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Abstract: Transfer learning has proven to be a valuable technique for deploying machine learning
models on edge devices and embedded systems. By leveraging pre-trained models and fine-tuning
them on specific tasks, practitioners can effectively adapt existing models to the constraints and
requirements of their application. In the process of adapting an existing model, a practitioner
may make adjustments to the model architecture, including the input layers, output layers, and
intermediate layers. Practitioners must be able to understand whether the modifications to the model
will be symmetrical or asymmetrical with respect to the performance. In this study, we examine the
effects of these adjustments on the runtime and energy performance of an edge processor performing
inferences. Based on our observations, we make recommendations for how to adjust convolutional
neural networks during transfer learning to maintain symmetry between the accuracy of the model
and its runtime performance. We observe that the edge TPU is generally more efficient than a CPU at
performing inferences on convolutional neural networks, and continues to outperform a CPU as the
depth and width of the convolutional network increases. We explore multiple strategies for adjusting
the input and output layers of an existing model and demonstrate important performance cliffs for
practitioners to consider when modifying a convolutional neural network model.

Keywords: machine learning; IoT; performance; energy; neural networks

1. Introduction

Convolutional neural networks (CNNs) are a powerful tool for solving a variety
of problems using deep learning techniques, demonstrating an exceptional performance
in tasks such as image classification, object detection, and segmentation. Their ability
to automatically learn hierarchical features from raw data has revolutionized various
industries, from healthcare to autonomous vehicles. However, training deep CNNs from
scratch demands vast amounts of labeled data and computational resources, making
applying them difficult for many real-world applications.

Transfer learning addresses this challenge by leveraging models that are pre-trained on
large datasets and adapting them for specific tasks with limited labeled data. This approach
not only significantly reduces the data requirements but also accelerates convergence
during training. During the process of applying transfer learning to a CNN, a practitioner
may wish to tweak the neural network architecture to further fit the targeted application.
Changes to the neural network architecture may affect both the accuracy of the network
and the runtime performance of the network executing on a device, and it is important for
practitioners to be able to maintain symmetry between accuracy and performance.

To address the intensive computational needs of neural networks, Google introduced
the tensor processing unit (TPU), a specialized chip tailored for machine learning applica-
tions [1]. The TPU relies on a matrix multiply unit, enabling parallel processing. Initially
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designed for data centers [2] with an emphasis on performance rather than energy efficiency,
the original TPU paved the way for subsequent developments. Subsequently, the Coral
edge TPU emerged as a low-power alternative, specifically crafted for embedded systems
and on-device machine learning inference. The term edge denotes its capacity to operate
autonomously without depending on cloud servers, processing data locally instead. While
it may not match the speed of Google’s original Cloud TPU, the Coral edge TPU excels in
on-device machine learning applications. Its ability to capture, analyze, and process data
at the source, rather than offloading it for external processing, proves to be beneficial for
various applications, such as IoT security [3], wildlife behavior monitoring [4], and signal
noise reduction [5].

For the experiments detailed in this paper, we employed Google’s edge TPU. Specifi-
cally, our experimentation involved the use of the Coral Development (Dev) Board, a com-
prehensive platform that integrates a TPU alongside a CPU, sensors, and various devices
tailored for edge machine learning applications. Figure 1 illustrates our setup, comprising
a Linux-operating laptop, a Gen7i data acquisition system [6], two external power supplies,
and the Coral Dev Board. The primary focus of our analysis in this paper revolves around
assessing the runtime performance and energy consumption of the edge TPU in comparison
to a mobile CPU. We conducted these evaluations across a range of neural network models,
aiming to illuminate the strengths and weaknesses of the edge TPU.

Figure 1. Experimental setup with (counterclockwise from top right to bottom right) a 5 volt, 1 amp
power supply connected to the development board’s fan, a 5 volt, 3 amp power supply connected
to the development board, a data recorder, the Coral development board, and a laptop for running
commands on the development board.

We evaluated the performance of the edge TPU compared to a mobile CPU with
specific interest in convolutional neural networks that have been modified as part of the
process of transfer learning. We started by evaluating the runtime and energy performance
of the edge TPU compared to the mobile CPU on a set of baseline convolutional neural
networks. We then evaluated modified versions of a subset of the convolutional neural
networks to model the tweaks that might be made by a practitioner during the process of
applying transfer learning.

This paper makes the following contributions:
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• Proposes a methodology for determining the limits of neural network performance on
edge devices;

• Analyzes the performance, both runtime and energy, of an edge TPU on both fully
connected and convolutional neural networks as compared to a mobile CPU;

• Assesses the performance impact of modifications made to convolutional neural
networks as part of transfer learning;

• Provides recommendations for how symmetry between accuracy and performance
can be maintained throughout transfer learning adjustments.

The remainder of this paper is organized as follows. Section 2 presents background
material and related work on deep neural networks and tensor processors. Section 3
discusses the methodology for our experiments. Section 4 presents the results of the
experiments that we conducted. Section 5 provides practical recommendations for neural
network designs targeting edge tensor processors. Finally, Section 6 concludes the paper.

2. Background and Related Work

In the following sections, we discuss the relevant background on neural network
architectures and tensor processing units. We also highlight related work.

2.1. Deep Neural Networks

Deep neural networks offer promise as flexible, nearly “off-the-shelf” solutions to
machine learning problems that can perform adequately even for non-expert users or those
who lack significant technical domain knowledge [7,8]. By using deep neural networks,
less experienced practitioners can apply machine learning to their domain-specific problem.
Common deep neural network structures include fully connected neural networks and
convolutional neural networks.

Neural networks (a.k.a. artificial neural networks) are a type of machine learning
model inspired by the biological neurons in the human brain [9]. They comprise multiple
layers of interconnected nodes, known as neurons, that work together to process informa-
tion and make predictions. In a feed-forward neural network, information flows in one
direction, from the input layer through one or more hidden layers, to the output layer.
In a fully connected feed-forward neural network, each neuron in a layer receives input
from all of the neurons in the previous layer, performs a calculation using weights and
biases, and then passes the result to the neurons in the next layer. By adjusting the weights
and biases of the neurons, the network can learn to recognize patterns in data and make
accurate predictions. Fully connected neural networks have been successfully applied
to a wide range of tasks, including image recognition, speech recognition, and natural
language processing.

Convolutional neural networks (CNNs) are a type of deep (i.e., large number of
layers) neural network model that excels at image processing tasks [10], among others.
The name convolutional comes from the use of convolutional kernels. A kernel is feature
map that represents each node in a given layer as its weighted inputs from the same
number and arrangement of neurons in the previous layer. In other words, the inputs to
each node differ only by the shifting of a common weight vector (and bias term) at the
previous layer. CNNs were inspired by the way the visual cortex in the brain processes
visual information. A typical CNN consists of multiple layers of interconnected neurons,
including convolutional layers, pooling layers, and fully connected layers. For an image
processing CNN, in a convolutional layer, a set of filters is applied to the input image,
the effect of which is to extract features such as edges and textures. The output of the
convolutional layer can then be passed through a pooling layer to reduce the dimensionality
of the features and make the model more efficient. Finally, the output of the pooling layer
is typically fed into one or more fully connected layers, which perform classification or
regression on the extracted features. CNNs have been shown to be very effective at a
variety of image processing tasks, including object recognition, face detection, and image
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segmentation. They have also been applied in other domains such as natural language
processing and speech recognition.

2.2. Transfer Learning

Transfer learning is a technique used in machine learning where a pre-trained model
serves as a starting point for training a model for a new task [11]. Rather than starting from
scratch, which requires significant computation and large amounts of labeled training data,
a pre-trained model is fine-tuned to the new task by updating its weights and biases using
a smaller dataset. The intuition behind transfer learning is that the features learned by the
pre-trained model on a large dataset are likely to be useful for a new, related task, even
if the input datasets are not identical in nature. In transfer learning, either only the new
parts of the model or the entire model can be retrained (with weights initialized per the
original application) [12] depending on the training time requirements. Many domains
have successfully applied transfer learning. It is particularly useful when there are limited
labeled data available for the new task or when training from scratch would take too long.

Transfer learning is commonly performed by replacing the input and output layers
of the pre-trained model with layers that fit the target problem. SpinalXNet [13] adds a
specialized fully connected layer to the end of the ResNet-101 model to identify COVID-
19 in X-ray images. Other approaches use transfer learning with a modified ResNet
architecture to detect emotion in crowds [14] and brain tumors [15,16]. A modified version
of the VGG-16 model is used with transfer learning to detect solar flares [17]. In similar
work, modified versions of the AlexNet, ResNet50, DenseNet161, and VGG-16 models
were used with transfer learning to detect Leukemia in blood smear images [18]. Modified
versions of AlexNet and SqueezeNet were used to classify radar jamming signals [19]. In all
of these examples, transfer learning is used to reduce the requirements for training data
and training time.

Small changes may also be made to the existing model in an attempt to improve
accuracy on the target problem. To identify diseases in potato leaves [20], the VGG19,
NASNetMobile, and DenseNet169 models are modified to increase the width and depth of
the original models and are used with transfer learning to reduce the number of parameters
that must be trained. CNNs have also been extended with additional layers to make the
model deeper to classify pulmonary nodules [21]. A shallow version of the Inception
model was used to diagnose Alzheimer’s disease [22]. Deeper and wider CNNs have been
evaluated for a variety of computer-aided detection algorithms with transfer learning [23].
A modified Inception model has been used with transfer learning to recognize ancient ar-
chitectures [24]. Prior work has even investigated making models deeper by concatenating
two models [25].

Overall, motivation exists from prior work on transfer learning for examining the
performance implications of transfer learning techniques that modify the input layers,
output layers, and even the base model.

2.3. Tensor Processing

Tensor processing units (TPUs) represent specialized hardware designed explicitly
for neural networks, featuring meticulous optimization for matrix multiplication [1,26–28].
This specificity grants TPUs a notable edge over CPU and GPU architectures in terms of
speed, accompanied by minimal power consumption. In a comparative analysis with the
Haswell CPU and NVIDIA K80 GPU, TPUs demonstrated the lowest power usage per die,
albeit with the highest energy per area. Conversely, the CPU exhibited the highest power
consumption but showcased superior energy proportionality.

When scrutinizing performance per watt, TPUs excelled, exhibiting a 14–16 times
improvement over the NVIDIA K80 GPU and an impressive 17–34 times advantage over
the Haswell CPU [1]. Furthermore, there have been algorithms proposed that aim to
leverage the embedded processor by operating at a lower voltage and frequency, all while
preserving runtime performance, further enhancing the versatility of TPUs [27].
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The core function of the edge TPU in conducting inferences through neural net-
works centers around matrix processing. Therefore, the chip design features thousands
of multiply-accumulate units in a so-called systolic array [2]. In contrast, a CPU, even
with vector instructions, can only execute a small number of add or multiply instructions
per cycle. For convolutional neural networks, which generally require a large number of
multiply-adds per inference, the TPU architecture greatly accelerates the computation.

The Coral edge TPU can perform around four trillion operations per second at the
cost of 0.5 W for each tera-operation per second [26,28]; this efficiency enables on-device
AI computations. Benchmarking assessments conducted on the Coral Dev board, across
diverse model architectures, reveal a substantial superiority of on-board TPU inference
times over its CPU counterpart. The performance gap ranges from a minimum of five times
faster, extending up to an impressive 100 times faster for specific network models [26,29].

Other machine learning accelerators, including the NVIDIA Jetson [30], Intel Movid-
ius [31], and Qualcomm Snapdragon [32], provide hardware support similar to the Google
edge TPU. A recent survey [33] reviewed the features and performance of embedded ma-
chine learning accelerators. Although the exact structures of these devices may differ, they
all accelerate the multiply-add operations that are common to neural network computations
using batch operations on layer inputs, weights, and biases. Due to finite computational
units and memory, all of these devices will experience performance cliffs as the input and
weight sizes exceed the hardware limitations. We chose the Coral TPU as a representative
device for this study.

2.4. Related Work

Given the high interest in edge machine learning, prior work has studied the per-
formance of edge tensor processors. In [28], the authors evaluate the performance of
convolutional networks from the NASBench-101 benchmark suite on three edge tensor pro-
cessors with the goal of training a performance and energy model for exploring new tensor
processor architectures. The paper evaluates 423,000 unique convolutional neural network
models on three edge tensor processors. In a similar study [34], the authors evaluate fully
connected and convolutional neural networks to predict performance and power on an
edge TPU. The authors find that multiply-add operations and memory usage can be used to
estimate power and performance with less than 10% error. DeepEdgeBench [29] evaluates
five edge processors on the MobileNetV2 benchmark. In [35], the authors evaluate the
performance of a set of CNNs on the NVIDIA Jetson. In [36], the authors perform a similar
study on the NVIDIA Jetson Nano with a focus on providing accurate power measure-
ments on that device for Deep Neural Networks. In another related paper [37], the authors
examine the performance of individual operations on the NVIDIA Jetson Xavier and Nano
processors on Deep Neural Networks.

Our work differs from these prior studies by generating modified network models
based on real-world examples and evaluating the performance impact of transfer learning
techniques. Prior work examines specific CNN models and does not consider the types of
modifications that are made to CNN models as part of transfer learning. Specifically, it is
important to assess the performance impact of modifications to the input and output layers.

Prior work has also evaluated the performance of edge tensor processors in the context
of specific applications, including network intrusion detection [38,39], animal activity
classification [40], object classification [41,42], and smart greenhouse development [43]. In a
comprehensive survey [33], the authors summarize the use of embedded machine learning
processors, including the Coral TPU, for sensing applications. Our work does not examine
any specific applications because the accuracy of a machine learning model in a specific
domain may vary wildly depending on the availability of training data, the availability of
powerful training hardware, and the ability to select appropriate training parameters.

Finally, a large amount of prior work has been done on building better edge proces-
sors [44–52]. Our work does not aim to inform the design of new hardware for machine
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learning but rather to provide insights and an evaluation methodology for developing
machine learning models for edge tensor processors.

3. Methodology

We conducted measurements to evaluate both the runtime performance and energy
usage of the Coral edge TPU across a range of convolutional neural network architectures.
Our comparative analysis involved assessing the runtime performance of the Coral edge
TPU against the mobile CPU integrated into the Coral development board. For more detail
on the specifications of these devices, refer to Table 1.

Table 1. Comparison of the processors studied in these experiments.

Coral TPU [53] Coral CPU [53,54]

Processor Google Edge TPU Cortex-A53 Quad-core

Frequency 480 MHz 3.01 GHz

RAM 4 GB DDR4 4 GB DDR4

Operation Type Fixed Point Floating Point

Operations/s 4 Trillion (8-bit) 32 Billion (32-bit)

We recorded the runtime of the interpreter.invoke() function provided by the
tflite-runtime Python library using Python’s built-in time.perf_counter_ns() function
to produce runtime performance data. The performance measurement conducted focuses
on the runtime performance of inferences using the machine learning model. Across all
experiments, we meticulously recorded the runtime for 10,000 inferences, and the results
are presented as the average runtime for a single inference in each graph. The experiments
were executed using Python version 3.7.3 and tflite-runtime version 2.5.0. All scripts
used in this study are available on Github (https://github.com/crdelozier/cnn_symmetry
(accessed on 8 January 2024)).

In our energy measurements, the Coral development board was supplied with power
through a 5 volt, 3 amp power source. To gauge energy consumption accurately, we
connected the ground pin through a 0.1-ohm resistor to a Gen7i data acquisition system,
which incorporates a high-resolution oscilloscope (as seen in Figure 1). The Gen7i data
system samples the voltage across the resistor at a rate of 100 kHz. The data acquisition
system begins taking samples based on a trigger from a GPIO pin on the development
board that is set to high just prior to invoking the inference. The GPIO pin is set to low as
soon as the inference ends. The energy required to complete an inference, E, is calculated as
shown in (1), where vS indicates supply voltage, R indicates resistance, vR indicates voltage
across the resistor, fs indicates sampling rate, and K indicates the duration, in samples,
required to complete the inference.

E =
K

∑
k=1

(vSvR[k]− v2
R[k])

1/ fs

R
. (1)

Figure 2 shows sample voltage traces for the CPU and TPU on the MobileNet1.0
convolutional neural network. These traces are processed using a Matlab script that
outputs the total energy (J) recorded during the inference.

3.1. Convolutional Neural Networks

For baseline experiments on convolutional neural networks, we started with a set
of CNN models, described in Table 2, built for the edge TPU [55]. These models use
deep neural networks to assist in image classification, object detection, and semantic
segmentation. Many of these models are modified versions of the same base models:
EfficientNet, Inception, and MobileNet.

https://github.com/crdelozier/cnn_symmetry
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Figure 2. Sample power traces for the CPU and TPU on the MobileNet1.0 CNN model.

Table 2. Characteristics of baseline CNN models. FNN240L810N is provided as a comparison point
for fully connected networks.

Model Name Input Output GFLOP Layers % Parallel Layers

EfficientDet320 [56] 320 × 320 × 3 90 2323.1 266 36%

EfficientDet384 [56] 384 × 384 × 3 90 4272.3 321 31%

EfficientDet448 [56] 448 × 448 × 3 90 6806.7 356 29%

EfficientDet512 [56] 512 × 512 × 3 90 13,117.4 423 29%

EfficientDet640 [56] 640 × 640 × 3 90 23,671.8 423 29%

EfficientNetS [57] 244 × 244 × 3 1000 2991.1 66 0%

EfficientNetM [57] 240 × 240 × 3 1000 4598.3 86 0%

EfficientNetL [57] 300 × 300 × 3 1000 11,752.0 97 0%

InceptionV1 [58] 244 × 244 × 3 1000 2167.2 83 53%

InceptionV2 [59] 244 × 244 × 3 1000 2708.2 98 46%

InceptionV3 [59] 299 × 299 × 3 1000 7347.8 132 47%

InceptionV4 [60] 299 × 299 × 3 1000 15,666.1 205 32%

MobileDetSSDLite [61] 320 × 320 × 3 90 2437.3 136 32%

MobileDetV1 [62] 300 × 300 × 3 90 1929.1 75 44%

MobileDetV2Coco [61] 300 × 300 × 3 90 1494.4 110 30%

MobileDetV2Face [61] 320 × 320 × 3 90 1524.6 132 25%

TF2MobileDetV1 [63] 640 × 640 × 3 90 67,482.4 104 56%

TF2MobileDetV2 [63] 300 × 300 × 3 90 1407.5 101 24%

DLV3DM05MobileNet [64] 513 × 513 × 3 20 2276.7 72 0%

DLV3MobileNet [64] 513 × 513 × 3 20 5343.5 72 0%

KerasMobileNet128 [65] 128 × 128 × 3 37 1350.8 76 10%

KerasMobileNet256 [65] 256 × 256 × 3 37 5390.1 76 10%

MobileNet0.25 [62] 128 × 128 × 3 1000 37.8 31 0%

MobileNet0.5 [62] 160 × 160 × 3 1000 155.1 31 0%

MobileNet0.75 [62] 192 × 192 × 3 1000 412.1 31 0%

MobileNet1.0 [62] 224 × 224 × 3 1000 912.6 31 0%

MobileNetV2Bird [61] 224 × 224 × 3 900 652.3 65 0%

MobileNetV2Plant [61] 224 × 224 × 3 2000 658.6 65 0%

MobileNetV2 [61] 224 × 224 × 3 1000 652.3 66 0%

TF2MobileNetV1 [63] 224 × 224 × 3 1000 840.3 33 0%

TF2MobileNetV2 [63] 224 × 224 × 3 1000 614.8 68 0%

TF2MobileNetV3 [63] 224 × 224 × 3 1000 1280.9 79 0%

FNN240L810N [66] 100 × 1 9 565.3 242 0%
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Table 2 provides metrics that give insight into the performance impact of performing
an inference with these neural networks. GFLOP shows the total number of floating point
operations required to execute the model. GFLOP indicates how much total work must
be performed by a processor to perform an inference, from input to output, with each
model. We calculated the floating-point operations per model by executing the model,
profiling the runtime per layer, and multiplying the runtime by the floating-point oper-
ations per second for the processor. GFLOP is not a perfect analog of the total runtime
required to perform an inference with each model because, as shown in Figure 3, models
differ in terms of how many layers can be executed in parallel throughout the model.
For example, the MobileNet1.0 computes an inference using a serial chain of layers, while
the InceptionV1 model computes an inference using multiple layers in parallel. These
parallel layers may use different filters to extract different characteristics from the input
data. The amount of parallel work in a model also depends on the sizes of the inputs,
filters, and other parameters for each layer. For their Cloud TPUs, Google recommends
tiling data into 128 × 8 chunks [67]. If the computation does not exactly fit that chunk size,
the compiler will pad the tensors to match. This can lead to increases in the amount of
memory required to store a tensor.

mobilenet efficientnet inception

Conv2D

Depthwise
Conv2D

Conv2D

Conv2D

Conv2D

Add

MaxPool2D

Conv2D Conv2D Conv2D Conv2D

Conv2D Conv2D MaxPool2D

Concatenation

Figure 3. Main subgraphs for EfficientNetS, InceptionV1, and MobileNet1.0.

The Layers column shows the total number of high-level Tensorflow operations per-
formed by each model, and the % Parallel Layers column shows the number of these
operations, or layers, that can be executed in parallel. We calculated the number of parallel
layers by traversing the graph and counting the steps required to execute the entire graph
under the assumption that if the inputs to a layer were ready, the layer could be executed.
We note that this calculation assumes an infinitely large matrix multiplication unit that can
fit the entire calculations required for multiple layers concurrently. For example, in Figure 3,
the InceptionV1 model could execute as follows. First, the MaxPool2D layer executes.
Once the MaxPool2D layer finishes, the next three Conv2D operations and the next Max-
Pool2D operation can execute in parallel using the output from the first MaxPool2D layer.
At this point, the output from the leftmost chain is ready for the Concatenation operation,
but the rest of its inputs are not ready, so it must wait. The three remaining Conv2D
operations can execute, and, finally, the Concatenation operation can execute once all of its
inputs are ready. In total, the nine layers in this part of the model will execute in four steps.
Therefore, we would calculate that this part of the model has (9 − 4)/9 = 55.6% parallel
layers. In Table 2, we see that the total % Parallel Layers for InceptionV1 is slightly lower,
at 53%, because other parts of the model have less parallel work available. We also note
that speculative execution techniques may be able to exploit additional parallelism not
considered by this calculation.

In combination, the Layers and % Parallel Layers columns indicate how deep or wide
the baseline models are. A deeper model requires more serial steps to perform an in-
ference. For example, MobileNet1.0 requires 31 steps, and EfficientDet320 requires
266 × 0.36 ≈ 96 steps. Therefore, we would consider EfficientDet320 to be a deeper
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model than MobileNet1.0. A wider model performs more work per step. This can be
derived from both % Parallel Layers, which shows how many of the layers can be ex-
ecuted in parallel, and by dividing GFLOP by Layers to find, on average, how many
floating-point operations are performed per layer. For example, DLV3MobileNet is wider
than DLV3DM05MobileNet because it requires more floating-point operations for the same
number of total layers, which indicates that the layers must perform more work. This
difference is due to the use of 2× larger filters in DLV3MobileNet.

Overall, the baseline models that we examined cover a variety of input and output
sizes, total number of floating-point operations required to perform an inference, and model
architectures in terms of serial versus parallel work. As a reference point, we also pro-
vide these metrics for a fully connected feed-forward neural network with 240 layers
and 810 nodes per layer (FNN240L810N). In general, performing an inference with this
feed-forward network requires fewer floating-point operations and has less parallel work
available, compared to the CNN models.

3.2. Exploring Adjustments to CNN Models

We analyzed the structure of the CNN models to identify common modifications to
produce different versions of the same model. In many cases, the baseline model features a
repeated subgraph of convolution operations, as shown in Figure 4. Deeper versions of
the model repeat this subgraph in order to extend the model. Wider versions of the model
add convolution or other operations to the subgraph. Aside from additional convolutions,
models may also add a fully connected layer at the end of the CNN.

AveragePool2D

Concatenation

Conv2D

Conv2D

Conv2D

Conv2D Conv2D

Conv2D

Conv2D

Conv2D Conv2D

Conv2D

Concatenation Concatenation

Concatenation

Quantize Quantize

1

5+ 6+2

2

3

3

3

3

4

4

Figure 4. Structure of the main subgraph for InceptionV4. The numbers indicate which layers were
added expansions to subgraphs for our transfer learning experiments.

Starting with a subset of the CNN models, we generated deeper, wider, and other-
wise modified versions of these CNN models to evaluate the performance impact of
such modifications. For our experiments, we used the EfficientNetS, InceptionV1,
and MobileNet1.0 models as a baseline.

3.2.1. Extracting the Baseline Models from Tensorflow Lite

To create deeper and wider CNNs for performance analysis, we first needed to extract
the baseline models into a modifiable format because pre-existing Tensorflow Lite models,
the model format required by the edge TPU, are not easy to modify. In practice, a model
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designer will generate a Tensorflow Lite model from a Tensorflow model or by converting
from another model format. We extract a modifiable model from the Tensorflow Lite model
in two steps. First, we run Analyzer.analyze from the Tensorflow Lite Python library to
extract the model architecture. This tool provides both the order and types of layers in
the model and the input and output tensor sizes for each layer. However, this tool does
not provide all of the required information to reproduce the model, including the filter
sizes and strides. Next, we run flatc, which is the FlatBuffer compiler, to produce a json
file with specific model parameters, including filters and strides. We combine these two
sources of information in a Python script that generates a new model using Keras to match
the input Tensorflow Lite model. For each extracted model, we verified that the extracted
model’s performance and energy characteristics match the original model.

3.2.2. Generating Deeper Models

Once we had the extracted model, we created deeper models by identifying the main
repeated subgraph within the original model and further repeating that subgraph. We
created shallower models by removing repetitions of the subgraph. In practice, both the
shallow and deep versions of each model were created in a single run of our Python script
that removed all of the repeated subgraphs from the original model and then re-added one
subgraph at a time to generate models with zero to N repeated subgraphs.

To create shallower and deeper versions of these models, we used the subgraphs
shown in Figure 3. In EfficientNetS, the main subgraph is a 2D convolution that is added
to the result of two further 2D convolutions. The main subgraph in IncepionV1 performs
parallel 2D convolutions with different filter sizes. In one of the parallel branches, a 2D max
pooling operation is performed. For MobileNet1.0, the main subgraph is a 2D convolution
followed by a depthwise 2D convolution.

3.2.3. Generating Wider Models

We explored multiple avenues for generating wider models from the baseline CNNs
by both increasing the number of layers that could be executed in parallel and increasing
the work performed per layer.

To increase the number of layers, we drew inspiration from the evolution of the
Inception model from InceptionV1 to InceptionV4. Figure 4 shows the main subgraph
of InceptionV4. InceptionV1, InceptionV2, and InceptionV3 all use portions of this
subgraph. Each layer in the subgraph attempts to derive additional information from the
data by using different bias and filter sizes.

For experiments on increasing the number of parallel layers, we created wide versions
of the EfficientNetS and MobileNet1.0 models because these models have 0% parallel
layers in the original model. We did not expand the other baseline model from previous
experiments (InceptionV1) using this methodology because it already has multiple parallel
layers. We expanded existing 2D convolution layers in the numerical order shown in
Figure 4. To further explain, the baseline version of the model only had the original 2D
convolution (1). The first expansion of the layer adds two 2D convolutions in parallel with
the original 2D convolution (2). The second expansion adds a chain of four 2D convolutions
in parallel (3). The third expansion adds an average pooling operation followed by a
2D convolution (4). Finally, additional expansions add parallel layers in the two middle
subgraphs (5+ and 6+).

We also examined the performance impacts of scaling up the the work performed per
layer by expanding the dimensions of the 2D convolutions throughout the baseline models.
We attempted to align these experiments with common transfer learning techniques. First,
we widened the model at two points: after the input layer and before the output layer.
We also performed an experiment with wider layers at both the input and output layers.
Second, we scaled up the width of the entire model. We performed these experiments on
all three of the baseline models (EfficientNetS, MobileNet1.0, and InceptionV1).
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4. Experimental Results

We experimentally analyzed the execution time and energy usage of the CPU and TPU
on convolutional neural networks. We first examine the runtime and energy performance
of the baseline CNNs on the CPU and TPU and characterize the performance based on the
structure of the network. We then examine the performance impact of modifications to a
set of CNNs that might be applied to a model as part of the process of transfer learning.
We examine transformations such as the input and output sizes, adding a fully connected
layer after the input, and making the models deeper and wider. In particular, we look
for symmetry and asymmetry between the modifications to the model and the resulting
performance. All experiments were performed on the Coral edge TPU development board.

4.1. Convolutional Neural Networks

We measured the execution time of the edge CPU and edge TPU using the baseline
models described in Table 2. Figure 5 shows the runtime speedup for a single inference
on the Coral development board compared to the single core baseline. The baseline
measurement was performed on a single CPU core. We then measured the execution
time on an inference using four CPU cores and the TPU. As shown, the TPU consistently
outperforms the CPU, even with four CPU cores, on all of the CNN models. The rightmost
bars (geomean) show the geometric mean of all speedups for the 4-core CPU and the TPU.
On average, these CNNs execute an inference on the 4-core CPU in 33% of the time it takes
to execute the same model on a 1-core CPU. On the TPU, it takes 10% of the time it takes to
execute the same model on a 1-core CPU.
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Figure 5. Runtime performance (normalized by dividing runtime by the runtime of the 1-core CPU
baseline to obtain speedup) of convolutional neural networks on the edge CPU with 1 and 4 cores
and on the TPU.

We also compared energy per inference for the CNN models. The results of this
experiment are shown in Figure 6. The energy results are similar to the runtime results
for the CNN models, with the TPU consistently outperforming both the 1-core and 4-core
CPUs. One notable difference is that the 4-core CPU only uses 45% less energy to perform
an inference than the 1-core CPU. Given that the 4-core CPU executes an inference in 33% of
the time it take to execute on the 1-core CPU, the power consumption of four cores slightly
outweighs the runtime speedup from running on four cores. However, the significant
improvement in runtime performance still leads to lower energy usage per inference.
In low-power environments, using a 1-core CPU will provide better long-term energy



Symmetry 2024, 16, 91 12 of 25

usage if inferences are being run frequently. The TPU uses 10% of the energy required to
perform an inference on the 1-core CPU.
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Figure 6. Energy per inference (normalized by dividing energy used by the energy used of the 1-core
CPU baseline) of convolutional neural networks on the edge CPU with 1 and 4 cores and on the TPU.

Figure 7 breaks down the performance speedup of the TPU over the single core
CPU with reference to the floating-point operations per parallel layer for each model.
In general, more available parallel work leads to a larger performance improvement on the
TPU. There are a few outliers in behavior. The DLV3DM05MobileNet and DLV3MobileNet
models are outliers in the MobileNet set of models because they use operations that
are not supported on the edge TPU. The RESIZE_BILINEAR function is not supported,
and operations on more than one subgraph are not supported. In total, these two models
use eight operations that are not supported by the TPU and must therefore run on the
CPU, leading to lower performance gains on the TPU. The Inception models all have
similar speedup over the CPU despite more available parallel work in the InceptionV3
and InceptionV4 models. The larger Inception models use significant amounts of off-chip
memory, 5.11 MB and 36.3 MB, respectively. The increase in off-chip memory used limits
the performance speedup on the TPU. Likewise, the EfficientDet640 model uses 7.72 MB
of off-chip memory, which causes it to be a bit of an outlier in the EfficientNet group. Aside
from these outliers, the models tend to exhibit larger speedups on the TPU compared to
the CPU as the amount of parallel work available increases.

Other hardware factors may also prevent this speedup from being monotonic com-
pared to the available parallel work. The TPU’s matrix multiplication unit may not be
completely utilized at all times due to the fixed hardware structure (128 × 128 on TPU
version 3) and various sizes of filters used in these CNNs. Furthermore, the TPU must load
model parameters from memory, which takes additional time, especially for larger models.
Other hardware factors, such as cache line sizes, associativity, and prefetching, may also
impact performance. Overall, we find that floating-point operations per parallel layer is a
reasonable, though certainly not perfect, indicator of the runtime performance of a CNN
on the edge TPU.
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Figure 7. TPU runtime speedup (TPU runtime divided by CPU runtime, lower is better) compared to
floating-point operations per parallel layer. Models are grouped by the base models of EfficientNet,
MobileNet, and Inception.

4.2. Transfer Learning

Transfer learning involves applying an existing model, potentially with small modi-
fications, to a new problem. This may require modifying the input and output layers to
match the new problem’s inputs and outputs. In some cases, practitioners may wish to
make small modifications to the existing model to improve its accuracy on the new problem.
We are interested, specifically, in the runtime performance impact on inferences performed
with modified CNN models. We do not evaluate the accuracy of such models or the impact
on training time. In the following sections, we evaluate the runtime performance metrics
of modifications that might be made to a model while applying transfer learning on the
edge TPU.

4.3. Input and Output Size

Transfer learning often requires changing the input size of the machine learning model
to match the target problem’s input characteristics. We perform two experiments to assess
the performance impact of modifying the input size. For problems with image inputs, we
simply vary the size of the input by resizing the image. We chose to scale the image inputs
by factors of 2 (0.25×, 0.5×, 1×, 2×, and 4×). Figure 8 shows the performance impact of
resizing the input images to the CNN models. As the image input size grows, the TPU
speedup over the CPU decreases.

For problems with one-dimensional inputs, we apply a fully connected layer to expand
the number of input parameters to more closely match the expected number of inputs
from an image. We then reshape the one-dimensional data into two-dimensional data with
three channels. Finally, we resize the shaped inputs to match the expected image size for the
model. Figure 9 demonstrates this procedure. With powerful enough hardware to train the
models, it may be possible to skip the resize operation and simply reshape the output of the
fully connected layer. On our hardware, we were unable to produce a working Tensorflow
Lite model with a fully connected layer that could be reshaped to the 224 × 224 × 3 input
of the models (224 × 224 × 3 = 150,528 nodes in the fully connected layer).
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Figure 8. Performance impact of varying image input size to CNNs.

Figure 9. Adding a fully connected layer to map 1D input data to a 2D CNN. Red, green, and blue
cells represent the color format of an image input to a CNN.

Table 3 shows the speedup of the TPU over the CPU on the CNN models using a fully
connected layer to expand the 1D inputs into the 2D image size expected by the CNN.
As shown, with a small fully connected layer, the performance benefit of the TPU on a
CNN outweighs the work required to execute the fully connected layer. As the size of the
fully connected layer increases, the CPU begins to outperform the TPU, despite the TPU’s
performance advantage on the CNN.

Table 3. TPU Speedup over CPU on CNN model execution with a fully connected layer to expand
input size. All models expect a 224 × 224 × 3 image input.

Model TPU Speedup (14 FC Nodes) TPU Speedup (224 FC Nodes)

EfficientNet 33.0× 0.99×

Inception 17.9× 0.94×

MobileNet 13.3× 0.85×
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Figure 10 shows the on-chip and off-chip memory assigned to parameters for the
MobileNet CNN model with a fully connected layer of size N used to expand the 1D
inputs into a 2D image. For this experiment, we explored fully connected input sizes of
M, where 14 ≤ M ≤ 50,176 and the original CNN input size is 224 × 224 × 3. These
bounds were derived from the original input size of 224 × 224 × 3 using 14 ≈

√
224 and

50,176 = 224 × 224. We compiled each generated model with the edgetpu compiler and
recorded the amount of memory used for on-chip and off-chip model parameters. For up
to 900 nodes in the fully connected layer, the edgetpu compiler uses only on-chip memory.
At 3025 nodes in the fully connected layer, we notice the first instance in which the edgetpu
compiler only uses off-chip memory for model parameters. In the graph, we can see that
this phenomenon occurs semi-regularly when the on-chip memory falls to zero and there is
a sharp spike in the off-chip memory. Within this size range, a small increase in layer size
may cause a large increase in off-chip memory used, demonstrating the asymmetry caused
by performance cliffs. Above 32,041 fully connected nodes, the edgetpu compiler no longer
uses on-chip memory for model parameters. In short, it may be beneficial to test multiple
potential sizes for a fully connected layer to determine which fits best into on-chip memory.
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Figure 10. On-chip and off-chip memory used for adding a fully connected layer to expand 1D inputs
to a 2D image.

4.3.1. Depth Extensions

To further evaluate the performance implications of transfer learning on an edge
TPU, we generated altered CNNs, based on the original models for EfficientNet, Inception,
and MobileNet, with more or fewer subgraphs of the main computational component of
the network. Figure 4 demonstrates the main subgraph of InceptionV1. For each of the
three models, we identify the main subgraph, extract that subgraph, and generate models
with 1 to 50 repetitions of that subgraph. Each of the generated models also reproduces the
rest of the original model.

Figure 11 shows the results of this experiment. As shown, the performance gap
between the CPU and TPU decreases as the subgraph is repeated more, but the gap remains
at over 10× on these CNN models. On both the CPU and the TPU, adding repeated
subgraphs may be a potential avenue to improve the accuracy of the model for a problem
in transfer learning without significantly impacting performance. The difference between
the worst performing and best performing generated models on the TPU was 2.5×, 4.7×,
and 2.24×, respectively, for EfficientNetS, InceptionV1, and MobileNet1.0. For the
CPU, the difference between the worst performing and best performing generated models
was 1.06×, 1.15×, and 1.38×, respectively. We expect that cache locality and data transfer
explain the CPU’s relative efficiency as the depth of the model increases, but we would
need to investigate further to definitively show this. We observe a spike in performance
from 0-depth to 1–5-depth on the EfficientNet and MobileNet models because the 0-depth
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models with all subgraphs removed do not have much available parallel work. Therefore,
the speedup on the TPU is limited. As we add parallel work to the model with a few
subgraphs, the computational capabilities of the TPU shine because all of the weights and
inputs can fit into the hardware easily. As more subgraphs are added, weights and inputs
need to be transferred from on-chip memory to the computational units more frequently,
which decreases the speedup of the TPU over the CPU. We leave a more in-depth study of
the performance of deep models to future work.
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Figure 11. TPU speedup on generated deep CNN models with repeated subgraphs.

Figure 12 shows similar results for the energy efficiency of the TPU on generated deep
CNN models. The TPU consistently outperforms the CPU, but the gap becomes smaller as
the depth of the model increases.
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Figure 12. TPU energy efficiency per inference on generated deep CNN models with repeated subgraphs.
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4.3.2. Wide Extensions

We also generated wider versions of EfficientNet, Inception, and MobileNet, and we
analyzed the runtime performance of these generated models. We explored two procedures
for generating wider models.

In the first procedure, we widened the models by scaling up the bias of convolution
operations in the models based on a factor from 1.1× to 5×, which was the limit of
generating Tensorflow Lite models on our training hardware. Increasing the bias provides
more parameters for the model to learn and increases the amount of parallel work available
when performing inference with the model. We examined the effects of scaling at the input
and output layers because practitioners of transfer learning may increase the model size to
account for a different number of inputs and outputs for their targeted problem.

Figure 13 shows the execution time speedup of the TPU compared to the CPU with
scaled input size. In this graph, we can see that the TPU’s speedup compared to the CPU
increases as the width of the model increases. We note that scaling the width of the input
layer increases the width of the entire model as the larger output tensor from the scaled
layer serves as an input to the rest of the model, which we scaled accordingly. We observe
similar results when comparing the energy efficiency of performing an inference on the
TPU as compared to the CPU as the model gets wider.
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Figure 13. TPU runtime performance speedup over CPU on models widened by scaling up input size.

Figure 14 shows the execution time speedup of the TPU compared to the CPU with
scaled output size. As the width of the model was increased at the output layers, the gap
decreased between the execution time speedup on the TPU compared to the CPU. We
expect that this occurs due to the increased size of the input to the SoftMax operation at the
end of each model. Compared to scaling the width of the input, there is less parallel work
for the TPU to take advantage of throughout the model, leading to a declining performance
benefit for using the TPU. We observe similar results for energy efficiency in that the TPU’s
energy efficiency benefit over the CPU decreases as the width of the output layer increases.

Figure 15 shows the execution time speedup of the TPU compared to the CPU with
scaled output size. From the graph, it appears that the effect of scaling up the output size
slightly outweighs the effect of scaling up the input size. For all three benchmarks, the TPU
maintains a similar runtime speedup over the CPU at all scaling factors.
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Figure 14. CPU and TPU runtime performance on models widened by scaling up output size.
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Figure 15. CPU and TPU runtime performance on models widened by scaling up input and out-
put size.

In the second procedure, we increased the width of the models by expanding con-
volution layers based on insights from the main subgraph in the Inception V1–V4 mod-
els, as described in Figure 4. We performed this expansion on the EfficientNetS and
MobileNetV1 models. We excluded the InceptionV1 model because we already had data
on expanding the Inception model from versions 1 through 4 in our baseline experiments.
Figure 16 shows the results of this experiment on widening the model by adding parallel
layers. As parallel layers are initially added to the model to increase its width, the TPU
provides an increased performance gain over the CPU. However, as more parallel layers
are added, the TPU reaches the limit of its ability to exploit parallel work, and the speedup
over the CPU reaches a steady state. Similar to prior experiments, the energy efficiency
results mirror the runtime performance results.
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Figure 16. CPU and TPU runtime prrformance on models widened by adding parallel layers.

4.3.3. Off-Chip Memory

As previously observed for fully connected, feed-forward neural networks [66],
the runtime performance of convolutional neural networks is also affected by the per-
centage of parameters stored off-chip. Figure 17 shows the TPU runtime performance per
inference compared to the percentage of off-chip memory used to store model parameters.
We perform this experiment on the models generated from the baseline MobileNet CNN
model with scaled filter sizes to increase the width of the model. As the width of the
model increases, so does the amount of memory required for parameters, and therefore
the amount of off-chip memory used to store parameters also increases. Compared to the
results demonstrated in prior work on feed-forward neural networks, CNN runtime scales
linearly, instead of in a stepwise manner, due to the increased amount of computation
required for CNNs that hides the memory cost of storing parameters off chip.
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Figure 17. Execution time for scaled width InceptionV1 in contrast to the proportion of weights
stored externally.
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5. Discussion

Based on our experimental observations in Section 4, we offer the following actionable
suggestions for crafting machine learning models tailored to edge devices.

5.1. Prefer Single-Core for Long Term Energy Efficiency but Multi-Core for Energy Efficiency
Per Inference

On the baseline CNNs, using a 4-core CPU provided a runtime performance and
energy efficiency advantage compared to the 1-core CPU. However, the increase in energy
used per inference outweighed the decrease in runtime. Therefore, if inferences will be run
continuously in an edge environment, a 1-core CPU will be more energy efficient over time.
For bursts of inferences, the 4-core CPU should provide better energy efficiency due to the
decrease in runtime.

5.2. Prefer a TPU for Convolutional Neural Networks

For all of the convolutional neural networks evaluated in this paper, the TPU out-
performed both the single core and 4-core CPU in both runtime performance and energy
efficiency. As we scaled the CNN models, both in depth and in width, the TPU continued
to consistently outperform the CPU. The only case in which the CPU outperformed the
TPU occurred when we added a large fully connected layer to map one-dimensional inputs
to the two-dimensional image input expected by the CNN for transfer learning. This
case concurs with our findings on the performance degradation of fully connected neural
networks on the TPU as the percentage of off-chip memory usage increases.

5.3. For Edge TPUs, Prefer Model Depth When Possible for Convolutional Networks

Due to the width of convolution operations, there is more parallelism inherent to
CNNs, and further increasing the width may overload the hardware’s capacity. Table 2
provides a comparison point to a fully connected network with 240 layers and 810 nodes
per layer, and all but the smallest CNNs require more floating-point operations to perform
an inference.

To mitigate this challenge, it is advisable to focus on expanding the depth of the
network instead. We observe symmetry between increases in the depth of the neural
network model and its runtime performance on the edge TPU. By increasing the depth,
the network can effectively capture complex hierarchical features [68]. Early convolutional
neural networks [69] used as few as five layers, but more recent convolutional neural
networks, such as Inception-Resnet at 572 layers [60] and the Residual Attention Network
at 452 layers, have become significantly deeper. With more data available to train networks,
deeper networks can be well-supported by the edge TPU.

5.4. Avoid Performance Cliffs for Transfer Learning with Fully-Connected Input Layers

As shown in our experiments on transfer learning, the size of a fully connected layer for
mapping one-dimensional input data to a two-dimensional image may significantly affect
performance. As the number of nodes in the fully connected layer increases, the edgetpu
compiler may choose to place all of the model parameters in off-chip memory, leading
to asymmetry between the increase in nodes and performance. In our dataset, these
performance cliffs were not easy to predict based on the number of nodes in the fully
connected layer. However, the performance cliffs occurred infrequently enough that testing
the performance of a few fully connected layer sizes should be sufficient to avoid them.

Performance cliffs are common pitfalls for hardware accelerators. NVIDIA provides
an occupancy calculator for general-purpose GPU applications (GPGPU) [70] to help
application developers choose the correct number of threads and amount of memory to
use. We recommend that edge TPU designers provide similar tools to help application
developers choose the parameters for their neural networks. However, we note that this is
a more complex issue to solve due to the process of developing a neural network model
for execution on the edge TPU. The application developer must design the higher level
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model in a framework like Keras or Tensorflow, then convert the model to Tensorflow Lite,
and finally compile the model using the edgetpu compiler. It may be difficult to develop a
calculator that accounts for the nuances of this entire process.

5.5. Scale Width at Input Layers to Exploit Parallelism on the Edge TPU

Scaling the width of a convolutional neural network (CNN) at the input layers can
be a strategic choice to exploit parallelism and enhance the network’s performance. By in-
creasing the width or the number of channels or filters in the initial convolutional layers,
the network gains the ability to capture a broader range of low-level features and patterns
from the input data. This enables the CNN to distribute the processing of different features
across multiple parallel pathways. Consequently, scaling the width of the network at the
input layers can lead to more efficient and effective feature extraction, making it a benefi-
cial strategy for enhancing CNN performance. We observe that the edge TPU effectively
exploits the increased parallelism found in the model by increasing its width at the input
layers. Therefore, scaling the width at the input layers may increase model accuracy and
can be efficiently executed by the edge TPU.

5.6. Limitations

The experiments outlined in this study were performed on the Coral development
board. This development board provides features for developing and testing IoT appli-
cations, but it is not optimized for deployed applications. For example, the development
board runs Mendel Linux, which allows the developer to run programs in a familiar
command-line environment. In a deployed IoT application, functionality, like the operating
system, that is provided for developer convenience would not be included, leading to
performance and energy improvements. We attempted to factor out the energy cost of these
convenience features by measuring the resting energy used by the development board,
but this may not perfectly model the energy usage of a custom IoT device using a tightly
integrated TPU. For custom devices, the methodology presented in this paper can serve
as a guide for analyzing the runtime and energy performance of the device on potential
network models.

All experiments were run on the Google edge TPU. We leave an evaluation of other
accelerators using this methodology to future work. Though the hardware designs that
practitioners use to run machine learning models may be slightly different, the methodology
for finding the best structure for these models should remain the same, and many of the
same takeaways from the discussion will still apply.

We analyze a wide variety of neural network models in this paper, but there are
infinitely many ways to structure a neural network. This paper does not evaluate recurrent
neural networks such as long short-term memory models, or transformer networks, or other
commonly used models. The runtime and energy performance evaluation of additional
model structures is left to future work.

We have not evaluated the machine learning algorithm accuracy of these modifications
to CNNs. The accuracy of the algorithm is highly dependent on the problem for which
machine learning is being applied and on the availability of training data. We leave
experimentation on accuracy up to practitioners with a specific problem to solve and hope
that the guidance on runtime and energy performance in this paper can assist them in
finding an efficient CNN model.

6. Conclusions

In conclusion, this paper has provided an evaluation of the runtime and energy
performance of convolutional neural networks (CNNs) when executed on an edge TPU.
Our findings underscore the remarkable efficiency gains achieved by leveraging TPUs over
traditional CPU architectures. Notably, we have demonstrated that extending the depth of
a CNN has a comparatively limited effect on runtime performance in contrast to expanding
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its width. This insight can guide practitioners in optimizing their model architectures for
TPU deployment, emphasizing the potential benefits of deeper networks.

We have analyzed various adjustments to CNNs that might be made by practitioners
during the process of applying transfer learning. We find that simply resizing an image
input to a different size has little impact on the runtime performance. However, adding
a fully connected layer to bridge the gap from a small number of real inputs to the larger
number of expected inputs for a CNN may have a significant performance impact on an
edge processor.

Furthermore, our investigation has shed light on the role of off-chip memory storage
in CNN performance on TPUs. In line with our expectations, the impact of off-chip
memory storage appears to be less consequential in the context of convolutional neural
networks. This observation highlights the substantial computational requirements inherent
to convolution operations, which tend to dominate the overall execution time.

In light of these findings, it is evident that the edge TPU stands as a compelling
platform for deploying CNNs, offering not only improved runtime efficiency but also
energy savings. As the demand for efficient edge computing solutions continues to rise,
our research contributes valuable insights that can aid in the development of optimized
models and hardware configurations for real-world applications, especially for practitioners
considering an application of transfer learning.
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