Fixed Point and Convergence Results for Contractive-Type Self-Mappings of Metric Spaces with Graphs
Abstract
:1. Introduction
2. The First Main Result
3. The Second Main Result
4. Set-Valued Rakotch Contractions
5. Set-Valued Strict Contractions
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 23. [Google Scholar] [CrossRef]
- Djafari-Rouhani, B.; Kazmi, K.R.; Moradi, S.; Ali, R.; Khan, S.A. Solving the split equality hierarchical fixed point problem. Fixed Point Theory 2022, 23, 351–369. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. New Ser. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Karapinar, E.; Agarwal, R.P.; Yesilkaya, S.S. Perov type mappings with a contractive iterate. J. Nonlinear Convex Anal. 2021, 22, 2531–2541. [Google Scholar]
- Karapinar, E.; Mitrovic, Z.; Ozturk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Khan, A.A.; Li, J.; Reich, S. Generalized projections on general Banach spaces. J. Nonlinear Convex Anal. 2023, 24, 1079–1112. [Google Scholar]
- Kozlowski, W.M. An Introduction to Fixed Point Theory in Modular Function Spaces; Springer: Cham, Switzerland, 2014; pp. 159–222. [Google Scholar]
- Petruşel, A.; Petruşel, G.; Yao, J.-C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petrusel, A.; Petruşel, G.; Yao, J.-C. Graph contractions in vector-valued metric spaces and applications. Optimization 2021, 70, 763–775. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Suparatulatorn, R.; Cholamjiak, W.; Suantai, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 2018, 77, 479–490. [Google Scholar] [CrossRef]
- Aleomraninejad, S.M.A.; Rezapour, S.; Shahzad, N. Some fixed point results on a metric space with a graph. Topol. Appl. 2012, 159, 659–663. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point of ϕ-contraction in metric spaces endowed with a graph. Ann. Univ. Craiova Ser. Mat. Inform. 2010, 37, 85–92. [Google Scholar]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Nicolae, A.; O’Regan, D.; Petruşel, A. Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph. Georgian Math. J. 2011, 18, 307–327. [Google Scholar] [CrossRef]
- Samei, M.E. Some fixed point results on intuitionistic fuzzy metric spaces with a graph. Sahand Commun. Math. Anal. 2019, 13, 141–152. [Google Scholar] [CrossRef]
- Suantai, S.; Donganont, M.; Cholamjiak, W. Hybrid methods for a countable family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. Mathematics 2019, 7, 936. [Google Scholar] [CrossRef]
- Suantai, S.; Kankam, K.; Cholamjiak, P.; Cholamjiak, W. A parallel monotone hybrid algorithm for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with a graph applicable in signal recovery. Comp. Appl. Math. 2021, 40, 145. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Suantai, S.; Cholamjiak, W. Hybrid methods for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. AKCE Int. J. Graphs Comb. 2017, 14, 101–111. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Contractive mappings on metric spaces with graphs. Mathematics 2021, 9, 2774. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Existence of a fixed point and stability results for contractive mappings on metric spaces with graphs. 2023; submitted. [Google Scholar]
- Gwóźdxzx-ukawska, G.; Jachymski, J. IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem. J. Math. Anal. Appl. 2009, 356, 453–463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Fixed Point and Convergence Results for Contractive-Type Self-Mappings of Metric Spaces with Graphs. Symmetry 2024, 16, 119. https://doi.org/10.3390/sym16010119
Zaslavski AJ. Fixed Point and Convergence Results for Contractive-Type Self-Mappings of Metric Spaces with Graphs. Symmetry. 2024; 16(1):119. https://doi.org/10.3390/sym16010119
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Fixed Point and Convergence Results for Contractive-Type Self-Mappings of Metric Spaces with Graphs" Symmetry 16, no. 1: 119. https://doi.org/10.3390/sym16010119
APA StyleZaslavski, A. J. (2024). Fixed Point and Convergence Results for Contractive-Type Self-Mappings of Metric Spaces with Graphs. Symmetry, 16(1), 119. https://doi.org/10.3390/sym16010119