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Abstract: We compute the weak bending angle of light within generalised Born–Infeld electrody-
namics as it passes through the equatorial plane of a magnetic dipole. We start by considering the
refractive index associated with the dipole within generalised Born–Infeld electrodynamics. Then, we
calculate the Gaussian optical curvature based on these refractive indices. Using the Gauss–Bonnet
theorem, we derive a formula to quantify the deflection angle in the presence of a strong magnetic
field from a dipole. Our results align with results obtained through traditional geometric optics
techniques, underscoring the importance of the Gauss–Bonnet theorem as a versatile tool for solving
intricate problems in modern theoretical research. We apply our theoretical deflection angle formula
to estimate the light bending in magnetars listed in the McGill catalogue, providing insights into the
behaviour of light in environments with strong magnetic fields.

Keywords: Born–Infeld electrodynamics; refractive indices; magnetar; Gauss–Bonnet theorem

1. Introduction

The nonlinear theory of the electromagnetic field was developed by Born and Infeld
to address the issue of the infinite energy associated with a point charge in classical
electrodynamics [1–3]. Additionally, nonlinearity in strong fields arises due to vacuum
polarisation in quantum electrodynamics, which is described in the classical limit by the
Euler–Heisenberg Lagrangian [4,5]. In nonlinear electrodynamics, the speed of light varies
depending on the field strength. In the Born–Infeld theory, nonlinearity becomes significant
at field strengths on the order of 1020 V/m [6], corresponding to magnetic fields of around
1011 T. Nonlinear effects in the quantum electrodynamics of a vacuum begin to manifest

themselves at critical magnetic field values of Bc =
m2

e c2

eh̄ ≈ 4.4 × 109 T.
Experimental attempts to verify nonlinear electrodynamics [7–9] are still ongoing.

However, convincing confirmations of nonlinear effects have not been achieved in lab-
oratories because of the requirement for extremely high critical-field values. However,
magnetars [10–13] provide another opportunity to test the effects of nonlinear electrody-
namics with magnetic field strengths on the order of B = 1011 T.

In geometric optics, the change in the path of light is explained by constant changes in
the refractive index. This method has been successfully employed in several works, even
when dealing with different spacetime properties. When there is a refractive-index gradient,
geometric optics methods can be applied to determine the angle of deviation [14–17].
In the case of a strong electromagnetic field, quantum nonlinear electrodynamics leads to
polarisation effects and the bending of light in a vacuum. For instance, in [18–21], the angle
of light deviation was calculated when passing through the magnetic dipole equator.
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However, an alternative method proposed by Gibbons and Werner [22] can be used to
calculate the deflection angle of light in nonlinear electrodynamics. This method is based
on the use of the Gauss–Bonnet theorem (GBT) to determine the deflection angle. In this
approach, the deflection angle is considered a global phenomenon through integration
beyond the path of light. Werner applied it to asymptotically flat stationary metrics, such
as Kerr black holes [23]. This methodological approach is more complex and uses Finsler–
Randers geometry. It also requires the application of the Nazimov technique to create
a Riemannian manifold that touches the Randers manifold [23]. It is worth noting that
Werner further adapted his method for asymptotically non-flat stationary fields, including
the presence of topological anomalies, such as a rotating cosmic string and a rotating
global monopole [24–28]. It should be noted that the GBT has also been used to determine
the deflection angle of light in the case of a weak field of a charged black hole where
nonlinearity was induced by the charge [29,30].

In our study, we employ the Gibson and Werner approach to calculate the deflection
angle in the nonlinear electrodynamics of a vacuum using an effective Riemannian manifold.
This article is structured as follows: After a brief introduction to the generalised Born–
Infeld Lagrangian (classical + quantum) given in Section 2, we investigate the effective
refractive index during the propagation of light in a background magnetic field induced
by a magnetic dipole. In Section 3, we compute Gaussian optical curvatures based on
the effective refractive index and optical metric, followed by the utilisation of the GBT
method to obtain the deflection angle. In Section 4, we implement the derived formula
for the deflection angle with reference to specific magnetars from the McGill catalogue.
In Section 5, we provide a summation of our outcomes.

2. The Refractive Index of Born–Infeld Nonlinear Electrodynamics

In recent developments within the field of electrodynamics, several models have been
introduced to extend and generalise the Born–Infeld (BI) model [31–35].

Generalised Born–Infeld nonlinear electrodynamics (GBI NED) is a theory explaining
how a straight laser beam moves through an external sideways magnetic field [36]. This
model includes two key parameters. The GBI model predicts the effect of vacuum bire-
fringence, which is when the light’s polarisation plane turns as it goes through a magnetic
field. The highest limits for the model’s parameters were determined using experimental
results from the BRST and PVLAS Collaborations [36–38].

We consider the Lagrangian density of GBI as follows [36]:

L = β2

(
1 −

√
1 +

2S
β2 − P2

β2γ2

)
, (1)

where β and γ are two different nonlinearity parameters and have the dimension of the
field strength. S, P are Lorentz invariants [1,39]. Note that Equation (1) represents the
nonlinear model of the electrodynamic theory for strong electromagnetic fields.

In addition, following notations in [36], for the small parameters β−2S and β−2γ−2P−2,
the Lagrangian density of GBI (1) becomes the approximate BI Lagrangian density with
quantum corrections that leads to the effective Lagrangian. If β ̸= γ, this model leads
to birefringence. Furthermore, when the parameters β = γ, the vacuum birefringence
vanishes, aligning with BI electrodynamics. The GBI parameters are given as

1
β2 =

1
β2

0
+

16
45

α2

m4
e

,
1

γ2 =
1
β2

0
+

28
45

α2

m4
e

, (2)

where β0 is the classical Born–Infeld parameter characterising the possible maximum value
of the field strength, α is the fine structure constant, and me denotes the electron mass.
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It is clear that when the parameter β0 → ∞, then the effective BI Lagrangian density
reduces to the Euler–Heisenberg Lagrangian, which corresponds to the one-loop corrections
in classical electrodynamics (EH NED).

The trajectory of light can be calculated through an effective index of refraction,
as proven by Kruglov [36], and for an electromagnetic wave, when its polarisation is
perpendicular and parallel to the external magnetic field B̄, the index can be written as
follows:

n⊥ =

(
1 +

B̄2

β2

)1/2

, n∥ =

(
1 +

B̄2

γ2

)1/2

. (3)

Moreover, in the case of the smallness of the parameters B̄2/β2 and B̄2/γ2, we can
write the effective indexes of refraction as

n⊥ ≈ 1 +
B2

2β2 , n∥ ≈ 1 +
B2

2γ2 . (4)

This calculation includes nonlinear effects in the order of β−2 and γ−2 approximations.
The expression shows that the refractive index directly depends on the characteristics of the
magnetic field. Therefore, in our subsequent calculations, we will focus on the background
magnetic field caused by a magnetic dipole. Furthermore, expanding the expression into a
series using the small parameters β−2 and γ−2 is sufficient for calculating the light-bending
angle caused by a magnetar. This approach is justified because the denominator in the
fraction already incorporates the nonlinear parameters into the expression, as discussed in
the works of [21,36,40]. Therefore, in Equation (4), our analysis is limited to the classical
dipole magnetic field, which can be expressed using the magnetic induction m, located at
the coordinate origin, as follows:

B̄ =
3(m · r)r

r5 − m
r3 , (5)

We will consider a simplified scenario in which the light ray passes through the
equatorial plane of the magnetic dipole, as depicted in Figure 1.

Figure 1. A diagram illustrating the bending of light when a ray of light passes through the equatorial
plane of a magnetic dipole is shown [21].
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3. The Bending Angle via the Gauss–Bonnet Theorem

Assuming that the magnetic dipole direction serves as the z-axis, denoted by m = µẑ,
the magnetic field at the equator can be expressed as follows:

B̄ = −µẑ
r3 , (6)

where r =
√

x2 + y2, and ẑ is a unit vector along the z-axis. The indices of refraction (4)
can be rewritten as

n⊥ ≈ 1 +
µ2

2β2r6 , n∥ ≈ 1 +
µ2

2γ2r6 . (7)

Several methods exist for both the approximate and exact determination of the light
deflection angle, such as the null geodesics approach, which applies either perturbation
procedures [41,42] or the direct integration of the null geodesic equations [43–45]. In partic-
ular, the motion of light in a non-uniform medium closely resembles how a physical object
moves in a potential field. This approach allows for highly accurate descriptions of how
the light’s direction changes in various spacetimes [14–17]. As a result, we can effectively
assign a refractive index to the surrounding field. In [46], the authors introduced an alterna-
tive calculation method that utilises the concept of the refractive index of optical media in
combination with the Gauss–Bonnet theorem applied to isotropic optical metrics, leading
to an exact result for the deflection angle in both Kerr and Teo wormhole geometries.

On the equatorial plane, the refractive index does not rely on the z-coordinate, im-
plying that, at the equator, B̄ = B̄(x, y). We then calculate the angle of bending in the
y-direction for the perpendicular mode, applying the weak bending approximation, as ref-
erenced in [21], using optical geometries. However, to calculate the bending angle, we will
use the Gauss–Bonnet Theorem (GBT), originally stated in [46–48].

∫∫
D
KdS +

N

∑
a=1

∫
∂Da

kgdl +
N

∑
a=1

θa = 2πχ(D). (8)

In this context, the domain D is characterised by a Gaussian curvature K, represented
by a freely orientable curved surface S with an infinitesimal area element dS. The bound-
aries of D are indicated by ∂Da, with a range from 1 to N. The geodesic curvature kg is
taken into account along the path dl, adhering to a positive convention. Furthermore, θa
signifies the jump angle, and χ(D) represents the Euler characteristic. In this instance, it
equals 1, indicating that D is located in a nonsingular region. It was shown by [49] that, in
a static spherically symmetric spacetime exhibiting asymptotic flatness, Equation (8) can be
written as

∆θ⊥ = −
∫∫ m

D
KdS. (9)

Following [46], the expression for the Gaussian optical curvature K is represented in
terms of the coordinates and the refraction index as follows:

K = −n(r)n′′(r)r − (n′(r))2r + n(r)n′(r)
n4(r)r

. (10)

Substituting the expression for the effective refractive index for the perpendicular
mode in Equation (7), we obtain the result

K =
18µ2

β2r8 . (11)
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By utilising the light-ray equation r = b/ sin φ, also using (11) and dS = n2(r)rdrdφ,
(9) becomes

∆θ⊥ = −
∫ π

0

∫ ∞

b
sin φ

18µ2

β2r8

(
1 +

µ2

2β2r6

)2

rdrdφ

≈ −
∫ π

0

∫ ∞

b
sin φ

18µ2

β2r7 drdφ. (12)

Thus, the bending-angle expression of the generalised Born–Infeld electrodynamics is

∆θ⊥ = −15π

16
µ2

β2b6 , (13)

where b is the impact parameter, and the negative sign indicates that bending occurs toward
the magnetic dipole. The above equation represents the bending angle of light in the GBI
NED on the order of the parameter β−2. This parameter incorporates two additional
parameters, as given in Equation (2). Specifically, when β0 → ∞, Equation (13) simplifies
to the bending angle of EH NED, as follows:

∆θ⊥ =
π

3
α2

m4
e

µ2

b6 , (14)

and the parallel mode becomes ∆θ∥ = (7/4)∆θ⊥. This results precisely aligns with the
bending angle derived from the Euler–Heisenberg Lagrangian [18,50].

4. Estimating the Deflection Angle of Magnetars from the McGill Catalog

As previously mentioned in the introduction, despite the challenges associated with
conducting laboratory experiments to test the effects of nonlinear vacuum electrodynamics,
which requires the generation of extremely high critical fields, there exists a distinctive
opportunity to study these phenomena. This opportunity is presented by observational
astrophysics. The most remarkable magnetic fields known in the observable universe are lo-
cated in neutron stars known as magnetars. In the modern era, 29 magnetars have been dis-
covered within our galaxy, and 2 have been found outside of it [51]. Among these, 26 have
been officially classified as magnetars, while 5 are considered potential candidates [51,52].
The McGill Online Magnetar Catalog [53,54] has greatly facilitated the creation of a distri-
bution map using the Aitoff–Hammer projection, and it is clear that magnetars align along
the galactic plane, with their positions represented by black crosses in Figure 2.

Figure 2. Distribution map of the magnetars in Aitoff projection [55].
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Table 1 shows the numerical estimate of each bending angle ∆θ⊥ in Equation (17) for
the arbitrary values rs and the magnetic fields corresponding to 24 galactic magnetars [55].

Table 1. Numerical estimation of each bending angle in Equation (17) for the arbitrary values rs and
the magnetic fields corresponding to 24 galactic magnetars [52,55].

Magnetar Bs b = rs b = 3 rs b = 6 rs b = 10 rs
Name ∆θ⊥ ∆θ⊥ ∆θ⊥ ∆θ⊥

CXOU J010043.1–721134 3.93 × 1010 − 6.65 × 10−5 1.04 × 10−6 4.85 × 10−8

4U 0142+61 1.34 × 1010 − 7.74 × 10−6 1.21 × 10−7 5.64 × 10−9

SGR 0418+5729 6.10 × 108 1.17 × 10−5 1.60 × 10−8 2.51 × 10−10 1.17 × 10−11

SGR 0501+4516 1.87 × 1010 − 1.51 × 10−5 2.35 × 10−7 1.10 × 10−8

SGR 0526–66 5.60 × 1010 − 1.35 × 10−4 2.11 × 10−6 9.85 × 10−8

1E 1048.1–5937 3.86 × 1010 − 6.42 × 10−5 1.00 × 10−6 4.68 × 10−8

1E 1547.0–5408 3.18 × 1010 − 4.36 × 10−5 6.81 × 10−7 3.18 × 10−8

PSR J1622-4950 2.74 × 1010 − 3.23 × 10−5 5.05 × 10−7 2.36 × 10−8

SGR 1627–41 2.25 × 1010 − 2.18 × 10−5 3.41 × 10−7 1.59 × 10−8

CXOU J164710.2-455216 6.59 × 109 − 1.87 × 10−6 2.92 × 10−8 1.36 × 10−9

1RXS J170849.0-400910 4.68 × 1010 − 9.44 × 10−5 1.47 × 10−6 6.88 × 10−8

CXOU J171405.7-381031 5.01 × 1010 − 1.08 × 10−4 1.69 × 10−6 7.88 × 10−8

SGR J1745-2900 2.31 × 1010 − 2.30 × 10−5 3.59 × 10−7 1.68 × 10−8

SGR 1806-20 1.96 × 1011 − − 2.59 × 10−5 1.21 × 10−6

XTE J1810-197 2.10 × 1010 − 1.90 × 10−5 2.97 × 10−7 1.39 × 10−8

Swift J1818.0-1607 3.54 × 1010 − 5.40 × 10−5 8.44 × 10−7 3.94 × 10−8

Swift J1822.3-1606 1.36 × 109 5.81 × 10−5 7.97 × 10−8 1.25 × 10−9 5.81 × 10−11

SGR 1833-0832 1.65 × 1010 − 1.17 × 10−5 1.83 × 10−7 8.55 × 10−9

Swift J1834.9-0846 1.42 × 1010 − 8.69 × 10−6 1.36 × 10−7 6.33 × 10−9

1E 1841-045 7.03 × 1010 − 2.13 × 10−4 3.33 × 10−6 1.55 × 10−7

3XMM J185246.6+003317 4.07 × 109 5.20 × 10−4 7.14 × 10−7 1.12 × 10−8 5.20 × 10−10

SGR 1900+14 7.00 × 1010 − 2.11 × 10−4 3.30 × 10−6 1.54 × 10−7

SGR 1935+2154 2.18 × 1010 − 2.05 × 10−5 3.20 × 10−7 1.49 × 10−8

1E 2259+586 5.88 × 109 − 1.49 × 10−6 2.33 × 10−8 1.09 × 10−9

Following the notation in [21], the total bending angle caused by magnetars can be
expressed in the order of the impact parameter:

∆θ = ∆θ1 − ∆θ2 + ∆θ3, (15)

where ∆θ1 represents the bending angle caused by gravitational mass, and ∆θ2 and ∆θ3 are
the bending angles including the NED effect.

Now, let us provide an estimate of the bending angle for the magnetars listed in Table 1.
We will consider the deflection of light by a typical neutron star with a mass of M = 1.4M⊙.
To this end, we first restore all normalised units and rewrite the expressions for the angle of
deviation from Equation (14):

∆θ⊥ =
α2π

3m4
e

(
h̄3ε0

c3

)( µ0

4π

)2
(

µ2

b6

)
. (16)

It is more useful to express ∆θ⊥ in terms of the magnetic induction on the magnetar
surface and the critical QED field strength as

∆θ⊥ =
αB2

s r6
s

12B2
c b6 , (17)

where rs is the radius of the magnetar, Bs =
( µ0

4π

)( µ

r3
s

)
, Bc = m2

e c2/eh̄ = 4, 4 × 109 T, and

α = e2/4πε0h̄c.
In [21], it was demonstrated that near the equator of the magnetar, the bending caused

by the NED effect, as represented by ∆θ3, is comparable to gravitational lensing by mass
∆θ1. Meanwhile, the ∆θ2 term is negligible in conditions where the maximum surface
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magnetic field Bs = 1011 T and b ≃ rs. In our case, we calculated the bending angle of
the NED term under the condition B < Bc (which is the equivalent condition for the GBI
parameter B̄2/β2 < 1); therefore, Equation (17) is not applicable to most of the magnetars
in the list of the McGill catalogue at the magnetar surface b ≃ rs.

To observe the NED effect on the bending angle ∆θ3, it is reasonable to compare
it with the bending angle caused by the gravitational term for the same object in the
same context. We limit our discussion to the weak bending angle of light, i.e., to cases
of weak gravitational bending where the impact parameter is large in comparison to the
Schwarzschild radius, denoted by b = rs ≫ rg. Then, in Equation (15), the main term for
the bending angle due to gravitational mass can be expressed as follows:

∆θ1 =
4GM
c2b

. (18)

Table 2 shows the gravitational term of the deflection angle, which is calculated by
∆θ1 in Equation (15), in the regime of a weak gravitational field corresponding to the
impact parameters.

Table 2. The gravitational term of deflection angle, which is calculated by ∆θ1 in Equation (18).

b b = rs b = 3 rs b = 6 rs b = 10 rs

∆θs 8.28 × 10−1 2.76 × 10−1 1.38 × 10−1 8.28 × 10−2

5. Conclusions

In this work, we studied the effect of a weak bending angle in the context of NED.
By using the refractive index corresponding to the dipole in the framework of GBI, we
calculated the Gaussian optical curvature based on the refractive indices. Using the obtained
Gaussian optical curvature and the principles of the Gauss–Bonnet theorem, we derived
a formula for the deflection angle in a magnetic field of a dipole. Despite the fact that
the same results can be obtained using the trajectory equation based on geometric optics
principles, the Gauss–Bonnet theorem demonstrates itself to be a robust mathematical tool
in modern theoretical research, which can be applied to consider more complex cases when
standard methods for obtaining solutions collide with significant difficulties.

The expression for the deflection angle obtained theoretically was applied to magnetars
from the McGill catalogue to estimate the order of magnitude of the light deflection angle
of the NED term. As a result, at the surface of the star (b = rs), because the magnitude
of the magnetic field is greater than that of the characteristic magnetic field Bs > Bc (or
does not satisfy the condition for the NED parameter B̄2/β2 < 1 in Equation (4)), the above
expression Equation (17) is applicable only to a few magnetars, i.e., SGR 0418+5729, Swift
J1822.3-1606, and 3XMM J185246.6+003317. At long distances, this calculation is suitable for
determining the bending angle’s NED term for all magnetars listed in the McGill catalogue.
The results obtained are significantly smaller than the gravitational component of the
bending angle, even for a weak gravitational field, when considering the same distance.

However, for a complete and correct comparison of the astrophysical effects of NED,
it is necessary to calculate an exact combined metric. For this reason, in future works, we
will consider the deflection of a light beam by modified Lagrangians [56–58].
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