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Abstract: We show how averages of exponential functions of path-dependent quantities, such as
those of Work Fluctuation Theorems, detect phase transitions in deterministic and stochastic systems.
State space truncation—the restriction of the observations to a subset of state space with prescribed
probability—is introduced to obtain that result. Two stochastic processes undergoing first-order
phase transitions are analyzed both analytically and numerically: a variant of the Ehrenfest urn
model and the 2D Ising model subject to a magnetic field. In the presence of phase transitions, we
prove that even minimal state space truncation makes averages of exponentials of path-dependent
variables sensibly deviate from full state space values. Specifically, in the case of discontinuous
phase transitions, this approach is strikingly effective in locating the transition value of the control
parameter. As this approach works even with variables different from those of fluctuation theorems, it
provides a new recipe to identify order parameters in the study of non-equilibrium phase transitions,
profiting from the often incomplete statistics that are available.

Keywords: truncated distributions; absolute irreversibility; Markov chains; Ising model

1. Introduction

Exponentials of microscopically expressed variables have been used for a long time
in statistical physics and molecular dynamics. Bennett’s formulae for the free energy [1],
Widom’s relation [2], and Zwanzig’s relation [3], are among them. More recently, they
have become popular in non-equilibrium statistical mechanics in the form of Fluctuation
Relations [4–6], which constitute a step in the direction of generalizing linear response
theory and the Fluctuation Dissipation Relation, and in the form of Work Fluctuation Theo-
rems (WFT) [7–10], which focus on equilibrium properties derived from non-equilibrium
processes. See [11,12] for comprehensive reviews and [13–25] for further discussion.

Exponential observables, such as e−βσ, with σ denoting a kind of dissipation functional
of the system trajectories, may provide useful insight into the properties of non-equilibrium
systems but need to be handled with care. At the very least, the amount of data for
accurate calculations may be prohibitively large because substantial contributions to the
statistical properties of such observables pertain to the (low probability) tails of the relevant
distributions, e.g., [7]. The problem is often enhanced by high energy barriers that keep
trajectories from accessing specific regions. The problem is well known. For instance, in
the context of free energy differences estimation [1,26], numerous ad hoc techniques and
procedures have been developed to deal with it [27–29]. In general, many challenges remain.
Moreover, the recent work [30], concerning the canonical ensemble of classical Hamiltonian
systems shows how exponential variables can be strongly affected by finite-size effects or
lack of ergodicity [30]. This must be considered, in particular, when dealing with small
systems because ensembles were originally conceived to treat specific observables of large
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systems that (a) are not affected by finite-size effects and (b) their time averages equal their
phase space averages.

In this paper, we will show how the above difficulties can actually be leveraged to
recover important information about the system behavior. This way, often unavoidable
hindrances in the investigation of the objects of modern interest may turn profitable under
some conditions.

We start by concisely recalling the theoretical background of WFT for Markov pro-
cesses [31–33] and the notion of absolute irreversibility [34–37]. Then, we introduce the
concepts of state space truncation, which can be interpreted both as a result of incomplete
information on the system of interest, or as the representation of a system with finitely many
degrees of freedom, interacting with only a portion of its environment. This is of interest,
for instance, when the system is subjected to rapid transformations, which is common in
present-day bio- and nano-technologies. We find that the corresponding ensemble averages
of e−βWd , Wd being the dissipated work, may detect phase transitions and locate them in
parameter space.

This is shown by analyzing a variant of the celebrated Ehrenfest urn model in detail,
derived from a deterministic 2D model of particle transport [38], and a classical 2D Ising
model with periodic boundary conditions in a magnetic field. For both, it is found that the
ensemble average of e−βWd as a function of the driving control parameter, computed over
trajectories starting in the lowest energy states (thus, with highest stationary probability),
manifests a discontinuity in the thermodynamic limit whenever the system undergoes a
first-order phase transition. A smooth dependence is instead found in the case of the Ising
model at supercritical temperatures.

This paper is structured as follows: in Section 2 we introduce the theoretical back-
ground and the ensemble averages over relevant subsets of the state space, along with the
notion of absolute irreversibility. Section 3 analyzes in detail the systems undergoing phase
transitions mentioned above, using a suitably amended version of the Jarzynski Equality.
Conclusions are drawn in Section 4.

2. Theory and Methods
2.1. Work and Free Energy for Markov Chains

Here, we concisely recall some basic concepts referring to discrete time Markov
chains [39,40]. A Markov chain is a finite set of random variables X = (Xi)

τ
i=0, with

τ ∈ N, taking values on a finite state space S, such that

P(Xi = xi|X0 = x0, ..., Xi−1 = xi−1) = P(Xi = xi|Xi−1 = xi−1)

for every 0 < i ≤ τ and every sequence x0, . . . , xi−1 for which P(X0 = x0, ..., Xi−1 = xi−1) > 0.
The elements of S correspond to the possible states of the system, with Xi representing the
state at time i. The transition matrix Q = (Qxy) has entries Qxy = P(Xi = y|Xi−1 = x),
for all x, y ∈ S and 0 < i ≤ τ, representing the transition probabilities from the state x
to the state y, which obey ∑y∈S Qxy = 1, for all x ∈ S. A specific realization of the se-
quence X0, . . . , Xτ is characterized by the probability of the path Pµ0(x) = µ0(x0)P(x|x0) =

µ0(x0)∏τ−1
i=0 Qxixi+1 , where µ0(x) = P(X0 = x) is an assigned discrete probability distribu-

tion and x = (x0, x1, ..., xτ) ∈ Sτ+1. We recall that a Markov chain admits a unique invariant
distribution µ on S, such that µQ = µ (where µ is conceived as a row vector) if it is irre-
ducible and its states are ergodic, i.e., they are aperiodic and persistent with a finite mean
recurrence time [41]. An explicit time dependence is sometimes introduced in the definition
of the transition matrices to mimic the effect of an external drive affecting the evolution
of the system. The action of the drive is expressed by the protocol λ(i) = λi, i = 0, 1, ..., τ.
This way, the Markov chain turns inhomogeneous, namely (Qi)xy = P(Xi = y|Xi−1 = x)
depends on time. One may then introduce the following path-dependent quantity, called
work [42]:
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W =
τ−1

∑
i=0

[Ei+1(xi)− Ei(xi)]

where the function Ei(xi) is related to a distribution µi(x) supported on S via:

µi(x) =
1
Zi

e−βEi(x) , x ∈ S , i = 0, 1, ..., τ , (1)

with Zi = ∑x∈S exp{−βEi(x)}, for some β > 0. Correspondingly, the quantity F = −β−1 log Z
is called the free energy of the system. Therefore, letting ∆F ≡ Fτ − F0 = −β−1 log Zτ/Z0 be
the free energy difference between the states xτ and x0 [31] and introducing Wd = W − ∆F
as the dissipated work, the Jarzynski Equality (JE) [7] attains the form:〈

e−βWd(x)
〉
= 1 , (2)

where, for a generic path-dependent observable A : Sτ+1 → R, the angular brackets
represent the following average with respect to the initial distribution:

⟨A(x)⟩ = ∑
x∈Sτ+1

A(x)µ0(x0)P(x|x0) .

For the quantity of interest in Equation (2), the following can be established:

e−βWd = e−β(W−∆F) =
Z0

Zτ
e−βW =

=
Z0

Zτ

e−βE1(x0)

e−βE0(x0)

e−βE2(x1)

e−βE1(x1)
...

e−βEτ(xτ−1)

e−βEτ−1(xτ−1)
. (3)

which, toghether with Equation (1), yields:

e−βWd =
Z0

Zτ

Z1µ1(x0)

Z0µ0(x0)

Z2µ2(x1)

Z1µ1(x1)
...

Zτµτ(xτ−1)

Zτ−1µτ−1(xτ−1)
=

µ1(x0)

µ0(x0)

µ2(x1)

µ1(x1)
...

µτ(xτ−1)

µτ−1(xτ−1)
(4)

This result applies as long as the distribution µi(x) is stationary for the process at
fixed λ = λi and is supported on S, for all i = 0, . . . , τ. For N-step transformations within
this framework, with N > 1, the validity of the JE was established in [31].

Let us now take one-step evolutions going from a state x0 to a state x1, which means
τ = 1 in Equation (4). Under the above assumption that the support of µ0 and µ1 is the
same S , we obtain the identity:〈

e−βWd(x)
〉
= ∑

x∈S

µ1(x)
µ0(x)

µ0(x) = ∑
x∈S

µ1(x) = 1 . (5)

Note that the sum in Equation (5) is performed over states x that belong to the state
space S of the Markov chain associated with the initial value λ(0) = λ0 of the protocol, and
that such states are eventually weighted with the distribution µ1(·), which is invariant for
the final value λ(1) = λ1 of the protocol. In other words, the result follows from sampling
the states x belonging to the initial state space S , with the probability corresponding to
final distribution µ1(·). It is important to remark that the last sum in Equation (5) would
not equal 1, in general, if the initial and final state spaces do not coincide. If they do,
Equation (5) shows that the JE holds regardless of the specific protocol. In particular, it
holds even if the stationary states undergo a phase transition between the initial and final
values of λ. In the next subsection, we will investigate variations of the ensemble averages
considered above, obtained by restricting the set of observed states to a subset of the whole
state space S .
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2.2. State Space Truncation and Absolute Irreversibility

We now show how state space truncation, which may be due to insufficient statistic or
to finite-size effects, affects the ensemble averages of the exponential of path-dependent
observables such as Wd. We define the important state space as the restriction of the state
space to the subset of states η ⊂ S that can be accessed with probability larger than a
certain threshold µ̄ [43]:

η = {x ∈ S | µ(x) ≥ µ̄} (6)

One consequently has

∑
x∈η

µ(x) = 1 − δ , where δ = ∑
x∈S\η

µ(x) (7)

and a probability measure with support on η is obtained from µ dividing it by 1 − δ:

µδ(x) =
µ(x)

∑x∈η µ(x)
=

µ(x)
1 − δ

(8)

Let us now study how the average in (5) is affected by this restriction of the state
space to the subset η. Following [43], we denote η0 = {x ∈ S | µ0(x) ≥ µ̄} and η1 = {x ∈
S | µ1(x) ≥ µ̄}, with the same cutoff probability µ̄ for both η0 and η1. Correspondingly,
we introduce the symbols δ0 ≡ 1 − ∑x∈η0

µ0(x) and δ1 ≡ 1 − ∑x∈η1
µ1(x). Next, we call

I = η0
⋂

η1, so that the sets η0 = I ⋃(η0\I) and η1 = I ⋃(η1\I) are conveniently written
as the union of disjoint subsets. This way, we can write〈

e−βWd(x)
〉

η0
= ∑

x∈η0

µ1(x)
µ0(x)

µ0,δ0(x) =
1

1 − δ0
∑

x∈η0

µ1(x) . (9)

A careful rewriting of Equation (9) yields

〈
e−βWd(x)

〉
η0

=
1 − δ1

1 − δ0
+

1
1 − δ0

 ∑
x∈η0\I

µ1(x)− ∑
x∈η1\I

µ1(x)

 , (10)

where we used the identity I = η1\(η1\I). The second term in (10) vanishes, yielding
⟨exp (−βWd)⟩η0 = 1, even in the presence of a reduction in the state space, if µ0 and µ1
coincide, so that η0 = η1 and δ0 = δ1. The latter equality does not hold, in general, when
µ0 ̸= µ1. Deviations from unity are small, as long as µ0 and µ1 differ little from one another.
This is the case, for instance, when the initial and the final stationary states, corresponding
to the initial and final values of the protocol, fall within the same macroscopic phase, as
will be evidenced in the next section.

Two different cases are worth investigating when µ0 ̸= µ1. Consider first the case with
η1 ⊆ η0, which implies I = η1, η1\I = ∅ and η0\I = η0\η1. Then, Equation (10) yields:

〈
e−βWd(x)

〉
η0

=
1 − δ1

1 − δ0
+

1
1 − δ0

 ∑
x∈η0\η1

µ1(x)

 =
1 − (1 − A)δ1

1 − δ0
(11)

where A = ∑x∈η0\η1
µ1(x)/δ1 obeys A ∈ [0, 1]. It appears that for A close to 1, the value〈

e−βWd
〉

η0
can exceed 1, depending on the values of µ0(x) and µ1(x), with x ∈ η0. For

simplicity, we illustrate this fact with hypothetical Gaussian distributions with standard
deviations σ0 and σ1, centered at x = x̄, for which analytical results are readily obtained
(Figure 1). While such Gaussians are not directly related to our finite state Markov chains,
they may arise as limit cases of finite state processes, which will lead to analogous results.
In the case of Gaussians, the state space is S = R, and the initial truncated space we
consider is one interval, η0 = [x̄ − ∆, x̄ + ∆], of width |η0| = 2∆. The top right panel of the
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figure shows that, for different values of µ̄ (which is the same for both the initial and the
final distributions, as generally assumed throughout this work), values of σ1/σ0 < 1 yield〈

e−βWd
〉

η0
> 1.

Another scenario concerns distributions µ0 and µ1 for which η1 ̸= η0 and I = ∅. In
this case, the following bound is found:

〈
e−βWd(x)

〉
η0

=
1 − δ1

1 − δ0
+

1
1 − δ0

(
∑

x∈η0

µ1(x)− ∑
x∈η1

µ1(x)

)
=

1
1 − δ0

∑
x∈η0

µ1(x) < 1 (12)

The inequality follows from the fact that µ1 < µ̄ on η0, because I = ∅, hence,

∑
x∈η0

µ1(x) < |η0|µ̄ ≤ ∑
x∈η0

µ0(x) = 1 − δ0

where |η0| now represents the cardinality of η0. It is useful to comment on the behavior
of the quantity ⟨e−βWd⟩η0 as a function of |η0|, whose value can be tuned by varying
the cutoff probability µ̄. For simplicity, we refer again to Gaussian distributions, taking
η0 = [x̄ − ∆, x̄ + ∆], and µ̄ and ∆ in a range that allows I = ∅, so that Equation (12) applies.
In the bottom-left panel of Figure 1, the distributions µ0 and µ1 are Gaussian densities
centered at x̄1 and x̄1 ̸= x̄0, with standard deviations σ0 and σ1, respectively. The bottom
right panel of Figure 1 shows that, for values of ∆ guaranteeing I = ∅, a decrease of ∆
leads to a decrease of ⟨e−βWd⟩η0 to values substantially smaller than 1.

Figure 1. Top row: Gaussian distributions centered at x̄0 = 4 (left panel): µ0(x) has standard deviation
σ0 = 0.5 (black), while the standard deviation of µ1(x) is σ1 = 0.3 (red) and 0.7 (blue). The horizontal
dashed line denotes the value µ̄, which determines η0 = [x̄0 − ∆, x̄0 + ∆]. (right panel): behavior of
⟨e−βWd ⟩η0 as a function of σ1/σ0 for different values of ∆, computed using Equation (12). Bottom row,
(left panel): µ0(x) is a Gaussian centered at x̄0 = 3 with standard deviation σ0 = 0.5 (black curve),
while µ1(x) is a Gaussian function centered at x̄1 = 5 with standard deviations σ1 = 0.3 (blue), 0.5
(green), 0.7 (red). (right panel): graph of ⟨e−βWd ⟩η0 as a function of ∆/(x̄0 − x̄1) for different values
of σ1, computed using Equation (12).
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One possible mechanism leading to a reduction in the available state space is known as
absolute irreversibility [34], which is also investigated within the realm of Ising models [43].
Essentially, absolute irreversibility occurs if the probability of a certain “forward” path
in the state space is zero, whereas the probability of the corresponding “reverse” path
(tracing back in opposite order all the states visited along the forward bath) is non-zero.
This phenomenon is experimentally realized when an external field keeps the system first
trapped inside a sub-region of the state space, and then the constraint is released and the
system can explore the whole state space. This is also the case of, e.g., the free expansion
of a gas, in which particles are initially confined by a wall inside a fraction of the volume
of the box and then, after the swift removal of the wall, they can eventually fill up the
entire volume. We denote by µ1(x) and µ0(x) the probability distributions describing the
final and initial states, respectively, which are supported on S1 and S0 ⊂ S1. In such cases,
Equation (5) yields 〈

e−βWd(x)
〉

= ∑
x∈S0

µ1(x) < 1 . (13)

The key aspect of these processes—which encodes much of the physics of the
model—is that the state space in the initial state is intrinsically smaller than that in the
final state. At times, absolute irreversibility and the state space truncation appear to be
interwoven. In Section 3.1 we shall discuss a model in which the two phenomena in fact
mingle, while I = ∅. In this case, one finds that〈

e−βWd(x)
〉

η0
<
〈

e−βWd(x)
〉
< 1 , (14)

where the first inequality holds provided that

∑
x∈S0\η0

µ0(x) ∑
x∈η0

µ1(x) < ∑
x∈η0

µ0(x) ∑
x∈S0\η0

µ1(x)

Note, indeed, that the latter inequality can be rewritten as

0 < −δ0 ∑
x∈η0

µ1(x) + (1 − δ0) ∑
x∈S0\η0

µ1(x)

Next, adding ∑x∈η0
µ1(x) on both sides, one obtains

∑
x∈η0

µ1(x) < (1 − δ0)

 ∑
x∈η0

µ1(x) + ∑
x∈S0\η0

µ1(x)


hence

1
1 − δ0

∑
x∈η0

µ1(x) < ∑
x∈S0

µ1(x)

which yields the result.

3. The Models

In this section, we investigate different models for which an explicit analytical solution
can be provided. The Jarzynski relation, revisited with the notions of state space reduction
and absolute irreversibility introduced in Section 2.2, is used to detect possible discontinu-
ous behaviors of an order parameter as a function of an external control parameter. First, a
probabilistic urn model, described by a Markov chain, is considered, in which a threshold
parameter allows to tune between different steady states. The second model is the classical
2D Ising model subject to an external magnetic field.
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3.1. The Urn Model

The modification of the classical Ehrenfest urn model [41,44] that we analyze was
originally introduced in [38] to understand billiard dynamics comprising a Maxwell de-
mon [45–47], and is embedded in a long history of urn models studied in statistical mechan-
ics [48–59]. It refers to N particles initially distributed inside two urns. At each discrete
time step, one of the two urns is selected with a probability proportional to the number of
particles contained in it, and then one of such particles is moved to the other urn, unless
a clogging phenomenon stops it. To represent this process, let n(t) ∈ S = {0, 1, ..., N}
denote the number of particles in one selected urn at time t ∈ N, and introduce a parameter
λ ∈ [0, 1] to define a threshold T = ⌊λN⌋ ∈ {0, 1, ..., N}, which implements the clogging
mechanism together with another parameter ϵ ∈ [0, 1]. We then consider the discrete time
Markov chain {n(t) : t ≥ 0} that obeys the following transition rules:

p(t)n,n+1(T) =
N − n

N
ϵ1(T), p(t)n,n−1(T) =

n
N

ϵ2(T) (15)

where

ϵ1(T) =

{
ϵ, n < N − T
1, n ≥ N − T

, ϵ2 =

{
1, n ≤ T
ϵ, n > T

(16)

The stationary distributions µλ(n) of the process take the form [38]:

µλ(n) =
1

Cλ

(
N
n

)
ϵn if n ≤ T
ϵT if T + 1 ≤ n ≤ N − T − 1
ϵN−n if n ≥ N − T

(17)

when T < N/2, and

µλ(n) =
1

Cλ

(
N
n

)
ϵn if n ≥ N − T + 1
ϵN−T+1 if N − T + 2 ≤ n ≤ T − 1
ϵN−n if n ≤ T

(18)

when T > N/2, where Cλ is the normalization coefficient associated to µλ. We only
analyze the case T < N/2, as the case T > N/2 trivially follows. The dependence of the
stationary state on the parameters ϵ and λ, along with the stationary distribution µ(n)
evaluated in different regions of the parameter space are shown in Figure 2, showing
that µ concentrates about different states for different values λ. In particular, the left
panel of Figure 2 reveals the presence, in parameter space, of equilibrium as well as
non-equilibrium phases, portrayed as white and brown regions, respectively [38]. While
in the equilibrium region the stationary distribution peaks at n = N/2 (second panel
from left), in the non-equilibrium ones the distribution concentrates around the two states
n = n∗ = (εN − 1)/(ε+ 1) and n = N − n∗ (right panel). Moreover, in the light blue region,
shown in the left panel, the states n = n∗ and n = N − n∗ are metastable while n = N/2
is stable. The distribution corresponding to the latter case shows a global maximum at
n = N/2 and two symmetric local maxima at n = n∗ and n = N − n∗ (third panel).

Let us now calculate the normalization coefficient Cλ and analyze its dependence on
the threshold parameter to highlight its singular behavior. First, observe that

Cλ =
T

∑
n=0

ϵn
(

N
n

)
+

N−T−1

∑
n=T+1

ϵT
(

N
n

)
+

N

∑
n=N−T

ϵN−n
(

N
n

)
= 2

T

∑
n=0

ϵn
(

N
n

)
+

N−T−1

∑
n=T+1

ϵT
(

N
n

)

≈ 2
N

∑
n=0

ϵn
(

N
n

)
+

N

∑
n=0

ϵT
(

N
n

)
= 2(1 + ϵ)N + 2NϵT (19)
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where the last equality follows from the binomial theorem. Therefore, for ϵ < 1 and T > 1,
Cλ is an exponentially decaying function of λ. Moreover, the term (1 + ϵ)N is negligible
with respect to 2NϵT if

T < N log
(

1 + ϵ

2

)
(log ϵ)−1

while 2NϵT is negligible with respect to (1 + ϵ)N if

T > N log
(

1 + ϵ

2

)
(log ϵ)−1

Figure 2. Stationary distributions for N = 500. Right panel: stability regions in the ϵ-λ parameter
space. White corresponds to stable equilibrium (n = N/2); cyan to two metastable non-equilibrium
states (n = n∗, N − n∗) and stable equilibrium; and brown to two stable non-equilibrium states and
metastable equilibrium. The remaining three panels, from left to right, plot with vertical log-scale the
stationary distributions (17) referring to the points A = (0.2, 0.1), B = (0.2, 0.25) and C = (0.2, 0.4).

In the large N limit, the separation between these two regimes becomes sharp, and
defines the critical value [38]

λ∗ = log
(

1 + ϵ

2

)
(log ϵ)−1 (20)

of a phase transition, implying

Cλ<λ∗ ≈ 2NϵT ,

Cλ>λ∗ ≈ 2(1 + ϵ)N . (21)

The behavior of Cλ as a function of the normalized threshold λ is illustrated in Figure 3.

Figure 3. Left panel: Normalization constant Cλ as a function of λ, Equation (19), with vertical
axis in logarithmic scale. Dotted vertical line indicates the critical value λ∗ defined in Equation (20).
Right panel: M(λ)β/ log ϵ obtained through Equation (23), with dotted vertical line indicating the
critical value λ∗. Both plots are obtained for N = 500, β = 1 and ϵ = 0.2.
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Mimicking the theory of phase transitions, let us now look at the first derivative with
respect to λ of the quantity F = −β−1 log C:

M := − 1
N

∂

∂λ
F = − 1

N
∂

∂λ

(
− 1

β
log C(λ)

)
(22)

which, using Equation (19), and taking large N so that T ≈ λN, writes

M =
log ϵ

β

2NϵλN

(1 + ϵ)N + 2NϵλN =
log ϵ

2β

[
1 + tanh

(
N
2
(λ − λ∗) log ϵ

)]
(23)

The graph of M(λ), which acts as an order parameter for this model, is shown in the
right panel of Figure 3 for N = 500. At such moderate N, hence even more sharply in the
large N limit, M undergoes a jump discontinuity at λ = λ∗, which in statistical mechanics
is typically associated with first-order phase transitions.

Suppose now that the threshold depends on time, so that λ = λ(t), with t = 0, 1,
constitutes a protocol in accord with the theory illustrated in Section 2.1, and µλ(t) is
understood as the stationary distribution corresponding to a fixed value of t [31]. In
particular, take the one-step transformation expressed by the protocol λ0 → λ1, with
λ0 ≡ λ(0) = 0 and λ1 ≡ λ(1) ∈ [0, 0.5]. The associated stationary distributions can be
computed using Equations (17) and (21). Specifically, denoting by µ0(n) ≡ µλ0(n) the
distribution evaluated at λ = λ0, we find

µ0(n) =
1

2N

(
N
n

)
,

whereas µ1(n) ≡ µλ1(n) depends on the final value λ1 of the protocol. As discussed
earlier in Section 2.2, a summation over all possible initial states n ∈ S0 = {0, 1, ..., N}
in Equation (10), which corresponds to no state space reduction (µ̄ = 0), yields the JE,
regardless of the chosen value of λ1. Specifically, for λ∗ < λ1 ≤ 0.5, two symmetric steady
states n = n∗ and n = N − n∗ appear. Indeed, we have S0 = S1 = {0, 1, . . . , N}, and
Equation (5) applies, independently of λ1. Therefore, the JE does not reveal the jump
discontinuity portrayed in the right panel of Figure 3, because it is not affected by that.
The situation is different if the state space is reduced to a subset η0 by a cutoff probability
µ̄ > 0, see Equation (9). The left panel of Figure 4 shows indeed that

〈
e−βWd

〉
η0

≃ 1 for

λ1 < λ∗, while a sudden drop to a value
〈
e−βWd

〉
η0

< 1 occurs for λ1 > λ∗. In fact, µ̄ as

small as 10−20 suffices to get
〈
e−βWd

〉
η0

≃ 0 for λ1 > λ∗. This behavior signals the sudden
separation of the state space regions occupied by the sets η0 and η1, in Equation (10),
occurring at λ1 = λ∗. While for λ1 < λ∗ the sets η0 and η1 overlap consistently, for λ1 > λ∗

one can safely consider I = ∅, provided µ̄ is large enough. Thus, following the discussion
of Section 2.2, for λ1 > λ∗ one expects not only that

〈
e−βWd

〉
η0

< 1, but also that, this
average decreases for growing µ̄. This is indeed demonstrated in the left panel of Figure 4.

Consider now the one-step transformations with λ0 = 0.5, which is larger than λ∗,
and any λ1 ∈ [0, 1]. In this case, the translational symmetry is broken because the initial
condition selects only one of the two non-equilibrium states, say, the one with n = n∗.
Then, taking T = N/2 in Equation (17) yields

µλ=0.5 =
1

C0.5

(
N
n

)
ϵn, n < N/2 .

where the second row of Equation (21) turns C0.5 ≈ (1 + ϵ)N , because only half of the state
space S is involved. One obtains

µλ(0)(n) =

{
ϵn

(1+ϵ)N (
N
n ) for n < N/2

0 for n ≥ N/2
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which is supported on S0 = {0, . . . , N/2 − 1}, while the support of the distribution µλ(1) is
S1 = S0 for λ∗ < λ1 ≤ 0.5 (non-equilibrium phase) and S1 = {0, . . . , N} for 0 ≤ λ1 < λ∗

(equilibrium phase). Consequently, Equation (5) holds for λ∗ < λ1 ≤ 0.5 whereas Equa-
tion (13) applies for 0 ≤ λ1 < λ∗, because S0 ⊂ S1, which implies:

〈
e−βWd(n)

〉
= ∑

n∈S0

µ1(n) =
T−1

∑
n=0

ϵn

2NϵT

(
N
n

)
+

N/2−1

∑
n=T

1
2N

(
N
n

)

≃
N/2−1

∑
n=T

1
2N

(
N
n

)
≃ 1/2 , (24)

where the approximations turn exact for T = 0 and N → ∞ . The violation of the JE
stems from the “absolute irreversibility” of the process λ0 → λ1. This is illustrated by the
numerical results reported in the right panel of Figure 4, which also clarifies the effect of
reducing the state space with a cutoff probability µ̄. The effect is a µ̄ dependent further
decrease of the average of e−βWd for 0 ≤ λ1 < λ∗, visible in the left panel of Figure 4, cf.
Equation (14).

Figure 4. Numerical estimation of ⟨e−βWd ⟩η0 , as a function of λ1, given by Equation (10). The yellow,
orange, red, and black lines correspond to cutoffs µ̄ = 0, 10−60, 10−50, 10−20, respectively. The
vertical solid black lines lie at λ = λ∗. The dashed black lines correspond to Equation (5). N, β and ϵ

are set to the same values considered in Figure 3. Left panel: The process starts in a homogeneous
state with λ0 = 0. The yellow line is always at 1; the phase transition is only revealed by the truncated
distributions. Right panel: The process starts in a non-homogeneous state with λ0 = 0.5. The values
for µ̄ = 0 and λ < λ∗ do not equal 1, as prescribed by Equation (24). Even the full distribution reveals
the phase transition.

We conclude this Section observing that different exponential variables may be used
to efficiently identify phase transitions. For instance, we considered exp{−β(Wd)

p}, with
p ∈ N, and numerically studied the cases p = 2 and p = 3. The numerical evaluation
of ⟨exp{−β(Wd)

p}⟩η0 for the two different values of p and for different initial values of
λ0 is represented in Figure 5. It is important to note that, unlike the standard expression,
corresponding to p = 1, the quantity ⟨e−β(Wd)

2
⟩η0 displays a sharp transition at λ = λ∗

even for µ̄ = 0, and not only for the truncated distributions. Moreover, (Wd)
2 is a quantity

substantially different from Wd, because it only takes non-negative values, while negative
values are fundamental for the usual fluctuation relations. This indicates that our approach
may result effective with variables of quite different nature. Let us also note that taking
higher odd powers of Wd, the calculation of the full state space averages may become
prohibitive, from a computational point of view. Indeed, the negative values of Wd, raised
to a large odd power and exponentiated, may result in being non-computable. However,
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our method based on truncated distributions may remain effective ( Figure 5 right panel)
for p = 3.

Figure 5. Numerical estimation of ⟨e−β(Wd)
p ⟩η0 as a function of λ1 for p = 2 and p = 3 (left and right

column, respectively), with the parameters N, β, and ϵ set to the same values as in Figure 3. The plots
refer to a process starting in a homogeneous state with λ0 = 0 (top row) or in a non-homogeneous
state with λ0 = 0.5 (bottom row). In the left panels, the yellow line refers to the cutoff µ̄ = 0, whereas
the curves corresponding to cutoff values µ̄ > 0 are not shown in the plots, as they are graphically
indistinguishable from the yellow line. In the right panels, the solid black line refers to the cutoff
µ̄ = 10−15.

3.2. The 2D Ising Model

The second example we tackle is the classical 2D Ising model under an external mag-
netic field h, defined on a 2D lattice Λ = {1, . . . , L}2, with the state space S = {−1,+1}Λ.
Here, β = (kBT)−1 denotes the inverse temperature. Let σ ∈ S denote a generic spin
configuration, and introduce the Ising Hamiltonian, which reads

H(σ) = −J ∑
⟨j,k⟩

j,k∈Λ

σjσk − h ∑
j∈Λ

σj ,

where σj = {−1,+1} for j ∈ Λ, J > 0 denotes the ferromagnetic coupling constant
and the first sum is taken over pairs of adjacent spins (every pair is counted only once).
Periodic boundary conditions are imposed along the horizontal and vertical directions.
The model exhibits a critical value βc = ln (1 +

√
2)/2J, marking the transition from a

disordered (paramagnetic) to an ordered (ferromagnetic) phase. We then let the mag-
netic field depend on time and define a protocol λ(t) = h(t). In [43], a similar problem
is investigated, taking λ(t) = J(t). We denote by Hi(σ) and H f (σ) the Hamiltonians
evaluated at the initial and the final values of the protocol, respectively, and we iden-
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tify µk(σ) = exp (−βHk(σ))/Zi as the Gibbs measure at the inverse temperature β, with
k = 0, 1 and Zk = ∑σ∈S exp (−βHk(σ)). So both µ0 and µ1 are supported on S .

We now introduce the reduced state spaces η0 = {σ|µ0(σ) ≥ µ̄} and η1 = {σ|µ1(σ) ≥ µ̄}
and we correspondingly denote Z0 = ∑σ∈η0

exp (−βH0(σ)) and Z1 = ∑σ∈η1
exp (−βH1(σ)). With the notation of Section 2.2, we have

1 − δk = ∑
σ∈ηk

µk(σ) =
∑σ∈ηk

exp (−βHk(σ))

∑σ∈S exp (−βHk(σ))
=

Zk
Zk

, k = 0, 1 , (25)

which yields

Z0

Z1
=

Z0

Z1

1 − δ0

1 − δ1
.

Furthermore, for a function f (σ) : S → R, we set

⟨ f ⟩η0 = ∑
σ∈η0

f (σ)
e−βH0(σ)

Z0
=

1
1 − δ0

∑
σ∈η0

f (σ)µ0(σ) . (26)

Then, taking

f (σ) = e−βWd = e−β(W−∆F) = e−β(H1(σ)−H0(σ))
Z0

Z1
, where β∆F = log

Z0

Z1
,

we find

f (σ)µ0(σ) =
e−βH1(σ)

Z0

Z0

Z1
= µ1(σ) ,

and 〈
e−βWd

〉
η0

=
1

1 − δ0
∑

σ∈η0

µ1(σ) . (27)

The latter equation coincides with Equation (10) and recovers Equation (14) [43]. We
are interested in studying the application of Equation (27) to evolutions in which the
magnetic field changes from λ0 = h0 to λ1 = h1. Setting J = 1, which yields βc ≈ 0.4406,
we consider different scenarios. We first choose β > βc, so that the 2D Ising model
undergoes a first-order phase transition when the magnetic field h changes sign, and we
study the behavior of ⟨e−βWd⟩η0 as a function of h1. Later, we study the case with β < βc,
where no phase transition takes place. The computation of ⟨e−βWd⟩η0 can be conveniently
carried out by sampling configurations σ ∈ S , with a prescribed magnetization density
m = N−1 ∑j∈Λ σj, from the distribution [43]:

P(m) = ∑
σ∈S

µ(σ) δ

(
m − 1

N ∑
j∈Λ

σj∈Λ

)

Figure 6 shows that ⟨e−βWd⟩ = 1 when µ̄ = 0, for both β < βc and β > βc, cf.
Equation (5). Therefore, the phase transition in the Ising model is not detected by the JE
in one-step transformations. For the reduced state spaces, corresponding to cutoffs µ̄ > 0,
the situation changes, as evidenced by the left panel of Figure 6. The phase transition is
properly captured by ⟨e−βWd⟩η0 , which drops abruptly from the value 1 to a value close
to 0 when crossing h1 = 0, for h0 = −1 and with h1 ∈ [−1, 1]. An analogous behavior
is also observed when h0 = 1 and h1 is varied in the same interval. It is worth recalling
that, in the Curie–Weiss approximation of the Ising model, the value of the magnetization
density m is obtained from the solution of the mean field equation m = tanh [β(m + h)],
which, for β > βc, gives rise to metastable branches [60]. One such branch corresponds to
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positive values of m in the interval [−hc, 0], and another branch corresponds, symmetrically,
to negative values of m in the interval [0, hc], with hc > 0. This is not visible in the left
panel of Figure 6, which shows that for h0 = ±1 the discontinuity occurs in both cases
sharply at h1 = 0. This is a consequence of our choice of initial datum for the Monte Carlo
simulations, that mitigates the effects of the two metastable branches. More precisely, as
initial datum we took σj = −1 for h1 < 0 and σj = 1 for h1 > 0, for all j ∈ Λ, producing a
distribution P(m) sharply concentrated near m = −1 for h1 < 0 and near m = 1 for h1 > 0.
The discontinuity at h1 = 0, therefore, stems from Equation (12), which rules the behavior
of ⟨e−βWd⟩η0 for β > βc, where one can assume I = ∅. In the left panel, it is also interesting
to note that, for β = 2.5 > βc, the different sets of data points corresponding to different
values of µ̄ fully overlap with one another and display the same discontinuity at h1 = 0.
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 e
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Figure 6. ⟨e−βWd ⟩η0 as a function of h f , Equation (27), from Monte Carlo simulations of a 2D Ising
model on a square grid of linear size L = 10. Here, J = 1, hence βc ≃ 0.4406, and periodic
boundary conditions are applied in both horizontal and vertical directions. Simulations have been
performed with hi = −1 (colored symbols) and hi = 1 (black symbols), for β = 2.5 > βc (left
panel) and β = 0.1 < βc (right panel). Circles, triangles, and squares correspond to µ̄ = (max{µ0}+
max{µ1})/(2k) with k = 5, 25, 100, respectively. The horizontal black line at 1 represents in both
panels the case with µ̄ = 0.

For β < βc the phase transition in the Ising model is instead absent, and the magne-
tization density m solving the mean field equation becomes a continuous function of h,
which vanishes at h = 0. As a result, the data points shown in the right panel of Figure 6
show that ⟨e−βWd⟩η0 no longer presents a sharp discontinuity at h1 = 0, as this quantity
decreases in a continuous fashion while increasing the difference |h0 − h1|. The effect of
varying the value of µ̄ is clearly visible in the right panel. Again, the JE is not affected by
the variation of h1.

4. Conclusions

In this study, we propose one way of benefiting from incomplete statistics or finite-size
effects, which result in a reduction in the state space. As this is often an unavoidable fact,
we show that it can provide valuable insight, if associated with exponential observables. In
particular, we have considered the Jarzynski Equality and its instantaneous transformation
variant (also known as Free Energy Perturbation), to identify the critical values of the
parameters corresponding to a first-order phase transition. Smooth variations of states
have also been characterized. This is due to the sensitivity of exponentials of extensive
quantities, when averaged over the available subsets of the system state space, which is
usually considered a hindrance. Interestingly enough, our study shows that reducing the
amount of available information about the system can enhance our understanding of its
critical behaviors. In fact, this is not obtained from a perfect sampling of states. The JE, in
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particular, results are insensitive to parameters variations, hiding interesting features of the
system at hand.

We illustrated our theoretical findings by numerically analyzing two stochastic mod-
els: a modified Ehrenfest urn model and a classical 2D Ising model subject to an external
magnetic field. In both cases, we observed a jump discontinuity in the quantity ⟨e−βWd⟩η0

occurring at the same value of the control parameter distinguishing different macroscopic
phases in the thermodynamic limit of the model, remaining quite far from that limit.
Similarly, when the phase transition is absent, as in the case of the Ising model at supercrit-
ical temperatures, the variation of state with the control parameter, is still revealed by a
continuous variation of ⟨e−βWd⟩η0 .

Studying the behavior of powers of Wd we also found that our approach works even
with variables different from those of fluctuation theorems. Indeed, it provides a new recipe
to identify order parameters in the study of non-equilibrium phase transitions, which is
particularly effective with truncated distributions.

Future works are intended to develop this approach, so that incomplete information
on a given system may be used beyond the problem of discovering phase transitions.
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