Bending of Light by Magnetars within Generalized Born–Infeld Electrodynamics: Insights from the Gauss–Bonnet Theorem
Abstract
:1. Introduction
2. The Refractive Index of Born–Infeld Nonlinear Electrodynamics
3. The Bending Angle via the Gauss–Bonnet Theorem
4. Estimating the Deflection Angle of Magnetars from the McGill Catalog
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Born, M.; Infeld, L. Foundations of the New Field Theory. Proc. R. Soc. Lond. Ser. A 1934, 144, 425–451. [Google Scholar] [CrossRef]
- Born, M. On the Quantum Theory of the Electromagnetic Field. Proc. R. Soc. Lond. Ser. A 1934, 143, 410–437. [Google Scholar] [CrossRef]
- Beissen, N.; Abishev, M.; Toktarbay, S.; Yernazarov, T.; Utepova, D.; Zhakipova, M. The Exploring nonlinear vacuum electrodynamics beyond Maxwell’s Equations. Int. J. Math. Phys. 2023, 14, 61–70. [Google Scholar] [CrossRef]
- Heisenberg, W.; Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 1936, 98, 714–732. [Google Scholar] [CrossRef]
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664–679. [Google Scholar] [CrossRef]
- Jackson, J.D.; Fox, R.F. Classical Electrodynamics, 3rd ed. Am. J. Phys. 1999, 67, 841–842. [Google Scholar] [CrossRef]
- Cameron, R.; Cantatore, G.; Melissinos, A.; Ruoso, G.; Semertzidis, Y.; Halama, H.; Lazarus, D.; Prodell, A.; Nezrick, F.; Rizzo, C.; et al. Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 1993, 47, 3707. [Google Scholar] [CrossRef]
- Della Valle, F.; Milotti, E.; Ejlli, A.; Messineo, G.; Piemontese, L.; Zavattini, G.; Gastaldi, U.; Pengo, R.; Ruoso, G. First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence. Phys. Rev. D 2014, 90, 092003. [Google Scholar] [CrossRef]
- Cadène, A.; Berceau, P.; Fouché, M.; Battesti, R.; Rizzo, C. Vacuum magnetic linear birefringence using pulsed fields: Status of the BMV experiment. Eur. Phys. J. D 2014, 68, 16. [Google Scholar] [CrossRef]
- Rasheed, D. Non-linear electrodynamics: Zeroth and first laws of black hole mechanics. arXiv 1997, arXiv:hep-th/9702087. [Google Scholar]
- Garcia-Salcedo, R.; Breton, N. Born–Infeld cosmologies. Int. J. Mod. Phys. A 2000, 15, 4341–4353. [Google Scholar] [CrossRef]
- Bretón, N. Born-Infeld black hole in the isolated horizon framework. Phys. Rev. D 2003, 67, 124004. [Google Scholar] [CrossRef]
- Camara, C.; de Garcia Maia, M.; Carvalho, J.; Lima, J.A.S. Nonsingular FRW cosmology and nonlinear electrodynamics. Phys. Rev. D 2004, 69, 123504. [Google Scholar] [CrossRef]
- Alsing, P. The optical-mechanical analogy for stationary metrics in general relativity. Am. J. Phys. 1998, 66, 779–790. [Google Scholar] [CrossRef]
- Roy, S.; Sen, A. Trajectory of a light ray in Kerr field: A material medium approach. Astrophys. Space Sci. 2015, 360, 23. [Google Scholar] [CrossRef]
- Toktarbay, S.; Quevedo, H.; Abishev, M.; Muratkhan, A. Gravitational field of slightly deformed naked singularities. Eur. Phys. J. C 2022, 82, 382. [Google Scholar] [CrossRef]
- Beissen, N.; Utepova, D.; Abishev, M.; Quevedo, H.; Khassanov, M.; Toktarbay, S. Gravitational Refraction of Compact Objects with Quadrupoles. Symmetry 2023, 15, 614. [Google Scholar] [CrossRef]
- Denisov, V.I.; Denisova, I.P.; Svertilov, S.I. Nonlinear Electrodynamic Effect of Ray Bending in the Magnetic-Dipole Field. Dokl. Phys. 2001, 46, 705–707. [Google Scholar] [CrossRef]
- Denisov, V.I.; Denisova, I.P.; Svertilov, S.I. The nonlinear-electrodynamic bending of the x-ray and gamma-ray in the magnetic field of pulsars and magnetars. arXiv 2001, arXiv:astro-ph/0110705. [Google Scholar]
- Abishev, M.E.; Toktarbay, S.; Beissen, N.A.; Belissarova, F.B.; Khassanov, M.; Kudussov, A.S.; Abylayeva, A.Z. Effects of non-linear electrodynamics of vacuum in the magnetic quadrupole field of a pulsar. Mon. Not. R. Astron. Soc. 2018, 481, 36–43. [Google Scholar] [CrossRef]
- Kim, J.Y. Deflection of light by magnetars in the generalized Born–Infeld electrodynamics. Eur. Phys. J. C 2022, 82, 485. [Google Scholar] [CrossRef]
- Gibbons, G.; Werner, M. Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Gravity 2008, 25, 235009. [Google Scholar] [CrossRef]
- Werner, M. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relativ. Gravit. 2012, 44, 3047–3057. [Google Scholar] [CrossRef]
- Jusufi, K.; Werner, M.C.; Banerjee, A.; Övgün, A. Light deflection by a rotating global monopole spacetime. Phys. Rev. D 2017, 95, 104012. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A. Gravitational lensing by rotating wormholes. Phys. Rev. D 2018, 97, 024042. [Google Scholar] [CrossRef]
- Jusufi, K.; Sakallı, İ.; Övgün, A. Effect of Lorentz symmetry breaking on the deflection of light in a cosmic string spacetime. Phys. Rev. D 2017, 96, 024040. [Google Scholar]
- Jusufi, K.; Övgün, A.; Saavedra, J.; Vásquez, Y.; Gonzalez, P. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phys. Rev. D 2018, 97, 124024. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A. Effect of the cosmological constant on the deflection angle by a rotating cosmic string. Phys. Rev. D 2018, 97, 064030. [Google Scholar] [CrossRef]
- Javed, W.; Hamza, A.; Övgün, A. Effect of nonlinear electrodynamics on the weak field deflection angle by a black hole. Phys. Rev. D 2020, 101, 103521. [Google Scholar] [CrossRef]
- Moumni, H.E.; Masmar, K.; Övgün, A. Weak Deflection angle of some classes of non-linear electrodynamics black holes via Gauss-Bonnet Theorem. arXiv 2020, arXiv:2008.06711. [Google Scholar]
- Gaete, P.; Helayël-Neto, J. Remarks on nonlinear electrodynamics. Eur. Phys. J. C 2014, 74, 3182. [Google Scholar] [CrossRef]
- Kruglov, S.I. Notes on Born-Infeld-type electrodynamics. Mod. Phys. Lett. A 2017, 32, 1750201. [Google Scholar] [CrossRef]
- Bandos, I.; Lechner, K.; Sorokin, D.; Townsend, P.K. Nonlinear duality-invariant conformal extension of Maxwell’s equations. Phys. Rev. D 2020, 102, 121703. [Google Scholar] [CrossRef]
- Kruglov, S.I. On generalized ModMax model of nonlinear electrodynamics. Phys. Lett. B 2021, 822, 136633. [Google Scholar] [CrossRef]
- Belmar-Herrera, S.; Balart, L. Charged black holes from a family of Born-Infeld-type electrodynamics models. Mod. Phys. Lett. A 2022, 37, 2250194. [Google Scholar] [CrossRef]
- Kruglov, S.I. On generalized Born-Infeld electrodynamics. J. Phys. A Math. Gen. 2010, 43, 375402. [Google Scholar] [CrossRef]
- Ahlers, M.; Gies, H.; Jaeckel, J.; Redondo, J.; Ringwald, A. Laser experiments explore the hidden sector. Phys. Rev. D 2008, 77, 095001. [Google Scholar] [CrossRef]
- Zavattini, E.; Zavattini, G.; Ruoso, G.; Polacco, E.; Milotti, E.; Karuza, M.; Gastaldi, U.; Di Domenico, G.; Della Valle, F.; Cimino, R.; et al. Experimental Observation of Optical Rotation Generated in Vacuum by a Magnetic Field. Phys. Rev. Lett. 2006, 96, 110406. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. Foundations of the New Field Theory. Nature 1933, 132, 1004. [Google Scholar] [CrossRef]
- Denisov, D.M. Effects of nonlinear electrodynamics in the magnetic field of a pulsar. Can. J. Phys. 2014, 92, 1453–1459. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J. Gravitation; W. H. Freeman and Company: New York, NY, USA, 1971. [Google Scholar]
- Ray, D. Introducing Einsteins Relativity; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1972. [Google Scholar]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Jusufi, K. Gravitational deflection of relativistic massive particles by Kerr black holes and Teo wormholes viewed as a topological effect. Phys. Rev. D 2018, 98, 064017. [Google Scholar] [CrossRef]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces: Revised and Updated, 2nd ed.; Courier Dover Publications: Mineola, NY, USA, 2016. [Google Scholar]
- Klingenberg, W. A Course in Differential Geometry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 51. [Google Scholar]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 2016, 94, 084015. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, T. Light bending by nonlinear electrodynamics under strong electric and magnetic field. J. Cosmol. Astropart. Phys. 2011, 2011, 017. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef]
- Yernazarov, T.; Abishev, M.; Aimuratov, Y. Correspondence of gamma radiation coming from GRBs and magnetars based on the effects of nonlinear vacuum electrodynamics. In Proceedings of the Sixteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG16 Meeting on General Relativity, Online, 5–10 July 2021; World Scientific: Singapore, 2023; pp. 4401–4409. [Google Scholar]
- Pereira, J.P.; Coelho, J.G.; de Lima, R.C. Born-Infeld magnetars: Larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy. Eur. Phys. J. C 2018, 78, 361. [Google Scholar] [CrossRef]
- Group, M.P. McGill Online Magnetar Catalog. Available online: http://www.physics.mcgill.ca/~pulsar/magnetar/main.html (accessed on 17 November 2020).
- Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. APJS 2014, 212, 6. [Google Scholar] [CrossRef]
- Shabad, A.E.; Usov, V.V. Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity. Phys. Rev. D 2011, 83, 105006. [Google Scholar] [CrossRef]
- Avetisyan, Z.; Evnin, O.; Mkrtchyan, K. Democratic Lagrangians for Nonlinear Electrodynamics. Phys. Rev. Lett. 2021, 127, 271601. [Google Scholar] [CrossRef] [PubMed]
- Kruglov, S.I. Nonlinear arcsin-electrodynamics. Ann. Der Phys. 2015, 527, 397–401. [Google Scholar] [CrossRef]
Magnetar | |||||
---|---|---|---|---|---|
Name | |||||
CXOU J010043.1–721134 | − | ||||
4U 0142+61 | − | ||||
SGR 0418+5729 | |||||
SGR 0501+4516 | − | ||||
SGR 0526–66 | − | ||||
1E 1048.1–5937 | − | ||||
1E 1547.0–5408 | − | ||||
PSR J1622-4950 | − | ||||
SGR 1627–41 | − | ||||
CXOU J164710.2-455216 | − | ||||
1RXS J170849.0-400910 | − | ||||
CXOU J171405.7-381031 | − | ||||
SGR J1745-2900 | − | ||||
SGR 1806-20 | − | − | |||
XTE J1810-197 | − | ||||
Swift J1818.0-1607 | − | ||||
Swift J1822.3-1606 | |||||
SGR 1833-0832 | − | ||||
Swift J1834.9-0846 | − | ||||
1E 1841-045 | − | ||||
3XMM J185246.6+003317 | |||||
SGR 1900+14 | − | ||||
SGR 1935+2154 | − | ||||
1E 2259+586 | − |
b | ||||
---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beissen, N.; Yernazarov, T.; Khassanov, M.; Toktarbay, S.; Taukenova, A.; Talkhat, A. Bending of Light by Magnetars within Generalized Born–Infeld Electrodynamics: Insights from the Gauss–Bonnet Theorem. Symmetry 2024, 16, 132. https://doi.org/10.3390/sym16010132
Beissen N, Yernazarov T, Khassanov M, Toktarbay S, Taukenova A, Talkhat A. Bending of Light by Magnetars within Generalized Born–Infeld Electrodynamics: Insights from the Gauss–Bonnet Theorem. Symmetry. 2024; 16(1):132. https://doi.org/10.3390/sym16010132
Chicago/Turabian StyleBeissen, Nurzada, Tursynbek Yernazarov, Manas Khassanov, Saken Toktarbay, Aliya Taukenova, and Amankhan Talkhat. 2024. "Bending of Light by Magnetars within Generalized Born–Infeld Electrodynamics: Insights from the Gauss–Bonnet Theorem" Symmetry 16, no. 1: 132. https://doi.org/10.3390/sym16010132
APA StyleBeissen, N., Yernazarov, T., Khassanov, M., Toktarbay, S., Taukenova, A., & Talkhat, A. (2024). Bending of Light by Magnetars within Generalized Born–Infeld Electrodynamics: Insights from the Gauss–Bonnet Theorem. Symmetry, 16(1), 132. https://doi.org/10.3390/sym16010132