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Abstract: We consider an alternative to dark matter as a potential solution to various remaining
problems in physics: the addition of stochastic perturbations to spacetime to effectively enforce a
minimum length and establish a fundamental uncertainty at minimum length (ML) scale. To explore
the symmetry of spacetime to such perturbations both in classical and quantum theories, we develop
some new tools of stochastic calculus. We derive the generators of rotations and boosts, along with
the connection, for stochastically perturbed, minimum length spacetime (“ML spacetime”). We find
the metric, the directional derivative, and the canonical commutator preserved. ML spacetime follows
the Lie algebra of the Poincare group, now expressed in terms of the two-point functions of the
stochastic fields (per Ito’s lemma). With the fundamental uncertainty at ML scale a symmetry of
spacetime, we require the translational invariance of any classical theory in classical spacetime to
also include the stochastic spacetime perturbations. As an application of these ideas, we consider
galaxy rotation curves for massive bodies to find that—under the Robertson–Walker minimum length
theory—rotational velocity becomes constant as the distance to the center of the galaxy becomes very
large. The new tools of stochastic calculus also set the stage to explore new frontiers at the quantum
level. We consider a massless scalar field to derive the Ward-like identity for ML currents.

Keywords: stochastic spacetime; stochastic calculus; dark energy; classical and quantum gravity

1. Introduction

The presence of dark matter and dark energy has been suggested to resolve various
remaining problems in physics. In cosmology, examples of such problems include the
observed galaxy rotation curves with velocities contrary to known laws of physics and
Hubble tension. Theories such as quantum gravity and non-commutative geometry have
been the subject of much additional research in attempts to quantize gravity and unify
the treatment of classical cosmological problems with quantum aspects of black holes and
high-energy particle physics ([1–9]).

We consider a somewhat different approach here: the addition of stochastic perturba-
tions of spacetime effectively enforcing some minimum length (ML) scale and establishing
a fundamental uncertainty at this scale. We allow for the possibility that stochastic fields
can be both classical and quantum by nature to further consider the transition point be-
tween the classical and quantum regimes. Exploring the symmetry of spacetime to such
classical-to-quantum perturbations both in classical and quantum theories requires some
new tools but introduces the possibility of new solutions.

Promoting the stochastic perturbations to quantum operators in the quantum regime
requires the formulation of canonical variables of the ML spacetime, demanding a better
understanding of partial derivatives with respect to stochastic variables. We expand
stochastic calculus by formulating the partial derivative relative to a stochastic spacetime
at minimum length scale (“ML spacetime”). We derive the connection and the generators
of translations, rotations, and boosts for ML spacetime to find that ML spacetime preserves
the metric, the directional derivative, and the canonical commutator. Finally, we find that
ML spacetime follows the Lie algebra of the Poincare group, now expressed in terms of the
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two-point functions of the stochastic fields corresponding to the fundamental uncertainty
of ML spacetime.

“Planck length”, historically synonymous with the notion of minimum length, orig-
inated via dimensional arguments linking the gravitational constant, the speed of light,
and Planck’s constant. As such, Planck length appears abstractly removed from any physi-
cal reality. Frank Wilczek, in his reply to C. Alden Mead’s letter “Walking the Planck Length
through History” [10–12], commented,

It is true and significant that the Planck length arises naturally when one considers the
ultimate limits to measurement...

The “limits to measurement” have two possible sources. The first is a measurement
error due to the technological limitations of our “meter stick”, such as an interferometer.
The second possible source of such limits is a fundamental uncertainty in spacetime,
a diffusive nature of spacetime to complement the geometry of spacetime. In this paper, we
consider only the latter.

Quantum mechanics treats spacetime as fixed. General relativity warps spacetime.
Here, we treat spacetime as uncertain at some small scale. By introducing stochastic fields
in addition to regular fields, we formulate an effective theory of a fundamental uncertainty
in spacetime.

Minimum length scale is intimately tied with the quest for a unified theory capable of
explaining the vast divergence of scales between the extremely small strength of gravity
compared to that of the strong force ([13], pg. 225). The most popular attempts at such
unification—supersymmetry and string theory—remain experimentally elusive despite the
many years dedicated to searches at particle accelerators.

Much research has focused on theories of quantum gravity at Planck scale, resulting
in an emergent spacetime. Often considering various non-commutative geometries, these
theories assume a quantized regime, with canonical commutation relationships defined by
the generalized uncertainty principle (GUP) in place of the Heisenberg uncertainty principle
(HUP). In this paper, we instead focus on introducing and developing the mathematical
fundamentals of a theory where spacetime fields are naturally classical in nature but can be
quantized. Future research of the concepts presented here once applied to problems with
strong gravitational sources, will help us answer the question of whether such classical-to-
quantum fundamental uncertainty in spacetime can lead to, or possibly relate to, emergent
gravitational fields.

We focus on situations devoid of or under extremely weak sources of gravity. This has
the additional benefit of allowing us to treat the metric as separate and distinct from the
diffusive effects of the stochastic spacetime. Potential research focusing on the effects of a
stochastic spacetime in the presence of a large source and in the region of the Schwarzschild
radius may shed some light on the complex question of how the metric may be influenced
by a stochastic spacetime. But for now, with the narrower focus of this paper, we are
free to assume very small to non-existent effects of gravitational fields with no impact on
the metric.

Stochastic fields in Langevin equations are commonly used for analyzing classical
problems in physics. In the classical regime, stochastic spacetime fields enforce an effective
ML scale often defined by the scale of the problem. Generally, these classical ML scales can
be much greater than Planck length. In the classical cosmological problems, for example,
given the present-day estimate for Hubble parameter H, its diffusive counterpart D [14],
and the vacuum temperature, ML scale can be as large as 10−1 m.

While HUP applies only in the quantum regime, in its saturated form, HUP provides
a transition point where classical stochastic fields may be quantized and where we can
thus promote the stochastic canonical variables to quantum operators. Understanding how
this quantization may come about physically—and to what extent a mix of such quantum
and classical representations of the canonical variables is possible around the transition
point—remains for further research and consideration.
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We will see that, in the quantum regime, canonical variables preserve the non-
stochastic commutation relationship, thus not requiring the extension of HUP to GUP.
In contrast, modified canonical commutation relations of various quantum gravity theories
rely on a GUP to enforce ML scale (See [8] for an excellent overview). Finally, the classical
regime lends itself to the application of the equipartition theorem, and we take advantage
of this in the case of the classic harmonic oscillator.

Over the years, various suggestions have been made about what happens at ML scale,
including the possibility that the laws of physics break down. In [14], we instead made
the assumption that the fundamental uncertainty at ML scale must be a symmetry of
spacetime: we required an invariance of the proper time functional in general relativity
to the introduction of stochastic perturbations. This allowed us to expand the Christoffel
connection in general relativity to include the diffusive effects of the fundamental ML scale
uncertainty and to ultimately suggest a means of resolving Hubble tension.

We continue to apply this approach here. Consistent with the steps taken in [14],
for any classical theory in classical spacetime, the requirement of invariance due to in-
finitesimal translations must also include a stochastic element at ML scale. As shown
in [14], adding an infinitesimal stochastic translation to the regular infinitesimal translation
leads to an extended Christoffel connection, now also a function of the two-point func-
tions of the stochastic spacetime fields. The application of the extended connection in the
Robertson–Walker (RW) metric provides for an energy momentum tensor and Friedmann
equations expanded to include the effects of stochastic diffusion in addition to geometry.
Working in a spatially local frame, the RW theory in the absence of stochastic perturbations
and the ML theory in the Minkowski metric are both conformally Minkowski. However,
together, they scale at different powers of the RW scale factor and, thus, are no longer
conformally Minkowski. We estimate the diffusive counterpart to H, D, by analyzing
available redshift data to find that, at the present time, D ∼ 1

70 H [14]. In doing so, we
resolve the Hubble tension.

Here, we take advantage of the results in [14] to consider the galaxy rotation curves
of a massive body far from the center of the galaxy ([15–21]). Under the Friedmann–
Lemaitre–Robertson–Walker metric in the limit of a very weak gravitational field, together
with the stochastic spacetime perturbations of the Robertson–Walker minimum length
theory (RWML) [14], we discover rotational velocity approaching a constant value at large
distances from the center of the galaxy, consistent with many cosmological observations.

In contrast to classical theories, quantum field theories (QFTs) must be applied in the
quantum regime of ML spacetime. We set the stage for QFTs in ML spacetime and consider
an example of a massless scalar field to derive a Ward-like identity, suggesting ML currents
(defined in (54)) decouple from massless scalar fields.

The paper is organized as follows. We begin by defining a stochastic spacetime, thus
introducing a fundamental uncertainty in spacetime as a mathematical reality. We then
consider classical problems formulated via Langevin equations in the classical regime. We
next derive the stochastic partial derivative and consider the resulting algebra of stochastic
spacetime. This allows us to promote the stochastic fields to the quantum regime. Equipped
with these derivations, we formulate maps and a connection to further allow us to consider
quantum field theories (QFTs) in ML spacetime. We consider an application of these ideas
in the classical regime to the galaxy rotation curves and take a look at the data provided in
Spitzer Photometry and Accurate Rotation Curves (SPARC) [22]. In the quantum regime,
we consider massless scalar fields. We conclude with a brief discussion of possible critiques
and a few words on future research.

Throughout the paper, we thus build on the existing, experimentally proven theories,
tools, and approaches in stochastic calculus, QFT, and general relativity (GR) by expanding
on the notion of uncertainty at ML scale and observing what the resulting math tells us.

Unless stated otherwise, we work in natural units, with a mostly positive Minkowski
metric, using Ito formalism.
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2. ML Spacetime, X̃

We begin with a simple definition of δξx as a stochastic contravariant vector field,

δξ
µ
x ∼ N (0, σξ

√
δt), ⟨δξ

µ
x ⟩ = 0 (1)

Equation (1) characterizes the stochastic spacetime vector fields as normally dis-
tributed, with a mean of zero and a standard deviation that scales with σξ

√
δt. We take δt

to represent the ML scale and σξ as the magnitude of perturbations.
Most readers are probably familiar with the concept of a random walk, where the

position of an object has a standard deviation defined by ∆r =
√

Dr∆t. In (1), it is σ2
ξ that

plays the role of Dr and thus represents the diffusive parameter for the stochastic spacetime.
Also, note that, consistent with the typical literature on random walks, the diffusive
parameter has the dimension [σ2

ξ ] = L, and therefore, [σξ ] = L
1
2 .

We require δξx to be unique to a point in spacetime, x, and we employ a less simplistic
approach to (1) to formally define the magnitude of the perturbations via a two-point
function,

⟨δξ
µ
x δξν

y⟩ = δ4(x − y) hµν
ρ δxρ (2)

Above, we take the most general form for the two-point function of the random terms
consistent with [14] and proportional to the ML scale captured by the magnitude of δx ∼ δt.

The simplest application of (2) is in an isotropic spacetime, where we might define
hµν

ρ δxρ ≡ gµνσ2
ξ δt, with g being the metric. Figure 1a provides a simplified view of such

a stochastic vector field at some point A in two-dimensional space. In this simple case,
the stochastic vector field is a two-dimensional vector in space with random elements.

We define ML spacetime, X̃, to exhibit a fundamental uncertainty corresponding to
this stochastic vector field,

x̃ = x + δξx (3)

In our analysis, we also need additional two-point functions for the kinetic stochastic terms,
which we define most generally as follows,

⟨∂αδξ
µ
x ⟩ = 0, ⟨∂αδξ

µ
x ∂βδξν

x⟩ ≡ kµν
ραβδxρ (4)

⟨δξ
µ
x ∂αδξν

x⟩ = −⟨∂αδξ
µ
x δξν

x⟩ ≡ aµν
ρα δxρ (5)

It is important to recognize that Equation (4) defines the behavior of kinetic stochastic
fields rather than spacetime stochastic fields. The resulting diffusion corresponding to these
kinetic fields has a different dimension than what the reader may be used to in dealing
with random walks in spacetime. Specifically, from (4), we see that the required dimension
for kµν

ραβ must be [kµν
ραβ] = L−1.

For a better insight into the diffusion of kinetic stochastic fields, consider an isotropic
spacetime. In this case, we may, for example, simplify (4) with kµν

ραβδxρ ≡ 2gµνδαβcξ σ2
ξ δt.

This choice of parametrization gives us a diffusive parameter D ∼ cξ σ2
ξ , where cξ is some

new parameter of dimension [cξ ] = L−2. Hence, the diffusive parameter corresponding to
kinetic stochastic fields is of dimension [D] = L−1. Note that D is of the same dimension as
the Hubble parameter H. As shown in [14], D is the diffusive equivalent to H and plays an
important role in potentially explaining the Hubble tension (see Equations (16)–(20) in [14]
for the role that diffusion parameter D plays in defining the redshift).

Alternatively, we may consider kµν
ραβδxρ ≡ 2gµνgαβcξ σ2

ξ δt. Either choice does not
impact the considerations in this paper. To gain some intuition on this topic, consider that
∂µδξα is also a normally distributed stochastic variable (a normally distributed variable
is characterized by a kurtosis equal to three times the second moment squared) in the α
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direction, regardless of the choice of µ (as illustrated in Figure 1b), albeit with a different
standard deviation. This suggests δ is the more appropriate choice, further supported by
results in [14]. A more general choice may be to take kµν

ραβδxρ ≡ 2gµνραβcξσ2
ξ δt, with ρ some

positive definite dimensionless matrix, [ρ] = L0.

(a)

(b)

(c)

Figure 1. (a) Stochastic variable in two-dimensional space at point A. (b) Partial derivative of
a stochastic variable in two-dimensional space. (c) All the stochastic vector fields at point A in
two-dimensional space.
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We make no assumptions as to whether partial derivatives of stochastic fields may
or may not be well-defined. However, we do take the approach that the point functions
involving such partial derivatives are indeed well-defined. Additionally, a reader may
recognize that the parametrization of ραβ in the classical regime is a function of the choice
of the Ito vs. Stratonovich approach and, more specifically, the choice of phase in the
definition of the derivative.

In general, for four-dimensional spacetime, each point x is thus associated with a total
of five contravariant stochastic vector fields—one for the spacetime stochastic vector and
an additional four kinetic vector fields corresponding to each partial derivative. Figure 1c
shows all the stochastic fields associated with point A for the case of two spatial dimensions.
In addition to the two-dimensional original vector field δ⃗ξA, we have the two additional
kinetic stochastic vector fields corresponding to the two partial derivatives in this example,
∂x δ⃗ξA and ∂y δ⃗ξA.

A more realistic and yet simplified approach to the assumption of an isotropic space-
time involves separating the diffusive effects in space vs. time, as performed in [14] and
described in Appendix A.

For spherical potentials, it is also necessary to formulate the spherical stochastic terms,
derived from the stochastic terms in Cartesian coordinates and described in detail in
Appendix A. It is interesting to note that in ML spacetime, r̃ obtains a diffusive term with a

singularity at r = 0, ⟨δr̃⟩ =
σ2

ξ δt
2r .

3. Langevin Equations in Classical Regime

Langevin equations allow us to consider what happens under infinitesimal changes
that include some form of uncertainty. They allow us to gain an understanding of the
impact that the uncertainty at ML scale has on the motion of a classical particle.

The uncertainty in position results in an uncertainty in momentum, and vice versa,
albeit at potentially very different scales. Figure 2 shows a particle of mass m on a world
path line parametrized by λ. This parametrization allows us to treat the classic particle’s
position and momentum as functions of time along the world line.

Figure 2. Particle on a world line.

Langevin equations for position and momentum at some time t are then given by

δx̃λ
t =

1
m

p̃λ
t δt + δξλ

t (6)

δ p̃λ
t = −∇Vδt + m ∂tδξλ

t

= −∇Vδt + m
√

cξ(δξλ
t − δξλ

t−δt), (7)
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where δξλ
t is the stochastic term, where we have defined

∂tδξλ
t ≡ √

cξ(δξλ
t − δξλ

t−δt), cξ ≡ 1
δt2 (8)

(Note, with δt the smallest time interval, we can approximate the two-point function of the
kinetic term,

⟨(∂tδξλ
t )

2⟩ = 1
δt2 ⟨(δξλ

t − δξλ
t−δt)

2⟩ =
2σ2

ξ

δt
, (9)

Parametrizing the kinetic two-point function with ⟨(∂tδξλ
t )

2⟩ = 2cξ σ2
ξ δt, as in (A2), we have

cξ = 1
δt2 in this case.) We also assume that the stochastic variables exhibit no autocorrelation:

⟨(δξλ
t )

2⟩ = σ2
ξ δt (10)

⟨δξλ
t δξλ

t−δt⟩ = 0 (11)

⟨(∂tδξλ
t )

2⟩ = 2cξ σ2
ξ δt (12)

In the simple case of a free particle, with the potential V = 0, stepping through the
process defined by (6) and (7), we obtain the following for position and momentum at some
time t relative to some earlier time t = 0 to order δt,

x̃λ
t =

1
m ∑

n
p̃λ

nδtδt + ∑
n

δξλ
nδt

≈ 1
m

pλ
0 nδt + ∑

n
δξλ

nδt (13)

p̃λ
t = pλ

0 + m
√

cξ δξλ
t (14)

Equation (13) clearly shows a random walk at ML scale, where the uncertainty
grows with the square root of time (see Appendix A.1 of [14] for further discussion on
the fundamental aspects of stochastic variables). However, (14) is not a random walk
at all! Instead, the momentum of a free particle obtains a simple uncertainty given by

∆p = m
√

cξ σ2
ξ δt = m

√
σ2

ξ

δt , which is constant through time.
While all stochastic processes are diffusive, not all stochastic processes follow a random

walk. The resulting simulated phase space diagram in Figure 3a also shows this clearly: the
uncertainty in the momentum remains bounded. Figure 3b shows the path of the particle,
with a non-discernible effect of the random walk on the position of the particle given the
scale of the momentum.

Figure 3. Simulated phase space and position through time for a free particle.
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In Appendix B, we approximate the path of a free particle of very small mass with a
null path and require the invariance of its Lagrangian to a translation in space with a corre-
sponding stochastic element. We find that the particle gains an acceleration proportional to
cξ σ2

ξ . ML spacetime acts as a diffusive force, creating an accelerating universe.
Similarly, we can simulate the phase space of two particles coupled in a harmonic

oscillator, a toy model for a Cooper pair. Figure 4a,b show the simulated phase space after
a smaller and then much greater number of steps, respectively. The uncertainty at ML scale
gives the two coupled particles a minimum expected positive separation distance.

(a)

(b)
Figure 4. Simulated phase space for a coupled harmonic oscillator after (a) 500 and (b) 10,000 steps.

Simulations of the harmonic oscillator may help us better understand what it means
for a harmonic oscillator to be quantized as a function of its frequency ω relative to

√
2cξ .

There are two possible regimes, one where ω is far smaller than
√

2cξ and the other where
the two terms scale similarly, resulting in position and momentum taking on discrete values.
Figure 5 shows an example of such a simulation.

Figure 5. Quantizing the coupled harmonic oscillator.
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In cosmology, we can take advantage of various astronomical observations to observe
the effect of very small things on very large physical phenomena, such as in the case of
Hubble tension and galaxy rotation curves. But, how do we test for other types of classical
effects of ML spacetime? An experiment analyzing the Cooper pair copper oxide may
provide the answer [23].

The addition of ML perturbations to the classical harmonic oscillator also adds en-
ergy to the system. Applying the equipartition theorem to the classical harmonic oscillator
approaching a squeezed state at the critical temperature gives us a means of roughly estimat-
ing the velocity of such perturbations at the point of classical-to-quantum regime transition.

The harmonic oscillator toy model roughly predicts the speed of the resulting ML scale
perturbations for a Cooper pair copper oxide corresponding to the critical temperature and
length described in [23] at 1.8 · 105 m

s (Appendix B provides the details of this derivation),
which favorably compares to the experimental result of 1.5 · 105 m/s [23].

Additional experiments, such as those described in [23], can be helpful in testing
this relationship at the regime transition point between the velocity of the perturbations,
critical temperature, and the length scale of the system, as well as the very existence of ML
spacetime perturbations.

But, perhaps the most definitive experiments to determine the possibility of ML effects
may be in the realm of high-energy particle physics. Answering questions such as how
the Higgs might relate to ML perturbations or whether ML perturbations play a role in
vector-like quark theories of composite Higgs models requires further theoretical research
with consequent experimental particle searches.

However, before we can even begin discussing the possible impact of ML spacetime
in high-energy particle physics, we must first develop the necessary mathematical tools
required to promote canonical stochastic variables to the quantum regime. This means, first
and foremost, gaining an additional understanding of stochastic calculus.

4. Stochastic Calculus of ML Spacetime in Quantum Regime

Stochastic calculus ([24,25]) provides us with well-understood integral relationships
(alternatively, summation relationships). For example,∫ t3

t1

dξt =
∫ t2

t1

dξt +
∫ t3

t2

dξt, t1 < t2 < t3 (15)

or the two-point function relationship,

⟨dξtdξt′⟩ = δ(t − t′)σ2
ξ dt ⇒

⟨
∫ t2

t1

dξt

∫ t2

t1

dξt′⟩ = σ2
ξ (t2 − t1) (16)

However, the derivatives of stochastic variables, as well as derivatives with respect
to stochastic variables, are generally considered ill-defined. Instead, we explicitly define
the directional derivative of a stochastic variable as well as derive the partial derivative
in stochastic ML spacetime by taking advantage of the extremely small magnitude of
stochastic perturbations.

Classical theories in classical spacetime must be invariant under infinitesimal transla-
tions. However, even in classical spacetime, we must now require that the infinitesimal
translations also include ML uncertainty. For example, requiring invariance of the proper
time functional in general relativity to Planck scale uncertainty allows ML diffusive effects
to play an important role in addition to that of the metric. Together, geometry and diffusion
offer a potential solution to Hubble tension [14].

In requiring an invariance of a classical theory to an infinitesimal translation with ML
uncertainty, we are readily equipped to apply the available tools of stochastic calculus.
In contrast, to apply QFTs in ML spacetime, we are forced to introduce new extensions to
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stochastic calculus. We ultimately see that ML spacetime preserves the metric, the direc-
tional derivative, and the canonical commutator.

In classical spacetime, the directional derivative of some function ϕ(x) in ϵ direction is
defined as

ϵµ∂µϕ(x) = ϕ(x + ϵ)− ϕ(x) (17)

This definition applies to any function of x and thus also applies to a stochastic
variable,

ϵµ∂µδξα
x = δξα

x+ϵ − δξα
x (18)

In classical spacetime, we can Taylor expand any function of x around a particular
value. This is equally applicable to a function of x̃,

ϕ(x̃) = ϕ(x + δξx) = ϕ(x) + δξα
x ∂αϕ(x)

+
1
2

δξα
xδξ

β
x ∂α∂βϕ(x), (19)

where we go out to second order in stochastic variables, i.e., first order in δx.
While we clearly know how to take partial derivatives of a function of x, how do we

take “stochastic partial derivatives” of a function of x̃, ∂̃α ≡ ∂
∂x̃α ? Applying the chain rule

to a partial derivative of a function in x̃ gives us

∂µϕ(x̃) = ∂̃αϕ(x̃) ∂µ x̃α, (20)

where ∂̃ is yet to be defined. Since

∂µ x̃α = gα
µ + ∂µδξα

x , (21)

we have

∂µϕ(x̃) = ∂̃αϕ(x̃) (gα
µ + ∂µδξα

x)

= ∂̃µϕ(x̃) + ∂µδξα
x ∂̃αϕ(x̃), (22)

and thus,

∂̃µϕ(x̃) = ∂µϕ(x̃)− ∂µδξα
x ∂̃αϕ(x̃) (23)

To solve for ∂̃, we apply (23) iteratively, keeping terms to order δx,

∂̃µϕ(x̃) = ∂µϕ(x̃)−

∂µδξα
x {∂αϕ(x̃)− ∂αδξ

β
x ∂̃βϕ(x̃)}

= {∂µ − ∂µδξα
x ∂α + ∂µδξα

x ∂αδξ
β
x ∂β} ϕ(x̃) (24)

We thus obtain the stochastic partial derivative (the stochastic partial derivative can
be generalized to any stochastic variable as long as the perturbations remain small):

∂̃µ = ∂µ − ∂µδξα
x ∂α + ∂µδξα

x ∂αδξ
β
x ∂β (25)

Consider two applications.
First, the stochastic partial derivative of x̃ is given by

∂̃µ x̃ρ =

{∂µ − ∂µδξα
x ∂α + ∂µδξα

x ∂αδξ
β
x ∂β}(xρ + δξρ)

= gρ
µ (26)
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We see that ML spacetime preserves the metric

∂µxρ = ∂̃µ x̃ρ = gρ
µ (27)

Second, consider the directional derivative in ML spacetime along ϵ̃, where ϵ̃ connects
two points in ML spacetime, as shown in Figure 6,

ϵ̃α = ϵα + δξα
x+ϵ − δξα

x = ϵα + ϵβ ∂βδξα
x (28)

⇒ ϵ̃µ∂̃µ = ϵµ∂µ (29)

ML spacetime also preserves the directional derivative.
Equipped with the new tools of stochastic calculus, we can consider the algebra of

ML spacetime.

Figure 6. Classical and ML four vectors between two points, x and y.

5. ML Spacetime Algebra

We formulate the generator of rotations and boosts in ML spacetime (to order δx):

J̃µν = (−i)(x̃µ∂̃ν − x̃ν∂̃µ)

= (−i){(xµ∂ν − xν∂µ) + (δξµ∂ν − δξν∂µ)

− (xµ ∂νδξα − xν ∂µδξα)∂α

− (δξµ ∂νδξα − δξν ∂µδξα)∂α

+ (xµ ∂νδξα
x ∂αδξ

β
x − xν ∂µδξα

x ∂αδξ
β
x ) ∂β} (30)

Our algebraic derivations can be simplified by the choice of frame. We choose to work
in a local frame by setting x = 0 without any loss of generality. After a bit of algebra,
we find that

[ J̃µν, J̃ρσ] = (−i)(gνρ J̃µσ − gνσ J̃µρ

− gµρ J̃νσ + gµσ J̃νρ) (31)

[ J̃µν, p̃ρ] = i(gµρ p̃ν − gνρ p̃µ) (32)

[ p̃µ, p̃ν] = 0, (33)

where p̃ = i∂̃.
ML spacetime follows the Lie algebra of the Poincare group free of any conditions

on the values for the two-point functions. It can be useful to take expectation values and
express the generators in terms of two-point functions of ML spacetime. When we do so in
a local frame, x = 0, we obtain
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⟨∂̃µ⟩ = ∂µ + kαβ
σµαδxσ∂β (34)

⟨ J̃µν⟩ = Jµν + (−i)(gµρaνα
σρ − gνρaµα

σρ)δxσ∂α (35)

Finally, we find that the canonical commutator is conserved:

[x̃µ, p̃ν] = [xµ, pν] (36)

The generators of boosts and rotations in ML spacetime follow the commutation
rules of Lorentz algebra. While this is encouraging, requiring relativistic invariance of ML
spacetime in QFT is not enough. We must also understand how to formulate connections
and covariant derivatives in ML spacetime.

6. Quantum Field Theory (QFT) in ML Spacetime

In order to consider QFT in ML spacetime, we must first construct the maps between
classical and ML spacetime. These maps allow for the construction of the connection in
ML spacetime, both with and without additional background fields. In the absence of
any additional background fields, we show that the covariant derivative in ML spacetime
equals the stochastic partial derivative in ML spacetime, D̃µ → ∂̃µ, just as in the case of
classical spacetime, Dµ → ∂µ.

The map from classical to ML spacetime, Tδξx : X −→ X̃, is readily obtained from (19):

Tδξx ϕ(x) = ϕ(x̃) (37)

Tδξx = 1 + δξα
x ∂α +

1
2

δξα
xδξ

β
x ∂α∂β (38)

However, the map from ML to classical spacetime is clearly not given by T−δξx as
T−δξx Tδξx ̸= 1. Instead, we can construct the map T̃−δξx : X̃ −→ X by requiring that
T̃−δξx Tδξx = Tδξx T̃−δξx = 1:

T̃−δξx ϕ(x̃) = ϕ(x) (39)

T̃−δξx = 1 − δξα
x ∂α + δξα

x ∂αδξβ ∂β +
1
2

δξα
xδξ

β
x ∂α∂β

= 1 − δξα
x ∂̃α +

1
2

δξα
xδξ

β
x ∂̃α∂̃β (40)

Equipped with the maps that allow us to move easily between the two spacetimes, we
are ready to formulate the covariant derivative and the connection. The connection in ML
spacetime must follow the regular transformation laws ([26–28]),

U(x̃ + ϵ̃, x̃) = Tδξx+ϵ
U(x + ϵ, x)T̃−δξx (41)

In the limit ϵ −→ 0, we have

U(x̃ + ϵ̃, x̃) −→ Tδξx U(x, x)T̃−δξx = Tδξx T̃−δξx = 1, (42)

as required. In the absence of any additional fields, U(x + ϵ, x) = 1, we are left with

U(x̃ + ϵ̃, x̃) = Tδξx+ϵ
T̃−δξx

= 1 + ϵα {∂αδξβ ∂β − ∂αδξβ ∂βδξρ ∂ρ}, (43)

where we have taken advantage of the directional derivative of a stochastic variable (18)
and the formulations of map operators.

The covariant derivative in ML spacetime can now be written as

ϵµD̃µϕ(x + δξx) =

ϕ(x + ϵ + δξx+ϵ)− U(x̃ + ϵ̃, x̃)ϕ(x + δξx), (44)
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and with

x + ϵ + δξx+ϵ = x̃ + ϵ̃ (45)

ϕ(x̃ + ϵ̃) = (1 + ϵ̃α∂̃α)ϕ(x̃) = (1 + ϵα∂α)ϕ(x̃) (46)

and (43), we obtain D̃ = ∂̃, as expected in the absence of additional fields.
With the above, we set the stage for applications of QFTs in ML spacetime.
We next consider two applications: galaxy rotation curves in the classical regime and

a massless scalar field in the quantum regime.

7. Galaxy Rotation Curves

For any classical theory in classical spacetime, the requirement of invariance under
infinitesimal translations must now also include a stochastic element at ML scale. In general
relativity, the one universal law, u2 = −1, gives us the proper time functional. Under invari-
ance due to infinitesimal translations—including ML scale uncertainty—it provides us with
the extended Christoffel connection and a redshift defined not just by the Hubble parameter
H but also its diffusive counterpart D originating from the fundamental uncertainty at ML
scale [14].

In [14], we developed the RWML theory working in a spatially local frame and in the
absence of any gravitational sources. In order to better understand galaxy rotation curves,
we reconsider RWML theory, now in the limit of a very large radius and thus also in the
weak gravity limit.

Also, in [14], we found that the redshift under RWML is a function of not only H
but also D. In contrast, a massive body in the presence of a weak gravitational field has a
radial velocity and angular momentum that are entirely functions of H. We find that the
radial velocity is extremely small and approximately given by Ṙ = HR, while its angular
momentum grows slowly with time according to L̇ = HL. The presence of the diffusive
effect (D ̸= 0) makes these new dynamics possible. However, D plays no role in defining
the radial velocity and the growth of the angular momentum of a massive body at the
periphery of a galaxy. Furthermore, the rotation velocity V of a massive body, in the limit
of very large R, becomes constant.

To see the above, we consider the RWML universe, just as in [14] but now in spherical
coordinates, with the choice of a frame at θ = π

2 . The extended Christoffel connection terms
provided in [14] (see Equations (A51–55) with κ ≈ 0 in [14]) can be written in spherical
terms, where we assume a weak gravity limit. From [14], we also know that diffusion in
time is far smaller in magnitude than diffusion in space (in terms of the diffusion parameters
defined in [14], this means that we take σ2

ϵ ≈ 0). Given these assumptions, we now have

Γ̃t
rr =

1
r2 Γ̃t

ϕϕ = aȧ + 3cξ σ2
ξ (47)

where a is the RW metric scale factor. To obtain the propagation velocity of a massive
particle, we use the geodesic equation expressed in terms of dt rather than the proper time,
as explained in Equation (9) in [29], which we repeat here:

d2xµ

dt2 = −Γ̃µ
αβ

dxα

dt
dxβ

dt
+ Γ̃0

αβ

dxα

dt
dxβ

dt
dxµ

dt
(48)

The above Equations (47) and (48) provide us with the equation of motion for the
radius R, given in [29], (see [29], Appendix A) but now expanded to also include the effects

of diffusion, D =
cξ σ2

ξ

a2 :

R̈ = −GM
R2 + Rϕ̇2 + H2R + 3D(Ṙ − HR)3

+ 3D(Ṙ − HR)R2ϕ̇2 (49)
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where the Hubble parameter H ≡ ȧ
a and where we have made the assumption that

Ḣ = ä
a − H2 ≈ 0. If we further take H2 ≈ 0 and retain only terms dominant in R as R gets

extremely large, we obtain

R̈ ≈ 3D(Ṙ − HR)R2ϕ̇2 (50)

Assuming that the radial acceleration is approximately zero, the above gives us
Ṙ = HR and, thus, the solution for R over time: R = aR0, where R0 represents the effective
radius of the galaxy. Note that this solution also gives us R̈ = H2R ≈ 0, thus justifying
our assumption of near zero radial acceleration. Finally, without ML effects, i.e., with
D = 0, the above term disappears, and we are back to the classical means of obtaining the
radial velocity. But, D > 0 provides new dominant terms in R and, thus, another set of
dynamics altogether.

The second equation of motion is for ϕ:

Rϕ̈ = −2(Ṙ − HR)ϕ̇ − HRϕ̇, , (51)

which reduces to the following upon taking advantage of the solution for R:

ϕ̈ = −Hϕ̇ (52)

We thus have ϕ̇ = ϕ̇0
a . Together, the two solutions give us a rotational velocity,

V = Rϕ̇ = R0ϕ̇0, which is constant both in time and distance to the center of the galaxy.
Finally, we also find that angular momentum grows with time at a rate of the Hubble
constant: L̇ = 2RṘϕ̇ + R2ϕ̈ = HL.

We take a look at 175 disk galaxies and perform a simple analysis using SPARC [22]
rotation curve data. The data sample provides the stellar mass estimates based on an
analysis of the atomic hydrogen (H1) gas, the H1 radius R for each galaxy at each point
of rotational velocity observation, and the corresponding velocity estimate along the flat
part of the rotation curve (see Table 1 of [22] and the description on page 2). Figure 7 is
a plot of all the velocity observations for each galaxy across R. It is clear that there are
some galaxies where the radius is quite large. We select such galaxies and show the plot in
Figure 8. As our theory suggests that the rotational velocity is constant for each galaxy far
away from the center, we estimate this asymptotic velocity corresponding to each galaxy
by averaging galaxy velocities for R > 40 kpc.

We find that a simple average of the asymptotic velocity outperforms both Newtonian
and MOND regressions. Figure 9 shows a plot of velocity across the chosen galaxies in
terms of the maximum radius of observation for each galaxy, which we use as a proxy
for the present-day radius of the galaxy. Figure 10 shows the velocity with respect to the
galaxy stellar mass, along with the average and the MOND fitted curve. We also perform a
log regression of the velocity to stellar mass to find that the p-value is zero, just as in the
case of Newtonian and MOND regressions. Granted, this is a very simplistic and selective
analysis, but it does appear to suggest that the galaxy’s asymptotic velocity, when analyzed
across galaxies, is not a function of stellar mass.

Equation (49) is extremely interesting and may make us wonder about scenarios
in which −3DHV2R becomes dominant, corresponding to an equation of motion for a
harmonic oscillator. But, to properly treat problems in QFT, we must use appropriate
covariant derivatives derived via (41) and (44) in a corresponding algebra to ensure gauge
invariance. We next consider the simplest possible application in QFT, the case of a massless
scalar particle.
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Figure 7. Rotational velocity for all 175 galaxies in the SPARC [22] database.

Figure 8. Rotational velocity for the selected galaxies from the SPARC [22] database.
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Figure 9. Average rotational velocity (R > 40 kpc) across galaxy radius (max R used as a proxy).

Figure 10. Average rotational velocity (R > 40 kpc) across galaxy stellar mass.

8. Ward-like Identity for ML Currents

The action for a free massless scalar particle in ML spacetime is given by L(x̃) =
(∂̃ϕ(x̃))2. Requiring the uncertainty of the Planck spacetime as a symmetry of the system
gives us ⟨δL⟩ = ⟨L(x̃)−L(x)⟩ = 0. After a bit of algebra, we find that

⟨(∂̃ϕ(x̃))2⟩ = (∂ϕ(x))2+

a[αβ]
ρµ δxρ ∂µϕ(x) ∂α∂βϕ(x) (53)
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The diffusive term in (53) is the ML spacetime current,

a[αβ]
ρµ δxρ|α=β = ⟨δξα ∂µδξβ⟩ − ⟨∂µδξα δξβ⟩

≡ i(jδξ)µ, (54)

which is non-zero only for α = β. In momentum space, (54) gives us

k · jδξ = 0, (55)

where k is the four-momentum of the scalar field passing through the ML spacetime. Note
that on-shell ∂2ϕ in (53) equals zero for a zero mass field. Ward-like identity suggests that
off-shell a massless scalar field decouples from ML currents.

9. Potential Critiques

Perhaps nature is entirely deterministic and there is no fundamental uncertainty, even
at Planck scale? To continue with Frank Wilczek’s comments in his reply to C. Alden
Mead’s letter “Walking the Planck Length through History” [10–12],

... refined length measurement requires large momentum, according to Heisenberg’s
uncertainty principle, but when the momentum becomes too large, its gravitational effect
becomes strong, curving spacetime and distorting the interval one seeks to measure. Thus
a fundamental difficulty arises in resolving lengths below the Planck scale.

By treating the ML scale in the quantum regime with a stochastic approach, we may
be obscuring a deterministic reality and missing out on some important relationships we
have yet to understand. On the other hand, the “failure of our measuring tools” at Planck
scale might hide a deeper (perhaps stochastic) reality at the smallest of scales.

10. Conclusions

Some quantum gravity theories allow for an uncertainty in the energy-momentum
tensor with an emergent ML spacetime. In contrast, we focus not on gravity but instead on
a stochastic spacetime. We formulate the emergence of a diffusive universe in the classical
regime, which can be tested. Initial results warrant additional deeper analysis and research.
In the quantum regime, we set the stage for QFT applications.

It is worth noting that the Stratonovich scheme is typically the choice for interval
parametrization in physics applications. For example, path integral formulation in quantum
mechanics and the QFT Wilson loop construction in the infinitesimal form [27] both use the
Stratonovich approach. The choice of Ito vs. Stratonovich formalism does not impact the
ideas presented in this paper but does impact the parametrization of two-point functions for
classical Langevin processes. The contingency of parametrization on the choice of approach
is itself an interesting topic not covered in this discussion but worth further consideration.
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Appendix A. ML Spacetime 2-Point Functions

The two-point functions in (2), (4), and (5) can be greatly simplified by separating out
the uncertainty in time vs. space and applying the results of [14], which show the magnitude
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of uncertainty in time, σϵ, as far smaller than the magnitude in spatial coordinates. With the
approximation σ2

ϵ ≈ 0, under the Minkowski metric, we can write

⟨δξ0δξ0⟩ ≈ 0, ⟨δξ iδξ j⟩ = gijσ2
ξ δt (A1)

We can also greatly simplify the two-point functions for the kinetic stochastic terms:

⟨∂αδξ0∂βδξ0⟩ ≈ 0, ⟨∂αδξ i∂βδξ j⟩ = gijcσ2
ξ δt (A2)

In dealing with spherical potentials, we must derive the corresponding spherical ML
spacetime. In this case, with the choice of θ = π

2 and with the above two-point function
simplifications, we have

r̃ = r +
σ2

ξ δt

2r
+ δξr

r,ϕ, ⟨δξr
r,ϕ⟩ = 0, ⟨(δξr

r,ϕ)
2⟩ = σ2

ξ δt (A3)

ϕ̃ = ϕ + δξ
ϕ
r,ϕ, ⟨δξ

ϕ
r,ϕ⟩ = 0, r2⟨(δξ

ϕ
r,ϕ)

2⟩ = σ2
ξ δt, (A4)

where

δξr = cosϕ δξx + sinϕ δξy (A5)

rδξϕ = −sinϕ δξx + cosϕ δξy (A6)

Note that, in spherical coordinates, the ML radius obtains a singularity at r = 0
proportional to the diffusive parameter σ2

ξ .

Appendix B. Free Classical Particle and Coupled Harmonic Oscillator

The Lagrangian for a free classical particle,

L =
1
2

mẋ2, (A7)

under the translation x → x + δx + δξ gives us

⟨δL⟩ = m(−ẍδx + cξ σ2
ξ δt) (A8)

Under a Minkowski metric for a null path of a massless particle, δt ∼ δx. If we here
assume a very small mass to approximate a null path, we obtain ẍ ∼ cξσ2

ξ . Planck scale
uncertainty gives the particle an acceleration: the diffusive effect of uncertainty has the
effect of a force (note, to simulate Langevin Equations (6) and (7) under the constraint of an
invariant Lagrangian, we must set −∇V = 2cξ σ2

ξ ).
We use SI units for the remainder of this section.
In the case of a coupled harmonic oscillator as a toy model for a Cooper pair, the La-

grangian under infinitesimal translations with ML uncertainty gives a new contribution to
the energy of the classic coupled harmonic oscillator with frequency ω. The Lagrangian in
one spatial dimension, under spacetime perturbations, acquires an additional harmonic
oscillator at ML scale:

⟨L̃⟩ = L+
1
2

m⟨(∂tδξt)
2 − ω2(δξt)

2⟩ (A9)

Energy obtains a new contribution from the ML perturbations:

∆E =
1
2

m(2cξ σ2
ξ + ω2σ2

ξ )δt =
mσ2

ξ

δt
(1 +

(ωξ δt)2

2
) (A10)

If we assume ωδt << 1, we are left only with the kinetic diffusive term. In this case,
applying the equipartition theorem for a single spatial dimension, ∆E = 1

2 kBT, at the
critical temperature corresponding to the point of classical-to-quantum transition, we have
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∆x ∼
√
⟨(δξt)2⟩ =

√
σ2

ξ δt (A11)

∆p ∼ m
√
⟨(∂tδξt)2⟩ = m

√
2cξσ2

ξ δt = m

√
2σ2

ξ

δt
(A12)

With HUP approximately saturated, ∆x∆p = h̄
2 , we obtain

mσ2
ξ ∼ h̄

2
√

2
(A13)

Tc ∼
√

2vh̄
kBδl

, (A14)

where v = δl
δt is the excitation velocity and δl the length scale defined by the problem.

For the Cooper pair experiment in [23], we have δl ∼ 30, Tc = 328 K, obtaining
v = 1.8 · 105 m

s . This rough estimate can be compared to the experimental observation of
v = 1.51 · 105 m

s [23].
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