Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Some Examples and Consequences
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C.E.M. Selected topics on Hermite-Hadamard inequalities and applications. In RGMIA Monographs; Victoria University: Melbourne, VIC, Australia, 2000. [Google Scholar]
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Pečarić, J.; Proschan, F.; Tong, Y. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press, Inc.: Cambridge, MA, USA, 1992. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. Res. Group Math. Inequalities Appl. Res. Rep. Coll. 2010, 13, 2. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kara, H. New version of fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 2021, 460. [Google Scholar] [CrossRef]
- Ozdemir, M.E.; Ardic, A.A. Some companions of Ostrowski type inequality for functions whose second derivatives are convex and concave with applications. Arab J. Math. Sci. 2015, 21, 53–66. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Treanţă, S.; Nonlaopon, K. Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions. AIMS Math. 2023, 8, 3303–3321. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T. Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1, h2)-Godunova-Levin functions. AIMS Math. 2022, 7, 19372–19387. [Google Scholar] [CrossRef]
- Afzal, W.; Nazeer, W.; Botmart, T.; Treanţă, S. Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation. AIMS Math. 2023, 8, 1696–1712. [Google Scholar] [CrossRef]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofal, T.A. Hermite–Hadamard type inequalities via generalized harmonic exponential convexity and applications. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar] [CrossRef]
- Chandola, A.; Agarwal, R.; Pandey, M.R. Some New Hermite–Hadamard, Hermite–Hadamard Fejer and Weighted Hardy Type Inequalities Involving (k-p) Riemann– Liouville Fractional Integral Operator. Appl. Math. Inf. Sci. 2022, 16, 287–297. [Google Scholar]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejr type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Stojiljković, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some Refinements of the Tensorial Inequalities in Hilbert Spaces. Symmetry 2023, 15, 925. [Google Scholar] [CrossRef]
- Dragomir, S.S. Refinements and Reverses of Tensorial Hermite–Hadamard Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces; ResearchGate: Berlin, Germany, 2022; ResearchGate Preprint. [Google Scholar]
- Dragomir, S.S. Inequalities for normal operators in Hilbert spaces. Appl. Anal. Discret. Math. 2007, 1, 92–110. [Google Scholar] [CrossRef]
- Dragomir, S.S. The Hermite-Hadamard type Inequalities for Operator Convex Functions. Appl. Math. Comput. 2011, 218, 766–772. [Google Scholar]
- Dragomir, S.S. An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces; Researchgate: Berlin, Germany, 2022. [Google Scholar]
- Stojiljkovic, V. Twice Differentiable Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Electron. J. Math. Anal. Appl. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Stojiljkovic, V. Twice Differentiable Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Eur. J. Pure Appl. Math. 2023, 16, 1421–1433. [Google Scholar] [CrossRef]
- Stojiljkovic, V.; Dragomir, S. Differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert spaces. Gulf J. Math. 2023, 15, 40–55. [Google Scholar] [CrossRef]
- Araki, H.; Hansen, F. Jensenís operator inequality for functions of several variables. Proc. Am. Math. Soc. 2000, 128, 20. [Google Scholar] [CrossRef]
- Koranyi, A. On some classes of analytic functions of several variables. Trans. Am. Math. Soc. 1961, 101, 520–554. [Google Scholar] [CrossRef]
- Guo, H. What Are Tensors Exactly? World Scientific: Singapore, 2021. [Google Scholar] [CrossRef]
- Dragomir, S.S. Tensorial Norm Inequalities for Taylor’s Expansions of Functions of Selfadjoint Operators in Hilbert Spaces; ResearchGate: Berlin, Germany, 2022. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojiljković, V.; Mirkov, N.; Radenović, S. Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces. Symmetry 2024, 16, 121. https://doi.org/10.3390/sym16010121
Stojiljković V, Mirkov N, Radenović S. Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces. Symmetry. 2024; 16(1):121. https://doi.org/10.3390/sym16010121
Chicago/Turabian StyleStojiljković, Vuk, Nikola Mirkov, and Stojan Radenović. 2024. "Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces" Symmetry 16, no. 1: 121. https://doi.org/10.3390/sym16010121
APA StyleStojiljković, V., Mirkov, N., & Radenović, S. (2024). Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces. Symmetry, 16(1), 121. https://doi.org/10.3390/sym16010121