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Abstract: The ligand field theory is an early and yet perennial class of quantum models accounting
for the optical and magnetic properties of metal ions as a function of their environment in compounds.
In the context of modern quantum chemistry, in order to predict properties from first principles, the
ligand field paradigm can serve to illuminate the black box of heavy calculations, extracting heuristic
meaning and causal roots. The genuine ligand field models are tacitly affected by an artificial feature,
so-called holohedrization. It induces an inversion symmetry, even in cases where the local geometry
does not show this element. This aspect received little attention over decades of using the ligand
field Hamiltonians. In this work, we systematically investigate, assisted by state-of-the-art ab initio
computer experiments, whether holohedrization is a hidden drawback of early models or if it also
appears in realistic modeling. We found that the holohedrization trend also appears when using data

from modern ab initio calculations.
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1. Introduction

This work concerns a class of models pertaining to quantum mechanics applied to
problems regarding optical and magnetic properties due to metal ions embedded in molecu-
lar compounds or solid-state lattices. The molecular entities forming the environment of the
metal ions in molecules and crystals are called ligands [1,2]. Aiming to establish a causal re-
lationship between properties and the geometry of local structure around a given metal ion,
the ligand field (also called crystal field) theory [3,4] is a crude phenomenological model
that appeared immediately after the birth of quantum mechanics. The “phenomenological”
epithet denotes a rather simplified conceptual framework, retaining the physical essence of
a given problem, based on parameters that are not computed from first principles but are
accessible by adjustment to certain experimental data. To designate the same situation, the
ligand field (LF) models are said to be based on effective Hamiltonians, suggesting that
the underlying parameters are efficiently accounting for the main features of the system.
The LF paradigm forms the conceptual ground of the structure—property qualitative cor-
relation in the chemistry of d-type transition metal elements [5] and f-type compounds
(lanthanides) [6]. The electronic structure regime usually experienced by metal ions in
molecular compounds (called complex combinations) or lattices (oxides, halides, etc.) is
called coordination bonding [1,2]. It is characterized by a weak or moderate perturbation
of the free ion features.

It must also be added that the LF effective Hamiltonian accounts only for the one-
electron components of the electronic structure (i.e., the interaction of electrons with the
environment and their own kinetic energy). In the completion of LF methodology, the
two-electron part (equating inter-electron Coulomb and exchange effects) is borrowed
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from the spectroscopy of atoms [7], with certain adjustments of the so-called Slater—
Condon or Racah parameters [8-10]. However, in the following, we will not deal with
two-electron parameterization.

To put things into perspective, one must point out that, nowadays, quantum com-
putation methods can accurately reproduce the properties of small- and medium-sized
molecules in the so-called ab initio mode, i.e., using only theory and pure principles. At
the expense of various sorts of approximations, one may tackle larger systems. Compu-
tational methodologies developed around Schrodinger’s equation, and its Hamiltonian
representation can be grouped into a branch labeled Wave Function Theory (WFT) [11].
Another class, Density Functional Theory (DFT) [12,13], is grounded on a theorem [14]
stating that the electron density can be set as a primordial factor, provided that an operator
called an exchange—correlation functional is known. The trouble is that no exact expression
of such a conceptual panacea is available, having, in turn, tens of empirical versions. The
quest for new density functional approximations and the increasingly good performances
have led to an explosion of DFT usage and popularity in the last few decades as a practical
route for applications. While molecular systems are approachable in the WFT frame, the
applications in solid-state chemistry and physics are heavily based on DFT [15]. Aside from
dependence on empirical formulas, an intrinsic limitation of DFT is that it cannot account
for systems with degenerate ground states, e.g., molecules or atoms whose lowest levels
consist of a set of equal energies. In the spherical symmetry of atoms or high-symmetry
molecules, the degenerate ground state may occur in important situations, making this
DFT drawback a non-negligible impediment. On the other side, as statistics show, many
systems of interest lack symmetry and have a non-degenerate ground state. DFT cannot
account for excited states (e.g., the objects determining the optical properties), although
a technical trick known as Time-Dependent (TD) DFT may emulate information about a
limited number of excited states (realized by single-electron orbital promotions) [16,17].

In turn, by multi-configurational procedures, WFT describes the degenerate and
excited states, a goal coming with high demands on technical resources (time, memory, disk
space), which may become prohibitive. Despite intrinsic limitations, DFT exerts fascination
by virtue of its conceptual fundaments because electronic density is a physical measurable
object for which physical intuition has clear clues. By contrary, since WFT descends
from Schrédinger’s equation [18], it may seem to inherit the alleged lack of intuitiveness.
Although puzzling paradoxes appeared at the birth of quantum mechanics [19] and are still
vivid in modern [20-23] and actual research and debates [24,25], the WFT methodology is
quite clear; nowadays, computational chemists can go for applications without hindering
turmoil about meaning.

This overview of the large realms of computation and modeling of quantum systems
serves to shed clear light on phenomenological models and effective Hamiltonians, like
ligand field theory. According to the initial description above, these may look obsolete.
After the emergence of realistic and powerful calculations via WFT or DFT, the LF ap-
proaches apparently receded from the first line of the theoretical description of metal-based
compounds. However, LF came to a new life, rebranded as a tool to illuminate the black
box of complicated WFT calculations [26-29]. Another practical utility of LF models can
be observed with respect to the DFT frame. As previously briefed, DFT is not suited for
certain problems with degenerate or quasi-degenerate ground states and excited levels [30],
as needed in the magnetism and spectroscopy of metal ion systems. However, DFT can
be wisely conducted to set numeric experiments yielding LF parameters. Then, subse-
quently, the spectrum of states needed in the description of properties can be emulated in a
phenomenological LF frame [31-33].

From such a perspective, one may foresee the perennial value of LF phenomenological
models. Divagating a bit, one may say that the LF models, already at the venerable age
of almost one century, are here to stay for a long time. In several decades from now, DFT
will not look as we know it today. In the future, either breakthroughs in the quest for
the “holy Grail” of the exact exchange—correlation functional will create a new generation
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of DFT methods, or WFT will take over the whole realm of calculations on the wave
crest of extremely powerful new computers. But, a phenomenological method, like LF,
containing the quintessence of the physical problem at hand, will survive overall changes
in the landscape of computational techniques, safeguarding the heuristic insight aimed by
scientific inquiry.

2. Methods

The quantum calculations were performed with the GAMESS [34] suite (General
Atomic and Molecular Electronic Structure System). The calculations are intentionally
kept at the simplest level, choosing a 6-31 G basis set for Fe, F, and Cl atoms. The Gd
was treated on a SARC-ZORA basis [35]. For computer experiments, we chose metal
ions with half-filled d and f shells, i.e., d> and f’ configurations, taking Fe>* and Gd** in
idealized molecular compounds with fluoride and chloride anions. The quantum chemical
calculations were performed at the restricted open-shell Hartree-Fock level; although,
for improved convergence, we worked in Complete Active Space Self Consistent Field
(CASSCF) mode, within the trivial situation of a single high-spin state. We did not consider
DFT, aiming to maintain compatibility with tentative further analyses of systems with other
d” or f" configurations, implying degenerate or quasi-degenerate ground states and a multi-
configuration WFT treatment. The mathematical and graphical handling was performed
in Matlab-Octave [36,37] and Mathematica™ environments [38,39]. The Mathematica™
computer code is presented in the Supplementary Materials.

3. Results and Discussion
3.1. The Holohedrization in Standard Ligand Field Models

There are several varieties of ligand field models, some of which directly parameterize
the content of the Hamiltonian matrix [40—44]. Here, we will be interested in the ligand
field models proposing a Hamiltonian operator, expanded in spherical harmonics [45]. This
principle meets in a fortunate way the fact that the basic ingredients of electronic structure
methods are the atomic orbital wavefunctions, which are factorized into a radial part (with
respect to the distance from the atomic nucleus) and an angular part, consisting of spherical
harmonics. Another basic LF principle is that it addresses a limited basis, which is usually
made of d-type or f-type atomic orbitals. Then, the basis on which the LF operator obtains
its matrix representation is also made of spherical harmonics, Y; (6, ¢), with the [ =2 or
I = 3 quantum numbers. The radial part is absorbed in the parameters of the model so that
the LF handles only the polar coordinates:

9, Kmax k
Vir(6,¢) = k=K, Zqz_k Bll; Zk,q(gz ®), )

where B’qC values are adjustable to a specific problem and Z; ; are combinations of spherical
harmonics, conventionally defined as follows [46]:

47
2k+1

Zig(0,9) =\ s (YViea @, 9) + (=1)"Yi_4(6.9)), (2b)

4 .
Zi106,0) = [ g (Yoa0,0) — ()i 0,0)), 20

where g > 0. The above expressions are meant to lead to real spherical harmonics, convert-
ing the exp(—ig¢) factor in sine and cosine, respectively. In standard ligand field models,
there is a limitation on the k indices in the above summation. Namely, confined to the goal
of using the above operators on a 2/ + 1-dimensional basis consisting of the Y} ,, set (with
the integer m running from —/ to I), the ligand field operator is confined to k components,

Zko(0,9) = Yio(6, @), (2a)
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from 2 to 2I. More specifically, LF is applied either on d orbitals (I = 2, with k running only
on k =2 and k = 4) or the f shell (I = 3, with k =2, 4, and 6).

The filtering of k indices occurs because of selection rules at the integration of the
Y*l,m-Yk,q-Yl,m/ triads over angular coordinates m and m’ forming the line and column
entries in the Hamiltonian matrix of the V; operator. Such integrals are resolved with
the help of Clebsch—Gordan coefficients or the so-called Wigner’s 3j symbols [47]. Thee
k =0 term is discarded in the LF treatments because it gives a constant shifting of all the
eigenvalues. Eliminating the k = 0 component leads to eigenvalues having their average
fixed at zero.

In more detail, the construction of the ligand field Hamiltonian by spherical harmonics
comes from the initial idea that it describes Coulomb interactions between one electron at
the metal ion and the charge distribution in the environment, equated via the multipolar
expansion of the electronic cloud on the surrounding atoms [3,4].

Observing that only spherical functions with even k are entering the Hamiltonian, we
arrive at the title problem of holohedrization [40]. The inversion symmetry refers to the
change in a function when the Cartesian coordinates (x, y, z) are switched to (—x, —y, —2z).
On a sphere of unitary radius, or at the transformation to solid spherical harmonics, when
performing the conversion to Cartesian coordinates, 7 YimB, @) = Crm(x, y,2) = Y m(x, y,
z), the sets can be labeled according to their behavior at inversion. Thus, the odd ! indices
show odd parity Y} u,(—x, —y, —z) = =Y} ,,(x, y, z), while the even [ functions are invariant
at inversion, Y, (—x, —y, —z) = Y m(x, y, z). Then, the Hamiltonian in Equation (2) is
invariant at inversion, irrespective of the set of BI,; quantities. Since the B’,; coefficients are
enciphering the nature of the local geometry around the described metal ion (the so-called
coordination polyhedron) [1,2], there is no way to account for the lack of an inversion
center. The Hamiltonian cannot discriminate whether a perturbation exerted from a vertex
comes from its place, (x, y, z) or its antipode, (—x, —y, —z). This means that the LF model
artificially doubles a polyhedron by its inversion image. In other words, LF may describe
the systems at a higher symmetry than their actual geometry.

The V.r(6, @) operator can be drawn as a colormap on the surface of the sphere, as
a function of angular coordinates. Although quite obvious, this sort of illustration is not
used in textbooks or research approaches of LF problems. Figure 1 offers a picturesque
demonstration of holohedrization. Namely, the symmetry of the LF potential for a half
of octahedron, {MXj3}, provide that the XMX angles are kept at 90° (ortho-axiality), is
the same as a rigorous octahedron {MXg}. On the left side in Figure 1, one observes six
equivalent maxima (represented in red) under the ligands. The blue areas correspond to
minima between ligands. For the ortho-axial {MX3}, LF yields six equivalent areas with
maxima. Because holohedrization is unable to distinguish between opposed directions on
a line, the perturbation exerted by a ligand on an M-X axis is smeared as if produced by
half of a ligand on both ends, (X/2)-M-(X/2). Then, the above-described {MX3} pyramid
can be formalized as an {M(X/2)s} octahedron. Dividing the perturbation power of three
ligands on six positions, the overall potential becomes shallower, as suggested by the paler
coloration of the map on the right-side panel compared with the left one.

Holohedrization appears when the LF Hamiltonian is tailored for a basis made of
a single type of pure atomic orbitals, either d or f. Thus, in the matrix representation,
the standard LF operator implies either (d;|V¢|d;) or (f;|Vir|f;) elements. To have non-
vanishing matrix elements, the symmetry of the operator must match those of d x d or f x f
product representations. The d orbitals show even parity at inversion (labeled by subscript
8), while the f functions undergo a sign change (labeled by u). Despite the different parity
of d versus f shells, their products behave with g-type parity (because g = ¢ x g and
¢ =u x u), demanding this symmetry for the operator itself. Thus, holohedrization appears
from the empirical premise of having as a basis pure d or f orbitals. At the same time,
in the spirit of phenomenological approaches, it is tacitly hoped that the Hamiltonian
will include ligand contributions; the occurrence of holohedrization is largely overlooked
despite early recognition of this drawback [40]. Working within a non-empirical electronic
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structure theory, where the requirement of pure d or f basis is not imposed, does not imply
holohedrization as a necessary outcome. To check this issue, we proposed the case studies
debated in the following.

Figure 1. The color map of the ligand field potential for {MXg} regular octahedron (left side) and an
{MX3} triangular pyramid with XMX = 90° right angles (right side). The red to deep blue coloring
corresponds to ranging from maxima to minima. Note that because of the holohedrization effect, the
symmetry of the {MX3} LF map has octahedral symmetry.

The octahedral LF Hamiltonian, tailored for a d-type orbital basis, i.e., limiting the
Equation (1) to kyay = 4, is:

ViE[MXe]o, = 14v/7tDg <Y4,0(9r @)+ \/E(YM(G/ @) + Ya,4(6, (P))> : ®3)

Using symmetry, many parameters from Equation (1) are vanishing or are simplified
to a common factor, traditionally denoted as Dq. Expanding the spherical harmonics in
their trigonometric functions, one obtains:

VieMXelo, = %Dq (5 30Cos (6)% +35Cos (0)* +5Cos(4p)sin(6)* ), (@)

observing that this function is invariant at changing the coordinates to their antipodes,
namely 6 — 27t — 6, ¢ — ¢ + 7. Because of holohedrization, the LF Hamiltonian of the
ortho-axial {MXj3} is half of the octahedral one:

. 1.4
VieMXs]xvixeooe = 5V [MXelo, ®)

2 LF

Figure 1 was obtained by Equations (4) and (5) for the left- and right-side panels,
respectively, taking Dg = 1000 cm ™. In the following, we are going to explore, however,
whether more realistic representations of the effective field from ligands are still undergoing
a holohedrization effect.

The ligand field operator has the meaning of an effective field perturbing the electrons
located in the d or f orbitals of the metal ion. The true electric field exerted by the charged
ligand is not expected to show any holohedrization. Figure 2 shows the color maps of
six fluoride anions forming an octahedron compared with the tri-fluoride set, which was
obtained by keeping the ions placed on the positive sides of the Cartesian axes. The
octahedron shows the same qualitative pattern as those shown in Figure 1 for the effective
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operator in Equations (3) or (4). The ortho-axial pyramid shows a polarized map, convening
to set the positive zone in the quadrant marked by the three ligands.

{Fe}® {Fy}>
O On \\L

Figure 2. The color map of the electrostatic potential (taken with reverted sign) on a sphere of radius
1A exerted by {F6}0~ (left side) and an ortho-axial {F3}3~ (right side). In the octahedral system, the
fluoride ions are placed at 2A from the center in the +x, y, and £z directions. The atoms in {F3}3*

are placed on the +x, +y, and +z, positive axes.

The eigenvalues of the holohedrized {MX3} Hamiltonian model for d electrons, three
times —2Dgq and two times 3Dy, are also half of the octahedron, —4Dg and 6Dy, respectively,
assuming that the perturbation power of the X ligands, proportional with the Dq quantity,
is transferable between coordination units. Holohedrization is reflected in higher symmetry
of the eigenvalues pattern in the LF models which do not rely on the Hamiltonians in
Equation (1). For instance, in the Angular Overlap Model (AOM) [41,43-45], the eigenval-
ues for the {MX} octahedron are 3¢, for the doubly degenerate eg orbital set and 4e X for
the triply degenerate t5¢ functions. The AOM parameters are classified according to the
bonding capability (o,7) and ligand type (X). In the AOM, an ortho-axial {MX3} obtains the
(3/2)esX and 2e,X eigenvalues with double and triple orbital degeneracies, i.e., experienc-
ing artificial higher symmetry, by holohedrization. Obtaining an octahedral pattern (Oy)
for a case that should obey trigonal symmetry (Cs, point group, for the pyramid) is clearly
a drawback of the model.

3.2. The Partial Holohedrization Effect in Orbital Energies from Ab Initio Quantum Calculations

Let us consider some calculation examples that are idealized yet realistic. Although
more advanced options are possible, we will take as the ligand field sequence the frontier
orbitals with predominant metal ion character, which are occupied by unpaired electrons,
in the chosen computation samples. The [FeF¢]>~ unit has the following relative orbital
energies in the LF set: {0, 0, 0, 9788.57, 9788.57}, measured in cm~L. One observes the well-
known pattern that is specific for the octahedron, with a triple degenerate f5, as the lowest
level and a higher eg couple. The gap, 10Dg = 9788.57, falls in the expected range for d-type
compounds [5]. The neutral [FeFs] (enforced at the same Fe-F bond lengths, 1.984A, like in
octahedron and right F-M-F angles), yields the following LF sequence: {0, 899.85, 899.85,
7747.45, 7747.45}) cm~!. This system has C3, symmetry, with d-type orbitals spanning
the a; + 2e representations, recognizing in the above result the two doubly degenerate
e representations. Since the first three energy values (corresponding to a1 + e representation
in Cgy) from the above list are mutually close, they can be roughly assimilated to a triple
degenerate f¢ set in a quasi-octahedral pattern. Then, the energy scheme can be taken
as indicating a holohedrization trend. The Supplementary Materials show the molecular
orbitals of the [FeF;] unit, illustrating the preponderance of d-type orbitals, aside from
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small ligand tails. This is a prerequisite of manifesting holohedrization, which would be
rigorously true if the active orbitals were pure d atomic functions.

Similar conclusions are drawn by examining the case of chloride systems. The
[FeClg]o~ (with Fe-Cl = 2.556 A bond length) shows the {0, 0, 0, 6759.82, 6759.82} cm ™!
LF energies, while the [FeCl3] one obtains {0, 855.96, 855.96, 6386.72, 6386.72} cm~ L. Here,
one may see that by taking the average energy of a1 + ¢ as a pseudo-octahedral t;5, one
obtains a gap (5530.8 cm~!) that is quite far from the half of 10Dq in the rigorous octahedron
(6759.82 cm™~!). This does not literally obey the holohedrization constraint. On the other
hand, the chlorine ligand contributions in the molecular orbitals of the ligand field sequence
are relatively small, pointing to effective holohedrized behavior.

An interesting situation results if we consider lanthanide-based octahedrons and
pyramids. The [GdFg]®~ octahedral unit (with 2.556 A bond length) has a {0, 263.37, 263.37,
263.37,724.27,724.27,724.27} set of energies (in cm~!) corresponding to the split of f orbitals
in the {asy, toy, t1u} octahedral representations. Note that the order of magnitude in the
total gap is much smaller than the transition metal example, a situation that is characteristic
for lanthanides [6] because the f shell radial profile has a maximum at a point shrunk
below the ionic radius and the f-type electrons undergo only a small perturbation from
the environment. The [GdF3] hypothetical ortho-axial unit produces the following LF type
energies: {0.//109.74,109.74, 263.37/ /351.16, 351.16, 504.79} (in cm_l). The “//” delimiters
in the above list suggest the quasi-degenerate sequences assignable to the {ay,, t2y, f1y} quasi-
octahedral pattern. The active orbitals of the [GdF;] unit, depicted in the Supplementary
Materials, show negligible ligand contributions, a fact determining holohedrization.

3.3. Holohedrization in the Ab Initio Results

In the following, we will design an extended LF-like Hamiltonian using the orbital
eigenvalues and eigenvectors from ab initio calculations. Knowing the ¢; eigenvalues and
the 1p; ortho-normal eigenvectors of a quantum object, the most general formalism [7] to
design an effective Hamiltonian is the following expansion:

Herr =Y [9i)ei{yil. (6)

We used the (bra| and |ket) notations for the functions designated to form the left
and right side components of the matrix elements of the operator, (bra|H|ket), which
are integrals over the 3D space coordinates. Because of ortho-normalization, we have
(;|H|p;) = &;, and the effective operator is obtained by the reverse engineering of the
available solutions. Here, we will consider as eigenvalues the orbital energies discussed
in the previous section. Their related eigenvectors, the ; molecular orbitals, are obtained
as a linear expansion over atomic components, which will be written separately for metal
centers and ligands by p and A, respectively. The first ones are placed in origin and the
others are at {X;, Y, Z;,} Cartesian coordinates of the atoms L forming the ligands:

gbi(x,y,z) = ZMememl ion CiM 'uM(x’y’Z) + ZLeligands CiL /\L(x - XL’y —YL,z- ZL)' (7)

In the performed calculations, as in the vast majority of computational chemistry ap-
proaches, the atomic components consist of the so-called Gaussian-type orbitals
(GTOs) [48,49]. The GTOs are handled in the format of the local Cartesian coordinates
(%, y, z) of each atom, but they can also be formally expressed in the equivalent polar coor-
dinates (7, 6, ¢). Then, one may detail the dichotomy of the atomic components (with x
notation standing for both above u and A) in the radial and angular part:

x(x,y,z) = x(r,0,9) =R(L{,7) - Zim(0, 9), (8)
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the notation Zj,, represents, like in Equation (2), the conversion of Y3, complex spherical
harmonics to real forms. The GTO radial part is:

R(,C,r)=N(1,Q) ~rlexp<—§ : rz), (9a)

N, =228\ T +3/2), (9b)

where I is the well-known generalization of the factorial (gamma function) [50]. The set of
¢ parameters forms the definition of the selected basis sets, while c;j; and ¢;; are the result
of the calculation (although some pre-determined factors are also part of basis set formats).

To make an LF-like operator, one must integrate the ; molecular orbitals in
Equation (6) on radial coordinate, keeping the origin on the metal ion. As a first ap-
proximation, one may consider only the metal-based atomic orbitals since these are usually
the main part of LE-type molecular functions. In this case, the integration can be performed
analytically, obtaining a generalized ligand field operator:

VLA{:{ (91 QD) = ZMl ZMZ € CiM, CiMy * SM]er'ZlM1 Mgy (Qf (P)ZlemMz (9/ q’)/ (10

where:
SMl,MZ = S(lerClele/CMz) = /:OOR(ZMl,ng,T) -R(le,gMz,T)err, (11)
and: 1 l +l +3 I1+1h+3
(h, 01,1, 00) = EN(llrgl)N(lz/ 02) F<122> HG+0) % . (12)

The products of two spherical harmonics with /1 and I, quantum numbers can be
expanded as a sum of spherical functions running between |1; — I | and 1 + I. For complex
standard spherical functions, the expansion is performed with well-defined coefficients,
either by Wigner’s 3j symbols or Clebsch—Gordan factors [47]. For real functions, as
formulated in Equation (10), this conversion can be adapted, leading to an expansion
factored in Zj,,, spherical harmonics.

In principle, one may also realize the analytic expansion for the full molecular orbitals,
with ligand parts included. However, for practical reasons, we turned to numerical integra-
tion. In this view, we borrowed a technique employed in the making of pseudo-potentials
used in solid-state calculations [51]. The point is to express a radial integral as a sum of the
integrand over a fixed set of points, factored by their specific weights.

/r Fdr = e f(rm). (13)
We took a radial grid [52,53] that is denser at the origin and sparser at long range:
. exp(mh) —1
T'm = &Oiexp(h) 1 (14a)
_ s, exp(kh)
Wy, = h - 01y cop(h) —1° (14b)

The maximal extension, 74, and the number of the points, 7.y, are tuned by dry and
h parameters, as follows:

. 1 exp(h) —1
Nppax = int {hln (1 + rmuxp(5723> } , (15)

where int means taking the integer part. Here, we used by = 0.001 Bohr and & = 0.0211,
leading to #15x = 254 and 7y5x = 10 Bohr. The functions subjected to numerical integration
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in Equation (13) are the extensions of Formulas (10) and (11) that are used for metal-ligand
terms:

f(r) = R(Ip, Ca,v) - R(IL, Co, |r — Re|) - Y5 (B, ), (16)

where Ry, marks the position of the ligand atom L and the bold writing suggests Carte-
sian vector triads. Because of representation with respect to the L centers, the spherical
harmonics of ligands acquire a dependence on the radial part. Actually, only the 6 vari-
able has to be shifted to the L center by the r-cos(8) — | — rr | -cos(61) = Ry, relationship
(where Ry, is the metal-ligand atom distance) because ¢ is the same for the M and L
sites. The ligand-ligand analogs of the terms in Equations (1) and (6) can be neglected
because of their small coefficients and practically null overlap of their radial functions.
Although the metal-only part can be performed analytically in Equations (10)-(12), we
also worked it numerically for comparability with the extended approach, as sketched in
Equations (13)—(16).

The radial integrations from 0 to 7y, = 10 Bohr were performed on a mesh of polar co-
ordinates with Ny = 25 ticks for 6 and N, = 48 for ¢. Then, the set of {0; = (i — 1)t/(Ng — 1),
¢; =2(j — 1)t/ (Ny — 1)} grid points, containing the v;; results of the radial integration in
the different directions, is fitted by a generalization of Equation (1), allowing the spherical
harmonics to run on a large range, from k,,;, = 1 to kjuax = 10. We discarded the k = 0 function,
giving only the average of the potential on the sphere, i.e., not leading to LF splitting.

In Figure 3, one may see the results of the analysis for the [FeFs] and [GdF3] case
studies. We see, in the left-side panels, that the fingerprint of holohedrization is retained,
with local maxima in the direction of metal-ligand axes and at their antipodes. As a fine
detail, one may observe that in the [FeF3] case, the potential below the ligand is slightly
different than in the opposed part. For [GdFz], one may note that the circular profiles
corresponding to the perturbation are a bit off-centered with respect to the metal-ligand
axes. Taking the difference between the complete integration of the metal + ligand effects
and those limited to the metal ones, a non-holohedral local perturbation oriented toward
the ligands is revealed. It turns out then that the polarized behavior may appear entirely
due to ligands, but this contribution is, at least in the considered cases, relatively minor.
For the [GdF3] system, the difference map is slightly asymmetric and hearth-like shaped
because of the observed deviation of the effective potential from the Gd-F axes. This may
be because the f-type orbitals are contributing insignificantly to the chemical bonding [54].
Then, the ligands interact, in fact, with other atomic orbitals on lanthanide, the 6s, 6p, and
5d functions. An s-p or p-d hybridization on the metal may create a slight anisotropy,
modulating the ligand contributions in the octant containing the {F3} octahedral face versus
the neighboring areas. Conversely, the d-type orbitals are directly involved in the chemical
bonding of the system, maintaining the quasi-axial symmetry of the metal-ligand effects.

3.4. Constructing a Generalized Ligand Field Hamiltonian

The above results come from the direct representation of the v; data on the {0;, ¢;}
grid of points. In the following, we will complete the treatment, fitting the numeric results
into an extended series of spherical harmonics in Equation (1): the k,;, = 1 and ks = 10
limits. Taking a large spectrum of spherical functions, we arrive at an overdetermined
linear system of equations:

A-b=u, (17)

where the coefficients to be fitted are the generalized LF parameters, BZ, which are concate-
nated in one column for successive k sets, skipping the trivial k = 0:

bikig =Diikiqr = Bl (18)
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The data feeding the problem are the v;; values of the potential estimated at the
{0;, ¢;} mesh of polar coordinates, which are counted by merging the successive lines of the
vjj matrix in a single column:

UNy:(i=1)+j = UNp-(i-1)+j1 = Yij- (19)

[GdF] v:\
Figure 3. The generalized V] (0, ¢) effective ligand field potentials from ab initio calculations for

[FeF3] (top part) and [GdF3] (bottom part) hypothetical units. The left side shows the full V1 (6, ¢)
potentials (metal + ligand contributions) and the right-side panels represent the full function minus

the metal-only part.

The structure factors are obtained by estimating the whole set of real spherical har-
monics at the grid of polar points, which are arranged in the following matrix:

AN 1)+, Pikq = L0 9))- (20)

In the discussed setting, there are 1200 v;; points and 120 generalized LF coefficients

BZ of spherical harmonics, running from k;;;, = 1 to kjax = 10. The solution, in the least
square sense, is obtained by pseudo-inverse:

b=cA" .y (21a)

A" = (AT : Jl) LAl (21b)

This analysis can be applied to the full computed potential (the v;; points) or the model
confined to metal-only contributions (say, vijM points). Additionally, one may attempt the
fit on the limited sets of spherical harmonics used in the traditional ligand field, namely
k =2 and 4 for d-type elements (the [FeF3] system) or k = 2, 4, and 6 for f-type ones (the
GdF; case). Figure 4 shows the concatenated lists of the BZ coefficients with k from 1 to 10,
and, inside each k domain, g ranges from —k to k. As equated in the above linear system,
the BZ parameter occupies the k? + k + g position.
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Figure 4. The fit of the computed LF effective Hamiltonian for [FeF3] and [GdF3] numeric experiments
with a generalized range of spherical harmonics components (see Equation (1)), with k ranging from
1to 10. The values of BZ parameters are shown by vertical bars, while the abscissa shows their
ordering, first by k then g, and the resulting position is shown on a logarithmic scale. The k ranges are
marked below and above the histograms. The top insets contain results of the full effective potentials,
with metal and ligand terms. The middle panels show the approximation to metal-based components
only. The bottom shows the limitation of the k set, like in traditional LF models.

Because the coefficients at large k are small (or null, by design), it is convenient to
represent the results on a logarithmic scale, by the {logio(k? + k + q), BZ} couples. In this
way, the domains of large k indices are compressed at the right-side margin. The overview
in Figure 4 shows a relative similarity between the different fitting choices. The poorer
setting is for the graphics shown at the bottom line, with spherical harmonics limited to
the traditional LF pattern. Thus, one may note the null parameters at k = 1, 3, and for
k > 4 in the d-type case (left side of Figure 4). The f-type system yields null BZ fork=1,
3,5, and k > 6. Going to the approximation of metal-only based ab initio fit, one notes
the quenching of higher terms, with k > 4 in the Fe system and k > 6 in the Gd one. This
modeling option enables the intermediate contributions from k = 1 and 3 (left side) and
k=1, 3, and 5 (right side) terms. However, the related BZ magnitudes are small. The top
graphs, with the fully extended model, show the main contributions in the same pattern
as the previously limited fit attempts. This suggests that, despite intrinsic limitations, the
traditional LF paradigm may work well, at least in the case of systems with a pronounced
ionic character, as the chosen systems are. We collaterally reached a similar perspective
using a different methodology and other case studies [55]. At the same time, we tested
that the results on chlorine analogs, which were expected to have a lower ionic nature,
behave in a similar way to the discussed fluorine cases. The situation may change if we
take neutral polyatomic ligands, but this is a matter for further developments.

4. Conclusions

This article is a detective search that questions the issue of holohedrization, which
affects the standard ligand field phenomenological models. It means that the artificial
symmetry increases when treating a metal ion in a surrounding environment without
an inversion center; the model behaves as if the system has one. In other words, a low-
symmetry coordination polyhedron effectively acts in the ligand field approach as if it is
doubled by inversion. This issue was early recognized but received very little attention
for decades and is practically forgotten nowadays. Although ligand field models are
semiempirical, in a practical sense, can help, at a conceptual level, decrypt physical meaning
from the black box of modern quantum calculations on molecules and solid-state crystals.
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Aiming to see if the effect persists at the extension of the ligand field effective operator
with the help of state-of-the-art ab initio calculations, we embarked on a quest for an
interdisciplinary insight. For the sake of systematic progress, we selected simple case
studies. The quantum chemical calculations on idealized (yet realistic) systems were
analyzed in a non-routine manner, handling the output data with advanced mathematical
tools, analytically and numerically. We found that holohedrization also appears in extended
modeling, at least in ionic systems, when starting from orbital energies and computed
molecular orbitals as objects assignable to the ligand field phenomenology. The inquiry
remains open to debate, with us aiming to test, in the future, systems with less ionic
character and a multi-configurational approach to the debated problem.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/sym16010022/s1: Figures of molecular orbitals for the
discussed molecule. A MathematicaTM program performing the debated analysis.
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