Force and Pressure Dependent Asymmetric Workspace Research of a Collaborative Robot and Human
Abstract
:1. Introduction
2. Design of Measurement Methodology
3. Measurements Performed
4. Evaluation of Measurements and Discussion
4.1. UR—Measurement in Coordinate [450; 200], Speed v = 20 mms−1
4.2. UR—Measurement in Coordinate [450; 200], Speed v = 200 mms−1
4.3. UR—Measurement in Coordinate [450; 200], Speed v = 400 mms−1
4.4. UR—Measurement in Coordinate [450; 500], Speed v = 20 mms−1
4.5. UR—Measurement in Coordinate [450; 500], Speed v = 200 mms−1
4.6. UR—Measurement in Coordinate [450; 500], Speed v = 400 mms−1
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ČSN EN ISO 10218-2; Roboty a Robotická Zařízení—Požadavky na Bezpečnost Průmyslových Robotů: Část 2: Systémy Robotů a Integrace. Český Normalizační Institut: Prague, Czech Republic, 2011.
- Javernik, A.; Kovič, K.; Palčič, I.; Ojsteršek, R. Audio-Visual Effects of a Collaborative Robot on Worker Efficiency. Symmetry 2023, 15, 1907. [Google Scholar] [CrossRef]
- ISO/TS 15066; Robots and Robotic Devices—Collaborative Robots. International Organization for Standardization: Geneva, Switzerland, 2016.
- Matthias, B.; Reisinger, T. Example Application of ISO/TS 15066 to a Collaborative Assembly Scenario. In Proceedings of the ISR 2016 47st International Symposium on Robotics, Munich, Germany, 21–22 June 2016; pp. 1–5. [Google Scholar]
- Rodday, V.; Geißler, B.; Letzel, S.; Muttray, A.; Huelke, M.; Ottersbach, H.J. Druckschmerzschwellen bei Druckreizen, 51. Jahrestagung der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin (DGAUM); Triebig, G., Ed.; Deutsche Gesellschaft für Arbeitsmedizin und Umweltmedizin: Aachen, Germany; 9–12 März 2011, pp. 828–829. ISBN 978-3-9811784-5-6.
- Kossman, M. Sicherheit in der Mensch-Roboter-Interaktion durch Einen Biofidelen Bewertungsansatz. Ph.D. Thesis, Technische Universität München, München, Germany, 2019. [Google Scholar]
- Švarný, P. 3D Collision-Force-Map for Safe Human-Robot Collaboration; ČVUT: Prague, Czech Republic, 2020. [Google Scholar]
- Behrens, R.; Zimmermann, J. Determination of Biomechanical Corridors for the Evaluation of Mechanical Hazards and Estimation of Stiffness Parameters for Future Measurement Devices—Final Report on the Research Project of Fraunhofer IFF and IFA. 2021. Available online: https://www.dguv.de/medien/ifa/en/fac/kollaborierende_roboter/ifa-skl_final_report.pdf (accessed on 3 November 2021).
- Suszyński, M.; Peta, K.; Černohlávek, V.; Svoboda, M. Mechanical Assembly Sequence Determination Using Artificial Neural Networks Based on Selected DFA Rating Factors. Symmetry 2022, 14, 1013. [Google Scholar] [CrossRef]
- Suszynski, M.; Wojciechowski, J.; Zurek, J. No Clamp Robotic Assembly with Use of Point Cloud Data from Low-Cost Triangulation Scanner. Teh. Vjesn. 2018, 25, 904–909. [Google Scholar] [CrossRef]
- Klimenda, F.; Cizek, R.; Suszynski, M. Measurement of a Vibration on a Robotic Vehicle. Sensors 2022, 22, 8649. [Google Scholar] [CrossRef] [PubMed]
- Ponikelsky, J.; Cernohlavek, V.; Sterba, J.; Houska, P. Research of Robots in Cooperative Mode in Human Body Part Detection. Manuf. Technol. 2023, 23, 99–109. [Google Scholar] [CrossRef]
- Mathavan Jeyabalan, P.K.; Nehrujee, A.; Elias, S.; Magesh Kumar, M.; Sujatha, S.; Balasubramanian, S. Design and Characterization of a Self-Aligning End-Effector Robot for Single-Joint Arm Movement Rehabilitation. Robotics 2023, 12, 149. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Jin, Q.; Lou, P.; Hu, J. Path Planning Algorithm for Dual-Arm Robot Based on Depth Deterministic Gradient Strategy Algorithm. Mathematics 2023, 11, 4392. [Google Scholar] [CrossRef]
- Pástor, M.; Hagara, M.; Gašpár, Š.; Sapieta, M. Design and Implementation of a Low-Cost Torque Sensor for Manipulators. Appl. Sci. 2023, 13, 9406. [Google Scholar] [CrossRef]
- Suszyński, M.; Peta, K. Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria. Appl. Sci. 2021, 11, 10414. [Google Scholar] [CrossRef]
- Klimenda, F.; Sterba, J.; Cernohlavek, V.; Ponikelsky, J.; Maran, P. Draft of robotic workstation for laser engraving. Manuf. Technol. 2021, 21, 357–363. [Google Scholar] [CrossRef]
- Batista, J.G.; Ramalho, G.L.B.; Torres, M.A.; Oliveira, A.L.; Ferreira, D.S. Collision Avoidance for a Selective Compliance Assembly Robot Arm Manipulator Using Topological Path Planning. Appl. Sci. 2023, 13, 11642. [Google Scholar] [CrossRef]
- Carriero, G.; Calzone, N.; Sileo, M.; Pierri, F.; Caccavale, F.; Mozzillo, R. Human-Robot Collaboration: An Augmented Reality Toolkit for Bi-Directional Interaction. Appl. Sci. 2023, 13, 11295. [Google Scholar] [CrossRef]
- Herbster, S.; Behrens, R.; Elkmann, N. Modeling the Contact Force in Constrained Human-Robot Collisions. Machines 2023, 11, 955. [Google Scholar] [CrossRef]
- Yan, Y.; Su, H.; Jia, Y. Modeling and Analysis of Human Comfort in Human-Robot Collaboration. Biomimetics 2023, 8, 464. [Google Scholar] [CrossRef] [PubMed]
- Cernohlavek, V.; Klimenda, F.; Houska, P.; Suszyński, M. Vibration Measurements on a Six-Axis Collaborative Robotic Arm—Part I. Sensors 2023, 23, 1629. [Google Scholar] [CrossRef] [PubMed]
- Toledano-García, A.A.; Pérez-Cabrera, H.R.; Ortega-Cabrera, D.; Navarro-Durán, D.; Pérez-Hernández, E.M. Trajectory Generator System for a UR5 Collaborative Robot in 2D and 3D Surfaces. Machines 2023, 11, 916. [Google Scholar] [CrossRef]
- Anatoliotakis, N.; Paraskevopoulos, G.; Michalakis, G.; Michalellis, I.; Zacharaki, E.I.; Koustoumpardis, P.; Moustakas, K. Dynamic Human-Robot Collision Risk Based on Octree Representation. Machines 2023, 11, 793. [Google Scholar] [CrossRef]
Body Part | Num. Desig. of a Point on the Body Model | Specific Body Region | Quasi-Static Contact | Transient Contact | ||
---|---|---|---|---|---|---|
Max. Allowable Pressure ps (N/cm2) | Max. Allowable Force | Multiplier of Max. Allowable Pressure pT | Multiplier of Max. Allowable Force FT | |||
Skull and forehead | 1 | Middle of forehead | 130 | 130 | Not applicable | Not applicable |
2 | Sleep | 110 | Not applicable | |||
Face | 3 | Masticatory muscles | 110 | 65 | Not applicable | Not applicable |
Neck | 4 | Neck muscle | 140 | 150 | 2 | 2 |
5 | Seventh neck vertebra | 210 | ||||
Back and shoulders | 6 | Shoulder joint | 160 | 210 | 2 | 2 |
7 | Fifth lumbar vertebra | 210 | ||||
Chest | 8 | Breast bone | 120 | 140 | 2 | 2 |
9 | Pectoral muscle | 170 | ||||
Abdomen | 10 | Abdominal muscle | 140 | 110 | 2 | 2 |
Pelvis | 11 | Pelvic bone | 210 | 180 | 2 | 2 |
Arms and elbow joints | 12 | Deltoid muscle | 190 | 150 | 2 | 2 |
13 | Humerus | 220 | ||||
Forearm and wrist | 14 | Radial bone | 190 | 160 | 2 | 2 |
15 | Forearm muscle | 180 | ||||
16 | Axillary nerves | 180 | ||||
Hands and fingers | 17 | Pad of index finger D | 300 | 140 | 2 | 2 |
18 | Pad of index finger ND | 270 | ||||
19 | Terminal joint of index finger D | 280 | ||||
20 | Terminal joint of index finger ND | 220 | ||||
21 | Muscles of the palm | 200 | ||||
22 | Palm D | 260 | ||||
23 | Palm ND | 260 | ||||
24 | Back of the hand D | 200 | ||||
25 | Back of the hand ND | 190 | ||||
Thighs and knees | 26 | Thigh muscle | 250 | 220 | 2 | 2 |
27 | Patella | 220 | ||||
Lower limbs | 28 | Middle of shin | 220 | 130 | 2 | 2 |
29 | Calf muscle | 210 |
Value Name | Value Designation | Value | Unit |
---|---|---|---|
Horizontal coordinates of distance of force Fx from robot base | Yx | 450–850 | mm |
Vertical coordinates of the distance of the force Fx from the robot base | Zx | 200–500 | mm |
Collision speed of the robot arm | v1 | 20 | mms−1 |
Collision speed of the robot arm | v2 | 50 | mms−1 |
Collision speed of the robot arm | v3 | 100 | mms−1 |
Collision speed of the robot arm | v4 | 200 | mms−1 |
Collision speed of the robot arm | v5 | 250 | mms−1 |
Collision speed of the robot arm | v6 | 300 | mms−1 |
Collision speed of the robot arm | v7 | 350 | mms−1 |
Collision speed of the robot arm | v8 | 400 | mms−1 |
Coordinates of Robot’s Starting Point: | Coordinates of Robot’s Target Point: | Coordinates of the Collision between the Robot and the Jig | |||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
Bottom position: | 0 | 720 | 780 | 0 | 450 | 140 | 0 | 450 | 200 |
0 | 720 | 780 | 0 | 550 | 140 | 0 | 550 | 200 | |
0 | 720 | 780 | 0 | 650 | 140 | 0 | 650 | 200 | |
0 | 720 | 780 | 0 | 750 | 140 | 0 | 750 | 200 | |
0 | 720 | 780 | 0 | 850 | 140 | 0 | 850 | 200 | |
Upper position: | 0 | 720 | 780 | 0 | 450 | 440 | 0 | 450 | 500 |
0 | 720 | 780 | 0 | 550 | 440 | 0 | 550 | 500 | |
0 | 720 | 780 | 0 | 650 | 440 | 0 | 650 | 500 | |
0 | 720 | 780 | 0 | 750 | 440 | 0 | 750 | 500 | |
0 | 720 | 780 | 0 | 850 | 440 | 0 | 850 | 500 |
Force Measurement Ft/Fs [N] | Universal Robots UR-10 Robot Arm Speed | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Meas. No. | Coordinates of Distance of Fixture from Robot Base [Y;Z] | v1 = 20 mms−1 | v2 = 50 mms−1 | v3 = 100 mms−1 | v4 = 200 mms−1 | v5 = 250 mms−1 | v6 = 300 mms−1 | v7 = 350 mms−1 | v8 = 400 mms−1 | ||
1 | až | 8 | 450; 200 | 133/130 | 153 | 179 | 231 | 244 | 286 | 315 | 376 |
9 | až | 16 | 450; 500 | 85 | 88 | 94 | 104 | 115 | 138 | 161 | 163 |
17 | až | 24 | 550; 200 | 128/125 | 143 | 163 | 219 | 269 | 302 | 333 | 369 |
25 | až | 32 | 550; 500 | 95 | 101 | 119 | 132 | 154 | 177 | 207 | 234 |
33 | až | 40 | 650; 200 | 91/84 | 109 | 127 | 201 | 218 | 219 | 257 | 283 |
41 | až | 48 | 650; 500 | 98/84 | 167/92 | 124 | 123 | 142 | 172 | 206 | 236 |
49 | až | 56 | 750; 200 | 102/96 | 114 | 141 | 200 | 236 | 260 | 296 | 350 |
57 | až | 64 | 750; 500 | 116/115 | 120 | 128 | 146 | 152 | 175 | 207 | 244 |
65 | až | 72 | 850; 200 | 125/117 | 139 | 152 | 173 | 250 | 288 | 322 | 361 |
73 | až | 80 | 850; 500 | 110/110 | 118 | 121 | 144 | 164 | 202 | 233 | 261 |
Limit value according to ISO TS 15066: | Transient 280 N/Quasi-static 140 N (15 N tolerance) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponikelský, J.; Chalupa, M.; Černohlávek, V.; Štěrba, J. Force and Pressure Dependent Asymmetric Workspace Research of a Collaborative Robot and Human. Symmetry 2024, 16, 131. https://doi.org/10.3390/sym16010131
Ponikelský J, Chalupa M, Černohlávek V, Štěrba J. Force and Pressure Dependent Asymmetric Workspace Research of a Collaborative Robot and Human. Symmetry. 2024; 16(1):131. https://doi.org/10.3390/sym16010131
Chicago/Turabian StylePonikelský, Josef, Milan Chalupa, Vít Černohlávek, and Jan Štěrba. 2024. "Force and Pressure Dependent Asymmetric Workspace Research of a Collaborative Robot and Human" Symmetry 16, no. 1: 131. https://doi.org/10.3390/sym16010131
APA StylePonikelský, J., Chalupa, M., Černohlávek, V., & Štěrba, J. (2024). Force and Pressure Dependent Asymmetric Workspace Research of a Collaborative Robot and Human. Symmetry, 16(1), 131. https://doi.org/10.3390/sym16010131