Exact Solutions of Population Balance Equation with Aggregation, Nucleation, Growth and Breakage Processes, Using Scaling Group Analysis
Abstract
:1. Introduction
2. Admitted Scaling Group
3. Results: Explicit Exact Solutions
3.1. Case
3.2. Case
3.3. Case
3.4. Case
3.5. Case
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podgórska, W. Population Balance Equation. In Multiphase Particulate Systems in Turbulent Flows-Fluid-Liquid and Solid-Liquid Dispersions; CRC Press: New York, NY, USA, 2020; pp. 7–64. [Google Scholar]
- Yeoh, G.H.; Cheung, C.P.; Tu, J.Y. Multiphase Flow Analysis Using Population Balance Modeling: Bubbles, Drops and Particles; Butterworth Heinemann: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Ramkrishna, D.; Singh, M.R. Population balance modeling: Current status and future prospects. Annu. Rev. Chem. Biomol. 2014, 5, 123–146. [Google Scholar] [CrossRef] [PubMed]
- Ramkrishna, D. Population Balances: Theory and Applications to Particulate Systems in Engineering; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Wang, K.; Yu, S.; Peng, W. Extended log-normal method of moments for solving the population balance equation for Brownian coagulation. Aerosol Sci. Technol. 2019, 53, 332–343. [Google Scholar] [CrossRef]
- Wang, K.; Peng, W.; Yu, S. A new approximation approach for analytically solving the population balance equation due to thermophoretic coagulation. J. Aerosol Sci. 2019, 128, 125–137. [Google Scholar] [CrossRef]
- Cameron, I.T.; Wang, F.Y.; Immanuel, C.D.; Stepanek, F. Process systems modelling and applications in granulation: A review. Chem. Eng. Sci. 2005, 60, 3723–3750. [Google Scholar] [CrossRef]
- Shafiet, Y.; Ghazanfari, M.H.; Seyyedsar, S.M. A study of liquid drainage rate from foam with population balance equation: Impact of bubble evolution. Colloid Polym. Sci. 2018, 296, 1097–1108. [Google Scholar] [CrossRef]
- Kapur, P.C. Kinetics of granulation by non-random coalescence mechanism. Chem. Eng. Sci. 1972, 27, 1863–1869. [Google Scholar] [CrossRef]
- Adetayo, A.A.; Ennis, B.J. Unifying approach to modeling granule coalescence mechanisms. Aiche J. 1997, 43, 927–934. [Google Scholar] [CrossRef]
- Hulburt, H.M.; Katz, S. Some problems in particle technology: A statistical mechanical formulation. Chem. Eng. Sci. 1964, 19, 555–574. [Google Scholar] [CrossRef]
- Patil, D.P.; Andrews, J.R.G. An analytical solution to continuous population balance model describing floc coalescence and breakage—A special case. Chem. Eng. Sci. 1998, 53, 599–601. [Google Scholar] [CrossRef]
- Lage, P.L.C. Comments on the analytical solution to continuous population balance equation with coalescence and breakage–the special case with constant number of particles. Chem. Eng. Sci. 2002, 57, 4253–4254. [Google Scholar] [CrossRef]
- Mccoy, B.J.; Madras, G. Analytical solution for a population balance equation with aggregation and fragmentation. Chem. Eng. Sci. 2003, 58, 3049–3051. [Google Scholar] [CrossRef]
- Pinar, Z.; Dutta, A.; Bény, G.; Öziş, T. Analytical solution of population balance equation involving aggregation and breakage in terms of auxiliary equation method. Pramana J. Phys. 2015, 84, 9–21. [Google Scholar] [CrossRef]
- Hasseine, A.; Bart, H.J. Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes. Appl. Math. Model. 2015, 39, 1975–1984. [Google Scholar] [CrossRef]
- Meleshko, S.V. Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and Analytical Techniques with Applications to Engineering; Springer: New York, NY, USA, 2005. [Google Scholar]
- Grigoriev, Y.N.; Ibragimov, N.H.; Kovalev, V.F.; Meleshko, S.V. Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Lin, F.; Flood, A.E.; Meleshko, S.V. Exact solutions of population balance equation. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 378–390. [Google Scholar] [CrossRef]
- Lin, F.; Meleshko, S.V.; Flood, A.E. Symmetries of population balance equations for aggregation, breakage and growth processes. Appl. Math. Comput. 2017, 307, 193–203. [Google Scholar] [CrossRef]
- Lin, F.; Meleshko, S.V.; Flood, A.E. Exact solutions of the population balance equation including particle transport, using group analysis. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 255–271. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, Q. Exact solutions of population balance equations for breakage and growth processes, using group analysis. Appl. Math. Comput. 2020, 368, 1–14. [Google Scholar] [CrossRef]
- Zhou, L.; Meleshko, S.V. Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials. Int. J. Non Linear Mech. 2015, 77, 223–231. [Google Scholar] [CrossRef]
- Zhou, L.; Meleshko, S.V. Invariant and partially invariant solutions of integro-differential equations for linear thermoviscoelastic aging materials with memory. Contin. Mech. Thermodyn. 2017, 29, 207–224. [Google Scholar] [CrossRef]
- Zhou, L.; Meleshko, S.V. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory. J. Appl. Mech. Tech. Phys. 2017, 58, 587–609. [Google Scholar] [CrossRef]
- Mkhize, T.G.; Govinder, K.; Moyo, S.; Meleshko, S.V. Linearization criteria for systems of two second-order stochastic ordinary differential equations. Appl. Math. Comput. 2017, 301, 25–35. [Google Scholar] [CrossRef]
- Long, F.; Karnbanjong, A.; Suriyawichitseranee, A.; Grigoriev, Y.N.; Meleshko, S.V. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 350–360. [Google Scholar] [CrossRef]
- Grigoriev, Y.N.; Meleshko, S.V.; Suriyawichitseranee, A. Exact solutions of the Boltzmann equations with a source. J. Appl. Mech. Tech. Phys. 2018, 59, 189–196. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Meleshko, S.V.; Rudenko, O.V. Group analysis of evolutionary integro-differential equations describing nonlinear waves: The general model. J. Phys. A Math. Theor. 2011, 44, 1–21. [Google Scholar] [CrossRef]
- Suriyawichitseranee, A.; Grigoriev, Y.N.; Meleshko, S.V. Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 719–730. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kovalev, V.F.; Pustovalov, V.V. Symmetries of integro-differential equations: A survey of methods illustrated by the Benny equations. Nonlinear Dyn. 2002, 28, 135–153. [Google Scholar] [CrossRef]
- Temimi, H.; Ansari, A.R.; Siddiqui, A.M. An approximate solution for the static beam problem and nonlinear integro-differential equations. Comput. Math. Appl. 2011, 62, 3132–3139. [Google Scholar] [CrossRef]
No. | Explicit Exact Physical or Unphysical Solutions |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Yang, Y.; Yang, X. Exact Solutions of Population Balance Equation with Aggregation, Nucleation, Growth and Breakage Processes, Using Scaling Group Analysis. Symmetry 2024, 16, 65. https://doi.org/10.3390/sym16010065
Lin F, Yang Y, Yang X. Exact Solutions of Population Balance Equation with Aggregation, Nucleation, Growth and Breakage Processes, Using Scaling Group Analysis. Symmetry. 2024; 16(1):65. https://doi.org/10.3390/sym16010065
Chicago/Turabian StyleLin, Fubiao, Yang Yang, and Xinxia Yang. 2024. "Exact Solutions of Population Balance Equation with Aggregation, Nucleation, Growth and Breakage Processes, Using Scaling Group Analysis" Symmetry 16, no. 1: 65. https://doi.org/10.3390/sym16010065
APA StyleLin, F., Yang, Y., & Yang, X. (2024). Exact Solutions of Population Balance Equation with Aggregation, Nucleation, Growth and Breakage Processes, Using Scaling Group Analysis. Symmetry, 16(1), 65. https://doi.org/10.3390/sym16010065