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Abstract: Population balance equations may be employed to handle a wide variety of particle
processes has certainly received unprecedented attention, but the absence of explicit exact solutions
necessitates the use of numerical approaches. In this paper, a (2 + 1) dimensional population balance
equation with aggregation, nucleation, growth and breakage processes is solved analytically by
use of the methods of scaling transformation group, observation and trial function. Symmetries,
reduced equations, invariant solutions, exact solutions, existence of solutions, evolution analysis of
dynamic behavior for solutions are presented. The exact solutions obtained can be compared with
the numerical scheme. The obtained results also show that the method of scaling transformation
group can be applied to study integro-partial differential equations.

Keywords: integro-partial differential equation; population balance equation; scaling group; exact
solution
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1. Introduction

The areas of applications of population balance equations (PBEs) [1–6] and the ref-
erences therein are more and more extensive, including gene regulatory processes, cell
growth, division, differentiation, death processes, biochemistry and molecular biology, agri-
culture engineering, astrophysics and astronomy and so on. A general (2 + 1)-dimensional
PBE [4] is given by

∂ f (x, t)
∂t

+
∂

∂x
[G(x, t) f (x, t)] = ψ( f , x, t), (1)

where x is the internal coordinate, it denotes the size of particles. t represents the time.
f (x, t) is an average number density. G(x, t) is the growth rate of particle size x. The source
ψ( f , x, t) denotes the contribution to f (x, t) of the change in the number of particles, owing
to particle aggregation, nucleation, growth and breakage [1–4]. A (2 + 1)-dimensional
homogeneous PBE is presented by (1) if the source term ψ( f , x, t) = 0.

In the following paragraph, it is of interest to consider the particulate processes for
the particle population distributed according to their mass are frequently encountered in
applications [1–8] and the references therein. A (2 + 1)-dimensional PBE [4] with particle
aggregation, nucleation, growth and breakage processes is written
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∂ f (x, t)
∂t︸ ︷︷ ︸

average number density

+
∂

∂x
[G(x, t) f (x, t)]︸ ︷︷ ︸

growth due to coating(layering)

=
1
2

∫ x

0
K(x − y, y) f (x − y, t) f (y, t) dy︸ ︷︷ ︸

birth due to aggregation

−

f (x, t)
∫ ∞

0
K(x, y) f (y, t) dy︸ ︷︷ ︸

death due to aggregation

+
∫ ∞

x
v(y, t)b(y, t)P(x|y) f (y, t) dy︸ ︷︷ ︸

birth due to breakage

− b(x, t) f (x, t)︸ ︷︷ ︸
death due to breakage

, (2)

where v(x, t) denotes an average number of particles on breakage of a particle of size
x. b(x, t) is the breakage rate or breakage frequency of particles at time t. In general,
the breakage rate coefficient function b(x, t) is increasing with respect to the size of the
fragmenting particle. P(x|y) is the probability of the particles of size y breaking into the
particles of size x, which satisfies the normalization conditions∫ y

0
P(x|y) dx = 1, P(x|y) = 0, x > y. (3)

All of which are assumed to be time independent, but size dependent.
K(x, y) is the aggregation frequency for particle pairs of mass x and y [4]. The choice of

kernel can dramatically affect the rate of coalescence and thereby the shape of the predicted
granule size distribution. K(x, y) has a nonnegative symmetry property, that is,

K(x, y) = K(y, x) ≥ 0.

Various intriguing and significant aggregation kernels K(x, y) originating from in industrial
applications are homogeneous [4–10], that is, one can find an exponent γ satisfies

K(ax, ay) = aγK(x, y), (4)

where every a, x, y > 0, γ denotes the degree of homogeneity. For instance:

K(x, y) = k0, k1(x + y), k2xy, k3

( 1
x
+

1
y

)
,

k4

xy
, (5)

where the kinetic coefficients ki(i = 0, · · · , 4) are positive real constants. Using the property (4),
one has

xKx(x, y) + yKy(x, y) = γK(x, y). (6)

Hence, the general solution to Equation (6) is presented by

K(x, y) = yγK̄
( x

y
)
, (7)

where K̄ is an arbitrary function of one variable.
Suppose that the average number of particle breakage v(x, t) is an arbitrary positive

constant. The growth rate G(x, t) and breakage rate b(x, t) are both homogeneous with
respect to particle size x, that is, which satisfy

G(λx, t) = λδG(x, t), b(λx, t) = λκb(x, t),

where δ, λ and κ are constants. In particular, the following kinetic functions

G(x, t) = gxn, v(x, t) = ν, P(x|y) = 1
y

, b(x, t) = kxn−1 (8)

are considered in this work, where g, ν, k and n are positive constants, the probability den-
sity function P(x|y) = 1

y satisfies the normalization conditions (3). In addition, assuming
that y = xs, and using (4) or (7), Equation (2) under the constrain (8) can be simplified to
the following form
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∂ f (x, t)
∂t

+ gxn ∂ f (x, t)
∂x

=
1
2

xγ+1
∫ 1

0
K(1 − s, s) f (x(1 − s), t) f (xs, t) ds −

f (x, t)
∫ ∞

0
K(x, y) f (y, t) dy + νk

∫ ∞

x
yn−2 f (y, t) dy − (k + gn)xn−1 f (x, t). (9)

If f = f (x, t) is any solution of Equation (9), then it has a property that population
density vanishes for infinite-sized particles, which means the values of f (x, t) approach
0 as x approaches ∞, that is, f (∞, t) = 0. The regularity condition can be defined as

G(∞, t) f (∞, t) = 0. (10)

Equation (10) does not insist that the number density function f (x, t) itself vanishes at
infinite mass if the growth rate function G(x, t) vanishes for large particles. The boundary
conditions and initial condition for Equation (9) are

f (0, t) = f (x, t)
∣∣
x=0, f (∞, t) = 0, f (x, 0) = f (x, t)

∣∣
t=0.

Moments [11] are mathematical formulations that allow us to calculate various prop-
erties of the particle size distribution function f (x, t). The jth moment Mj(t)(j = 0, 1) of
the particle size distribution f (x, t) is defined as

Mj(t) =
∫ ∞

0
xj f (x, t) dx, j = 0, 1, (11)

where M0(t) is the average total number of particles per unit volume of physical space in
the system. M1(t) is the total volume fraction of all particles.

It is relatively easy to establish the model (2), but it is typically difficult to search for
exact solutions, except for using numerical methods, for instance, see the literature [2–4,7],
whereas we would prefer to have explicit exact solutions that can describe phenomena
in chemical engineering and other fields of nonlinear science. Analytical solutions of
PBE (2) with zero growth rate (that is, G(x, t) = 0) and simultaneous breakage and co-
alescence for a special case were presented in [12–15]. Exact solutions of PBE (2) with
aggregation, nucleation, growth and breakup for the particular cases were considered by
using the method of adomian decomposition in [16]. However, at present, the explicit exact
solution of Equation (9) has not been reported in the modern literature.

The developed Lie group theory [17,18] presents an approach for computing operators
of integro-partial differential equations. In recent years, the developed Lie group analysis
was applied to search for explicit exact solutions of PBEs [19–22] and solve integro-partial
differential equations, stochastic equations and delay equations [23–32]. The essential
obstacle of this approach is in searching for the general solutions of the determining
equations, the approaches of solving determining equations of integro-partial differential
equations depend on the studied equations, there is no general approach for solving
determining equations of integro-partial differential equations [19–31].

The purpose of this work is to present an analytical technique for PBE (9) and to search
for explicit exact solutions, in particular, physical explicit exact solutions. The methods
of Lie group analysis [17,18] have already been developed to solve PBEs [19–21], and the
references therein. However, it seems that none of the literature makes use of the method of
scaling transformation group to find explicit exact solutions of PBE (9), except that which
has been used in [19] for the simple homogeneous PBEs. Therefore, in the current work,
explicit exact solutions of PBE (9) are investigated analytically by the method of scaling
transformation group. Firstly, the admitted scaling group of PBE (9) will be obtained.
Finally, explicit exact solutions, invariant solutions, and reduced equations of PBE (9) will
be constructed.

The paper is structured as follows. In Section 2, a search for symmetries of PBE (9) is
investigated using a scaling transformation group. In Section 3, explicit exact solutions,
invariant solutions and reduced equations of PBE (9) are considered. At the same time,
explicit exact unphysical solutions are presented. Dynamic behavior evolution analysis
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of particle size distribution for solutions is also given. In the Section 4, some conclusions
are made.

2. Admitted Scaling Group

The complete symmetries of Equation (9) are typically laborious to be found with
the approach of developed Lie group theory [17,18]. Conversely, the admitted groups of
Equation (9) are considered with scaling group [17–19] in this section. Let us consider the
following scaling group

t̄ = taλ1 , x̄ = xaλ2 , f̄ = f aµ, (12)

and equation

∂ f̄ (x̄, t̄)
∂t̄

+ gx̄n ∂ f̄ (x̄, t̄)
∂x̄

=
1
2

x̄γ+1
∫ 1

0
K(1 − s, s) f̄ (x̄(1 − s), t̄) f̄ (x̄s, t̄) ds

− f̄ (x̄, t̄)
∫ ∞

0
K(x̄, ȳ) f̄ (ȳ, t̄) dȳ + νk

∫ ∞

x̄
ȳn−2 f̄ (ȳ, t̄) dȳ − (k + gn)x̄n−1 f̄ (x̄, t̄), (13)

where a is an arbitrary real group parameter, λ1, λ2 and µ are constants. If the transfor-
mation group (12) is admitted by Equation (9), then the admitted operator of Equation (9)
is written

X = λ1t
∂

∂t
+ λ2x

∂

∂x
+ µ f

∂

∂ f
. (14)

Using the transformations (12), one has

f̄ (x̄, t̄) = aµ f
(

x̄a−λ2 , t̄a−λ1
)

. (15)

Substituting (12) and (15) into Equation (13), using the property of kernel (4), one obtains

aµ−λ1
∂ f (x, t)

∂t
+ aµ+(n−1)λ2 gxn ∂ f (x, t)

∂x

= a2µ+(γ+1)λ2
[1

2
xγ+1

∫ 1

0
K(1 − s, s) f (x(1 − s), t) f (xs, t) ds (16)

− f (x, t)
∫ ∞

0
K(x, y) f (y, t) dy

]
+ aµ+(n−1)λ2

[
νk

∫ ∞

x
yn−2 f (y, t) dy − (k + gn)xn−1 f (x, t)

]
.

Equation (16) gives

λ1 = (1 − n)λ2, µ = (n − γ − 2)λ2. (17)

Similar to the previous case, it is not difficult to demonstrate that Equation (9) admits
the following translation group Tτ0 with a real parameter τ0

Tτ0 : x̄ = x, t̄ = t + τ0, f̄ = f . (18)

Furthermore, the translation group Tτ0 corresponding generator X1 = ∂
∂t is admitted by

Equation (9). In addition, after substituting the invariance conditions (17) into (14), it
contains an arbitrary constant λ2. Therefore, it follows from (14), (17) and (18) that the
incomplete admitted operators of Equation (9) with (4) are provided by

X1 =
∂

∂t
, X2 = (1 − n)t

∂

∂t
+ x

∂

∂x
+ (n − γ − 2) f

∂

∂ f
. (19)

Remark 1. The investigation of symmetries of a new integro-partial differential equation is usually
started by using the method of scaling transformation group. On one hand, the found symmetries can
be applied to verify determining equations when we study complete group analysis of integro-partial
differential equations by use of the method of developed Lie group analysis [17,18]. On the other
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hand, the obtained symmetries can also be used to construct exact and self-similar solutions, such as
the literature [19–22].

3. Results: Explicit Exact Solutions

In this section, explicit exact solutions of Equation (9) with the kernel (5) are studied
by using generators (19) and group transformations of solutions. By means of translation
group (18) with τ0, explicit exact solutions to Equation (9) can be shifted with respect to
time t, that is,

f (x, t) = f̄ (x, t + τ0), τ0 ∈ R.

3.1. Case K(x, y) = k0

For the case of constant aggregation kernel K(x, y) = k0, in terms of (4) one derives
that γ = 0. The invariants corresponding to generator X1 are given by J1 = x, J2 = f . Thus,
an invariant solution of Equation (9) is presented by

f (x, t) = φ(x),

where φ satisfies the equation

gxn φ′ =
1
2

k0x
∫ 1

0
φ(x(1 − s))φ(xs) ds

−k0 φ
∫ ∞

0
φ(s) ds + νk

∫ ∞

x
sn−2 φ(s) ds − (k + gn)xn−1 φ. (20)

Since Equation (20) involving three different type of integrals
∫ 1

0 ,
∫ ∞

0 and
∫ ∞

x , by use
of the methods of trial function and observation [19–22], one can suppose that trial
exponential function

φ(x) = α exp(−σx), σ > 0

is a solution to Equation (20) with n = 2, where α and σ are constants, calculations of
parameters g, ν and α are performed on Matlab, which leads to g = 0, ν = 2, α = 2k

k0
. Hence,

an explicit exact solution of Equation (9) with g = 0, n = 2 is given by

f (x, t) =
2k
k0

exp(−σx), σ > 0, g = 0, n = 2, ν = 2, (21)

where recalling (11), the zeroth moment M0(t) and the first moment M1(t) are provided by

M0(t) =
∫ ∞

0
f (x, t) dx =

2k
k1σ

, M1(t) =
∫ ∞

0
x f (x, t) dx =

2k
k1σ2 ,

M0(t) = σM1(t),
dM0

dt
= 0,

dM1

dt
= 0. (22)

The results of (22) demonstrate the average total number of particles and total volume of
particles are conserved. The values of f (x, t) approach 0 as particle size x becomes large,
which implies that solution (21) satisfies the property that population density vanishes for
infinite-sized particles. Hence, the corresponding boundary conditions and initial condition
of the Cauchy problem of solution (21) are, respectively, given by

f (0, t) =
2k
k0

, f (∞, t) = 0, f (x, 0) =
2k
k0

exp(−σx), σ > 0.

Using the same methods which were used in the previous case, one can obtain explicit
exact solutions to Equation (9) with n = 2 that are presented by

f (x, t) =
(
− 12gσ

k0
x + β

)
exp(−σx), σ > 0, n = 2, (23)

where σ is a constant, analytical calculations of parameters β, k and ν are performed on
Matlab and the calculated values are, respectively, given by
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β =
36g
k0

, k = 12g, ν = 3; β =
12g
k0

, k = 2g, ν = 1; β = −48g
k0

, k = −23g, ν =
48
23

.

The zeroth moment M0(t) and the first moment M1(t) for solution (23) are presented by

M0(t) =
∫ ∞

0
f (x, t) dx =

k0β − 12g
k0σ

, M1(t) =
∫ ∞

0
x f (x, t) dx =

k0β − 24g
k0σ2 .

Remark 2. Explicit exact solutions to Equation (9) with n = 2 and constant aggregation kernel
K(x, y) = k0 are provided by (23). Whereas, in the field of practical industrial application of PBE,
the population density f (x, t) and kinetic parameters g and k are required to satisfy the constraints
f (x, t) > 0, g > 0, k > 0. For such β = − 48g

k0
, k = −23g, ν = 48

23 , the obtained solution (23)
contradict the requirements that f (x, t) > 0, g > 0, k > 0.

If n = 1, the invariants corresponding to generator X2 are presented by J1 = t, J2 = x f .
Thus, the invariant solution is presented by f (x, t) = 1

x φ(t), substituting this expression
into Equation (9), which leads to the improper integral

∫ ∞
0

1
x dx is divergent. Thus, the

invariant solution for generator X2 in this case can not be obtained.
If n = 1, the invariants corresponding to generator X2 +

1
α X1, α ̸= 0 are provided by

J1 = x exp(−αt), J2 = f exp(αt). Therefore, an invariant solution of Equation (9) is given by

f (x, t) = exp(−α(t + τ0))φ(z), z = x exp(−α(t + τ0)), n = 1, α ̸= 0,

where φ satisfies the equation

(g − α)zφ′ + (g + k − α)φ =
1
2

k0z
∫ 1

0
φ(z(1 − s))φ(zs) ds − k0 φ

∫ ∞

0
φ(s) ds + νk

∫ ∞

z
s−1 φ(s) ds.

If n ̸= 1, the invariants corresponding to generator X2 are given by J1 = xtq, J2 = t−m f ,
where q = 1

n−1 , m = n−2
1−n . Thus, an invariant solution to Equation (9) is presented by

f (x, t) = (t + τ0)
m φ(z), z = x(t + τ0)

q, q =
1

n − 1
, m =

n − 2
1 − n

. (24)

Substituting (24) into Equation (9), one can obtain that the reduced equation is given by(
gzn +

1
n − 1

z
)

φ′ =
1
2

k0z
∫ 1

0
φ(z(1 − s))φ(zs) ds

−k0 φ
∫ ∞

0
φ(s) ds + νk

∫ ∞

z
sn−2 φ(s) ds −

[
(k + ng)zn−1 − n − 2

n − 1

]
φ. (25)

Using the methods of observation and trial function [19–22], assuming that trial
exponential function

φ(z) = α exp(−σz), σ > 0

is a solution to Equation (25) with n = 2, one can derive that g = 0, α = νk
k0

, σ = (2−ν)k
2 ,

0 < ν < 2. Therefore, an explicit exact solution of Equation (9) with g = 0, n = 2 is
presented by

f (x, t) =
νk
k0

exp
[
− (2 − ν)k

2
x(t + τ0)

]
, 0 < ν < 2, g = 0, n = 2. (26)

The values of f (x, t) are close to 0 as x is close to ∞, which implies solution (26) has a
property that population density vanishes for infinite-sized particles. In addition, the
values f (x, t) approach 0 as t approaches ∞, which shows solution (26) is asymptotically
stable. The boundary conditions and initial condition for solution (26) are, respectively,
provided by

f (0, t) =
νk
k0

, f (∞, t) = 0, f (x, 0) =
νk
k0

exp
[
− (2 − ν)k

2
xτ0

]
.
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Recalling that (11) and using (26), by calculations, the zeroth moment M0(t) and the
first moment M1(t) are presented by

M0(t) =
∫ ∞

0
f (x, t) dx =

2ν

(2 − ν)(t + τ0)k0
,

M1(t) =
∫ ∞

0
x f (x, t) dx =

4ν

(2 − ν)2(t + τ0)2kk0
.

The zeroth moment M0(t) depends on t, τ0, ν and k0, but the first moment M1(t) depends
on t, τ0, ν, k0 and k. The moment functions M0(t) and M1(t) are both decreasing as time
t increases, moreover the values of Mj(t)(j = 0, 1) approach 0 as t approaches ∞, which
demonstrates the average total number and total volume of particles are decreasing as
t increases. Figure 1 interprets the moments M0(ν, t) and M1(ν, t) are both increasing
for case τ0 = 1, k = 1.5, k0 = 0.6, as ν changes from 0 to 2 at time t = 0.2. Figure 2
shows the evolution of dynamic behavior for solution (26) with ν = 0.75 and ν = 1.75 for
case τ0 = 1, k = 1.5, k0 = 0.6. Figure 3 interprets the evolution of dynamic behavior for
solution (26) with t = 0.2 and t = 1.8 for case τ0 = 1, k = 1.5, k0 = 0.6, when ν changes
from 0 to 2.

(a) M0(ν, t), t = 0.2, ν ∈ (0, 2) (b) M1(ν, t), t = 0.2, ν ∈ (0, 2)
Figure 1. Evolution of dynamic behavior of moments M0(ν, t) and M1(ν, t) for solution (26) with
τ0 = 1, k = 1.5, k0 = 0.6.

(a) f (x, t, ν), ν = 0.75, (x, t) ∈ [0, 8]× [0, 8] (b) f (x, t, ν), ν = 1.75, (x, t) ∈ [0, 8]× [0, 8]
Figure 2. Evolution of dynamic behavior for solution (26) with τ0 = 1, k = 1.5, k0 = 0.6.

(a) f (x, t, ν), t = 0.2, (x, ν) ∈ [0, 8]× [0, 2] (b) f (x, t, ν), t = 1.8, (x, ν) ∈ [0, 8]× [0, 2]
Figure 3. Evolution of dynamic behavior for solution (26) with τ0 = 1, k = 1.5, k0 = 0.6.

Remark 3. An analytical solution for PBE (9) with g = 0, K(x, y) = k0, ν = 2, P(x|y) = 1
y ,

n = 2 was developed in the literatures [12,13]. However, for the case where 0 < ν < 2, an exact
solution (26) of PBE (9) with the same remaining constraints is presented.
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Applying the methods of observation and trial function [19–22] to Equation (25), in
a similar way, one can obtain explicit exact solutions to Equation (9) with n = 2, the
corresponding boundary conditions and initial condition, the zeroth moment M0(t) and
the first moment M1(t) are, respectively, presented by

f (x, t) = [αx(t + τ0) + β] exp[−σx(t + τ0)], n = 2, (27)

f (0, t) = β, f (∞, t) = 0, f (x, 0) = (αxτ0 + β) exp(−σxτ0),

M0(t) =
∫ ∞

0
f (x, t) dx =

α + βσ

(t + τ0)σ2 , M1(t) =
∫ ∞

0
x f (x, t) dx =

2α + βσ

(t + τ0)2σ3 ,

where parameters α, β, σ and ν are given by (28), (29) and (30), respectively.

α =
12g(2g − k)

k0
, β =

12g
k0

, σ = k − 2g, ν = 1, k > 2g; (28)

α =
12g

(
7g − k − 5

√
g(13g − k)

)
k0

, β =
12

(
2g −

√
g(13g − k)

)
k0

,

σ = k − 7g + 5
√

g(13g − k), ν =
12

(
2g −

√
g(13g − k)

)
k

, 0 < k ≤ 13g;

(29)

α =
12g

(
7g − k + 5

√
g(13g − k)

)
k0

, β =
12

(
2g +

√
g(13g − k)

)
k0

,

σ = k − 7g − 5
√

g(13g − k), ν =
12

(
2g +

√
g(13g − k)

)
k

, 12g < k ≤ 13g.

(30)

Evolution of dynamic behavior for explicit exact solutions (27) are considered as follows.
Since parameters α and β can be positive or negative, if the values of f (x, t) are positive,
which is a physical solution, if the values of f (x, t) are negative, which is an unphysi-
cal solution. In terms of σ > 0, the values of f (x, t) tend to get closer and closer to 0
as t or x get closer and closer to ∞, which shows solutions (27) are asymptotically sta-
ble and have a property that population density vanishes for infinite sized particles. If
α + βσ > 0, 2α + βσ > 0, then the moments M0(t) and M1(t) decrease as t increases, which
demonstrates the average total number and total volume of particles become less and less
as t becomes more and more. Finally, they approach 0 as time t sufficiently approaches
∞. Figure 4 shows evolution of dynamic behavior of solution (27) with kinetic parame-
ters (30) and τ0 = 1, k0 = 0.3, (x, t) ∈ [0, 8]× [0, 8] for ν = 2.847, g = 0.4, k = 4.88 and
ν = 1.8462, g = 0.02, k = 0.26.

(a) f (x, t), ν = 2.847, g = 0.4, k = 4.88 (b) f (x, t), ν = 1.8462, g = 0.02, k = 0.26
Figure 4. Evolution of dynamic behavior for solution (27) with (30) and τ0 = 1, k0 = 0.3.

3.2. Case K(x, y) = k1(x + y)

Applying the property (4) to the kernel K(x, y) = k1(x + y), one finds that γ = 1. The
invariants for generator X1 are given by J1 = x, J2 = f . Hence, an invariant solution to
Equation (9) is presented by

f (x, t) = φ(x),

where the reduced equation is
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gxn φ′ =
1
2

k1x2
∫ 1

0
φ(x(1 − s))φ(xs) ds − k1xφ

∫ ∞

0
φ(s) ds

−k1 φ
∫ ∞

0
sφ(s) ds + νk

∫ ∞

x
sn−2 φ(s) ds − (k + gn)xn−1 φ. (31)

Using the methods of observation and trial function [19–22], by (31) one can derive that a
solution of Equation (9) with g = 0, n = 3, ν = 2 is given by

f (x, t) =
2k
k1

exp(−σx), g = 0, n = 3, ν = 2, σ > 0,

where the values of population density f (x, t) are close to 0 as particle size x approaches
∞, the boundary conditions and initial condition, the zeroth moment M0(t) and the first
moment M1(t) are, respectively, presented by

f (0, t) =
2k
k1

, f (∞, t) = 0, f (x, 0) =
2k
k1

exp(−σx),

M0(t) =
∫ ∞

0
f (x, t) dx =

2k
k1σ

, M1(t) =
∫ ∞

0
x f (x, t) dx =

2k
k1σ2 , M0(t) = σM1(t),

dM0

dt
= 0,

dM1

dt
= 0. (32)

Equation (32) demonstrates the average total number and total volume of particles
are conserved.

If n = 1, the invariant solutions to Equation (9) corresponding to generator X2 can not
be obtained.

If n = 1, the invariants for generator X2 +
1
α X1, α ̸= 0 are given by J1 = x exp(−αt),

J2 = f exp(2αt). Therefore, an invariant solution to Equation (9) with n = 1 is presented by

f (x, t) = exp(−2α(t + τ0))φ(z), z = x exp(−α(t + τ0)), n = 1, α ̸= 0,

where φ satisfies the equation

(g − α)zφ′ + (g + k − 2α)φ =
1
2

k1z2
∫ 1

0
φ(z(1 − s))φ(zs) ds

−k1zφ
∫ ∞

0
φ(s) ds − k1 φ

∫ ∞

0
sφ(s) ds + νk

∫ ∞

z
s−1 φ(s) ds.

If n ̸= 1, the invariants for generator X2 are presented by J1 = xtq, J2 = t−m f ,
q = 1

n−1 , m = n−3
1−n . Hence, an invariant solution to Equation (9) can be presented by

f (x, t) = (t + τ0)
m φ(z), z = x(t + τ0)

q, q =
1

n − 1
, m =

n − 3
1 − n

, (33)

where φ satisfies the equation( 1
n − 1

z + gzn
)

φ′ =
1
2

k1z2
∫ 1

0
φ(z(1 − s))φ(zs) ds − k1zφ

∫ ∞

0
φ(s) ds

−k1 φ
∫ ∞

0
sφ(s) ds + νk

∫ ∞

z
sn−2 φ(s) ds −

[
(k + gn)zn−1 − n − 3

n − 1

]
φ. (34)

Noticing that (33) and (34), with the help of the approaches of observation and trial
function [19–22], exact solutions of Equation (9) with n = 3, the boundary conditions and
initial condition, the moments M0(t) and M1(t) are, respectively, provided by

f (x, t) =
24g
k1

(1 − 2
√

gx
√

t + τ0) exp(−4
√

gx
√

t + τ0), k = 6g, ν =
5
3

, n = 3, (35)
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f (0, t) =
24g
k1

, f (∞, t) = 0, f (x, 0) =
24g
k1

(1 − 2
√

gx
√

τ0) exp(−4
√

gx
√

τ0),

M0(t) =
∫ ∞

0
f (x, t) dx =

3
√

g
k1
√

t + τ0
, M1(t) =

∫ ∞

0
x f (x, t) dx =

6g
√

g(t + τ0)− 3g
4k1(

√
g(t + τ0))3

.

f (x, t) =
(
αx

√
t + τ0 + β

)
exp

(
− σx

√
t + τ0

)
, n = 3, (36)

f (0, t) = β, f (∞, t) = 0, f (x, 0) = (αx
√

τ0 + β) exp(−σx
√

τ0),

M0(t) =
∫ ∞

0
f (x, t) dx =

α + βσ√
t + τ0σ2 , M1(t) =

∫ ∞

0
x f (x, t) dx =

2α + βσ

(t + τ0)σ3 ,

σ = 4

√
g(5ν − 12)

3ν − 4
, k =

48g
5ν − 12

, α = −48g
k1

√
g(5ν − 12)

3ν − 4
, β =

48gν

k1(5ν − 12)
,

112ν3 − 777ν2 + 1752ν − 1296 = 0. (37)

A real root of cubic Equation (37) is given by

ν =
239

1792κ
+ κ +

37
16

, κ =
3

√√
14063
2744

+
1867
28672

,

an approximate value of ν is 3.0689825. The values of f (x, t) approach 0 as t or x sufficiently
approaches ∞, which shows the obtained solutions (35) and (36) to Equation (9) with
n = 3 are asymptotically stable, and have a property that population density vanishes
for infinite-sized particles. The computed results of the moments M0(t) and M1(t) for
solutions (35) and (36), demonstrate the average total number and total volume of particles
are decreasing as t increases. Figure 5 shows evolution of dynamic behavior of solution (36)
with ν = 3.0689825 and τ0 = 1, (x, t) ∈ [0, 8] × [0, 8] for g = 0.02, k1 = 0.3, k = 0.287,
σ = 0.4534 and g = 0.2, k1 = 1, k = 2.87, σ = 1.4338.

(a) g = 0.02, k1 = 0.3, k = 0.287, σ = 0.4534 (b) g = 0.2, k1 = 1, k = 2.87, σ = 1.4338
Figure 5. Evolution of dynamic behavior for solution (36) with ν = 3.0689825 and τ0 = 1.

3.3. Case K(x, y) = k2xy

For the case of product aggregation kernel K(x, y) = k2xy, according to (4) one finds
that γ = 2. The invariants for generator X1 are given by J1 = x, J2 = f . Hence, an invariant
solution to Equation (9) can be written as

f (x, t) = φ(x),

where function φ has to satisfy the equation

gxn φ′ =
1
2

k2x3
∫ 1

0
(1 − s)sφ(x(1 − s))φ(xs) ds

−k2xφ
∫ ∞

0
sφ(s) ds + νk

∫ ∞

x
sn−2 φ(s) ds − (k + gn)xn−1 φ.
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If n = 1, the invariant solution to Equation (9) corresponding to generator X2 cannot be
obtained. However, the invariants corresponding to generator X2 +

1
α X1, n = 1, α ̸= 0 are

presented by J1 = x exp(−αt), J2 = f exp(3αt). Thus, an invariant solution of Equation (9)
with n = 1 is provided by

f (x, t) = exp(−3α(t + τ0))φ(z), z = x exp(−α(t + τ0)), n = 1, α ̸= 0,

where the reduced equation is

(g − α)zφ′ + (g + k − 3α)φ =
1
2

k2z3
∫ 1

0
(1 − s)sφ(z(1 − s))φ(zs) ds

−k2zφ
∫ ∞

0
sφ(s) ds + νk

∫ ∞

z
s−1 φ(s) ds.

If n ̸= 1, the invariants for generator X2 are presented by J1 = xtq, J2 = t−m f ,
q = 1

n−1 , m = n−4
1−n . Thus, an invariant solution to Equation (9) can be given by

f (x, t) = (t + τ0)
m φ(z), z = x(t + τ0)

q, q =
1

n − 1
, m =

n − 4
1 − n

,

where φ satisfies the equation( 1
n − 1

z + gzn
)

φ′ =
1
2

k2z3
∫ 1

0
(1 − s)sφ(z(1 − s))φ(zs) ds

−k2zφ
∫ ∞

0
sφ(s) ds + νk

∫ ∞

z
sn−2 φ(s) ds −

[
(k + gn)zn−1 − n − 4

n − 1

]
φ.

3.4. Case K(x, y) = k3

(
1
x + 1

y

)
For the case of aggregation kernel K(x, y) = k3

(
1
x + 1

y

)
, the property of kernel (4)

leads to γ = −1. The invariants for generator X1 are J1 = x, J2 = f . An invariant solution
to Equation (9) has the representation

f (x, t) = φ(x),

where the reduced equation is

gxn+1 φ′ =
1
2

k3x
∫ 1

0

( 1
1 − s

+
1
s

)
φ(x(1 − s))φ(xs) ds − k3 φ

∫ ∞

0
φ(s) ds

−k3xφ
∫ ∞

0
s−1 φ(s) ds + νkx

∫ ∞

x
sn−2 φ(s) ds − (k + gn)xn φ.

If n = 1, in an analogous way, the invariant solution for generator X2 cannot be obtained.
However, the invariants corresponding to generator X2 +

1
α X1 are J1 = x exp(−αt), J2 = f .

An invariant solution to Equation (9) is given by

f (x, t) = φ(z), z = x exp(−α(t + τ0)), n = 1, α ̸= 0,

where the reduced equation is

(g − α)z2 φ′ =
1
2

k3z
∫ 1

0

( 1
1 − s

+
1
s

)
φ(z(1 − s))φ(zs) ds − k3 φ

∫ ∞

0
φ(s) ds

−k3zφ
∫ ∞

0
s−1 φ(s) ds + νkz

∫ ∞

z
s−1 φ(s) ds − (g + k)zφ. (38)

Using the methods of observation and trial function [19–22], by solving Equation (38), an
explicit unphysical exact solution to Equation (9) is provided by

f (x, t) = −kz exp(−σz), z = x exp(k(t + τ0)), ν = −2(g + k)
k

, n = 1, σ =
kk3

2(g + k)
.
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If n ̸= 1, the invariants corresponding to generator X2 are J1 = xtq, J2 = f t, q = 1
n−1 .

Thus, an invariant solution of Equation (9) is presented by

f (x, t) = (t + τ0)
−1 φ(z), z = x(t + τ0)

q, q =
1

n − 1
,

where the reduced equation is( 1
n − 1

z + gzn
)

zφ′ =
1
2

k3z
∫ 1

0

( 1
1 − s

+
1
s

)
φ(z(1 − s))φ(zs) ds − k3 φ

∫ ∞

0
φ(s) ds

−k3zφ
∫ ∞

0
s−1 φ(s) ds + νkz

∫ ∞

z
sn−2 φ(s) ds − [(k + gn)zn−1 − 1]zφ.

3.5. Case K(x, y) = k4
xy

Applying the property (4) to kernel K(x, y) = k4
xy , one can obtain γ = −2. The

invariants for generator X1 are J1 = x, J2 = f . An invariant solution to Equation (9) has
the representation

f (x, t) = φ(x),

where the reduced equation is

gxn+1 φ′ =
1
2

k4

∫ 1

0
(1 − s)−1s−1 φ(x(1 − s))φ(xs) ds − k4 φ

∫ ∞

0
s−1 φ(s) ds

+νkx
∫ ∞

x
sn−2 φ(s) ds − (k + gn)xn φ.

If n = 1, similarly the invariant solution for generator X2 cannot be found. However,
the invariants corresponding to generator X2 +

1
α X1 are J1 = x exp(−αt), J2 = f exp(−αt).

So an invariant solution of Equation (9) is presented by

f (x, t) = exp(α(t + τ0))φ(z), z = x exp(−α(t + τ0)), n = 1, α ̸= 0,

where the reduced equation is

(g − α)z2 φ′ =
1
2

k4

∫ 1

0
(1 − s)−1s−1 φ(z(1 − s))φ(zs) ds − k4 φ

∫ ∞

0
s−1 φ(s) ds

+νkz
∫ ∞

z
s−1 φ(s) ds − (g + k)zφ.

If n ̸= 1, the invariants corresponding to generator X2 are J1 = xtq, J2 = f t−m,
q = 1

n−1 , m = n
1−n . Hence, an invariant solution of Equation (9) is presented by

f (x, t) = (t + τ0)
m φ(z), z = x(t + τ0)

q, q =
1

n − 1
, m =

n
1 − n

,

where φ satisfies the equation( 1
n − 1

z + gzn
)

zφ′ =
1
2

k4

∫ 1

0
(1 − s)−1s−1 φ(z(1 − s))φ(zs) ds

−k3 φ
∫ ∞

0
s−1 φ(s) ds + νkz

∫ ∞

z
sn−2 φ(s) ds −

[
(k + gn)zn−1 − n

n − 1

]
zφ.

Remark 4. In the analysis of microbial or bacterial populations property of binary division by
cells causes ν to be identically 2. It attains a minimum value of 2 during the uniform binary
breakage process, but being an average number is not restricted to being an integer. However, in a
multiple-splitting process, detailed modeling of the breakage process is indispensable for obtaining
the value of ν. Its determination from experiments also implies a potential alternative.
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Following is a summary of the main explicit exact solutions of this work, explicit exact
physical and unphysical solutions of equation (9) with kernel (5) are listed in Table 1.

Table 1. Explicit exact solutions of Equation (9) with homogeneous aggregation kernels (5).

No. Explicit Exact Physical or Unphysical Solutions

1 f (x, t) = 2k
k0

exp(−σx), σ > 0, g = 0, n = 2, ν = 2

2 f (x, t) =
(
− 12gσ

k0
x + β

)
exp(−σx), σ > 0, n = 2, β =

36g
k0

, k = 12g, ν = 3;

β =
12g
k0

, k = 2g, ν = 1; β = − 48g
k0

, k = −23g, ν = 48
23

3 f (x, t) = νk
k0

exp
[
− (2−ν)k

2 x(t + τ0)
]
, 0 < ν < 2, g = 0, n = 2

4 f (x, t) = [αx(t + τ0) + β] exp[−σx(t + τ0)], n = 2,
α =

12g(2g−k)
k0

, β =
12g
k0

, σ = k − 2g, ν = 1, k > 2g;

α =
12g

(
7g−k−5

√
g(13g−k)

)
k0

, β =
12
(

2g−
√

g(13g−k)
)

k0
,

σ = k − 7g + 5
√

g(13g − k), ν =
12
(

2g−
√

g(13g−k)
)

k , 0 < k ≤ 13g;

α =
12g

(
7g−k+5

√
g(13g−k)

)
k0

, β =
12
(

2g+
√

g(13g−k)
)

k0
,

σ = k − 7g − 5
√

g(13g − k), ν =
12
(

2g+
√

g(13g−k)
)

k , 12g < k ≤ 13g
5 f (x, t) = 2k

k1
exp(−σx), g = 0, n = 3, ν = 2, σ > 0

6 f (x, t) = 24g
k1

(1 − 2
√

gx
√

t + τ0) exp(−4
√

gx
√

t + τ0), k = 6g, ν = 5
3 , n = 3

7 f (x, t) =
(
αx

√
t + τ0 + β

)
exp

(
− σx

√
t + τ0

)
, n = 3,

σ = 4
√

g(5ν−12)
3ν−4 , k =

48g
5ν−12 , α = − 48g

k1

√
g(5ν−12)

3ν−4 , β =
48gν

k1(5ν−12) ,

112ν3 − 777ν2 + 1752ν − 1296 = 0, ν = 239
1792κ + κ + 37

16 , κ = 3
√√

14,063
2744 + 1867

28,672

8 f (x, t) = −kz exp(−σz), z = x exp(k(t + τ0)), ν = − 2(g+k)
k , n = 1, σ = kk3

2(g+k)

4. Conclusions and Discussion

The scale transformation group method is a useful technique for finding symmetries
of the PBE (9). By analyzing the scaling properties of the PBE (9), this method discovers the
symmetries that keep the equation unchanged. These symmetries are then used to simplify
the form of the PBE (9) and reduce the number of independent variables. The simplified
equations are analytically solved by using standard techniques, which lead to rich results
in this work. More importantly, the admitted scaling group, incomplete symmetries, ex-
act solutions, invariant solutions, unphysical solutions and reduced equations have been
derived by scaling transformation group for the PBE (9) with the kernel (5), aggregation,
nucleation, breakage and growth processes. The existence of solutions is also demonstrated.
The analysis of the dynamic behavior of some solutions for the PBE (9) is provided. The
exact solutions can be employed to verify the accuracy of numerical solutions and dis-
cretization. In the future, this method would be expected to be an effective tool in various
fields including physics, chemistry, biology, engineering, finance, and economics.
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