are infinite series. The other part involves
derivatives, but it is a finite expression that can be calculated explicitly.

Certain recursive relations exist for the factors generating infinite series. They pro-
vide a way to efficiently calculate their contribution at any order of perturbation theory.
However, the number of terms in each contribution grows faster than the factorial number
of particles involved in the interaction. This feature makes manual calculations of such
factors challenging.

FeynGrav provides a tool to operate with the theory at the practical level. It imple-
ments the discussed theoretical framework within FeynCalc, which possesses a broad
spectrum of tools to operate with expressions within the quantum field theory.

The latest version implements the interaction rules for massless and massive scalars,
for scalar field potential interaction, for massive and massless Dirac fermions, for Proca field,
for massless vector field, for SU(N) Yang–Mills model, and general relativity. The package
also implements auxiliary tools such as graviton polarisation tensors, gauge projectors,
and their generalisation for the spin-2 case.

The package is rapidly developing, and is expected to receive a new update soon.
The update will be devoted to the Horndeski gravity, the most general scalar–tensor gravity
admitting second-order field equations and the minimal coupling to the matter degrees
of freedom.

Further development of the package aims in two directions: to improve the perfor-
mance and to account for other relevant gravity models. The discovery of the recursive
algorithm discussed in this paper significantly increased performance. At the same time,
the same relations directly indicate the limits of this existing approach. The number of
terms in an n particle interaction vertex grows faster than n!, which poses an additional
computation challenge. Although such behaviour is expected for an effective theory con-
sidered perturbatively, we will strive to improve the computational algorithm even further
to push the perturbation theory to its limits.

Consideration of more sophisticated yet relevant models of gravity is another chal-
lenge. The Horndeski gravity, the most studied extension of general relativity, is studied
in this paper, and its implementation is to enter the next version of FeynGrav. There
are few options for other models of gravity that would be relevant to the contemporary
research field. The most straightforward generalisation would be massive gravity, but the
contemporary observational data imposes strong constraints on the graviton mass. An-
other possible way to extend FeynGrav is to implement Beyond Horndeski theories, which
introduce non-minimal couplings between the scalar field and matter. Lastly, it may be
fruitful to consider some supersymmetric expressions and examine whether they can be
treated similarly.
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In conclusion, the theoretical framework discussed in the paper and the FeynGrav
package provide a valuable and efficient tool to study perturbative quantum gravity,
with further development aimed at improving performance and incorporating other rele-
vant gravity models.
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