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Abstract: This paper introduces a sum-of-squares (S-O-S) approach to Stability Analysis and Stabi-
lization (SAS) of nonlinear dynamical systems described by General Conformable Polynomial Fuzzy
(GCPF) models with a time delay. First, we present GCPF models, which are more general compared
to the widely recognized Takagi–Sugeno Fuzzy (T-SF) models. Then, we establish SAS conditions
for these models using a Lyapunov–Krasovskii functional and the S-O-S approach, making the SAS
conditions in this work less conservative than the Linear Matrix Inequalities (LMI)-based approach to
the T-SF models. In addition, the SAS conditions are found by satisfying S-O-S conditions dependent
on membership functions that are reliant on the polynomial fitting approximation algorithm. These
S-O-S conditions can be solved numerically using the recently developed SOSTOOLS. To demon-
strate the effectiveness and practicality of our approach, two numerical examples are provided to
demonstrate the effectiveness and practicality of our approach.

Keywords: Lyapunov–Krasovskii functional; general conformable system; S-O-Ss approach; time
delay; polynomial model; polynomial fitting approximation

1. Introduction

Since 1985 [1], there has been growing interest in the T-SF model because of its ability to
effectively represent nonlinear systems and generate numerous standard theoretical results.
By using LMIs along with the Lyapunov theory, T-SF models have been widely used to
analyze and achieve control objectives for nonlinear systems, such as Asymptotic Stability
(AS) [2,3], Exponential Stability (ES) [4], Observer-Based Control (O-BC) [5,6], and Fault-
Tolerant Control (F-TC) [7]. In 2007, Tanaka and colleagues expanded T-SF models into
Polynomial Fuzzy (PF) models [8]. They accomplished this by utilizing a software tool
named SOSTOOLS, which had emerged in 2002 [9]. PF models offer two main advantages
over T-SF models: they provide better accuracy when it comes to representing complex
nonlinear systems and they require fewer fuzzy rules [10]. Furthermore, the method using
LMIs is not suitable for dealing with PF models because these models involve polynomials
in their matrices. In this scenario, the software tool SOSTOOLS [11] replaces the LMI
toolbox [12], providing researchers with the ability to effectively manage polynomial
inequalities. Significant research efforts have been directed towards tackling analysis and
control issues in PF models. The emphasis has been placed on presenting design solutions
using S-O-S conditions. This includes areas such as AS [10–13], OB-C [14], F-TC [15].
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It is important to note that all the results mentioned earlier focused on nonlinear
systems without delays and with integer-order derivatives. In the following sections, we
will delve into two main topics: the common presence of delays in systems and the use of a
General Conformable Derivative (GCD) to describe their dynamics.

On one hand, it is important to include time delay factors when modeling and control-
ling real-world systems like long transmission lines, mechanical setups, chemical processes,
and so on. In this situation, Razumikhin [16] and Krasovskii [17] have put forward key
theories to handle equations involving time delays. They have expanded upon Liapunov’s
theory, which dates back to 1892. These foundational works, especially the contributions
made by Krasovskii, have been widely used to analyze and synthesize control for various
models that include time delays.

Various techniques have been used in the literature to investigate the stability analysis
problem of delayed Linear Systems (LSs). For instance, by considering multiple time delays,
the issue of AS has been studied for a general class of retarded LSs via the bounds of its
imaginary spectra [18,19]. By adopting a novel Lyapunov–Krasovskii functional with new
double integral terms, the authors of [20] have proposed using relaxed sufficient LMIs
to test the AS of a delayed LS with bounded and periodic time-varying delays. Using
the Kalman–Yakubovich–Popov lemma, the Strong Delay-Independent Stability (SD-IS)
problem is addressed for delayed LSs with a single delay [21]. Recently, the Generalized
Dixon resultant theory is adopted to investigate the SD-IS problem for LSs with multiple
time delays [22].

In their publication, the authors of [23] present the first attempt to extend T-SF models
to include systems with time delays. Since this work was published in 2000, researchers
have expressed considerable interest in T-SF models with time delays. This attention has
led to many important works, such as those related to AS [24], ES [25], OB-C [26], FTC [27].
Similarly, researchers have enhanced PF models to handle time delays. This has resulted
in the discovery of many significant findings in the field in relation to AS [28,29], ES [30],
O-BC [31] and FTC [32].

On the other hand, in 2014, Khalil et al. [33] introduced a novel derivative called the
Conformable Derivative (CD). This derivative was further developed by T. Abdeljawad
in [34], and it is currently being extensively explored in [35–37]. A new way of understand-
ing control systems has emerged with the advent of CD (see [38,39]). Alharbi et al. [40] have
demonstrated that the CD, which serves as a weighted-time analog of classical derivatives,
has applications in physics. The CD is generalized, along with its physical interpretation,
by Zhao and Luo in [41]. Furthermore, in their work, Li et al. [42] have demonstrated that
the diffusion equation can be solved with a GCD. Recent studies ( [43] and [44]) illustrate
how GCD can be used to analyze and understand control systems.

This paper examines the issue of SAS for GCPF models. The principal contributions of
this paper are outlined below:

• The PF models are widely used in the literature to represent nonlinear dynamics of
systems with integer-order derivative. In this paper, we present the first attempt to
apply the PF models to describe delayed systems with GCD. Furthermore, instead of
relying on T-SF models, we employ the PF models due to their broader accuracy and
generality, as established in prior research [10].

• A new Lyapunov–Krasovskii functional is developed to establish the exponential SAS
for GCPF systems. This function is specifically designed to effectively address the
challenges of exponential SAS in such systems.

• By utilizing the constructed Lyapunov–Krasovskii functional, S-O-S conditions are de-
rived to ensure the SAS of GCPF systems. In fact, the LMI approach is not applicable in
such systems due to the presence of polynomial matrices instead of constant matrices
in local models. Furthermore, the SOS approach, as discussed in the literature [10],
yields less conservative results compared to the LMI approach.

• In order to take into account the overall behavior of the PF model, the S-O-S conditions
contain not only information about the polynomial local models but also information
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about the Fuzzy Membership Functions (FMFs). Due to their nonlinear dynamics,
a polynomial curve fitting method is used to approximate these FMFs as S-O-Ss,
enabling these approximations to be incorporated into the S-O-S conditions.

The paper is structured as follows: Section 2 delves into the preliminary concepts,
while Section 3 presents the problem formulation. In Section 4, we present our theoretical
results. In Section 5, we present numerical examples to showcase the practical applicability
of the theoretical results. Section 6 concludes the paper.

Notations: ℑ and ∆ denote the sets of polynomial matrices and S-O-Ss, respectively.
For a matrix N , [N ]T = N +N T .

2. Preliminaries

In this section, we begin by revisiting pertinent definitions, lemmas, and theorems,
as cited in references [8,33,34,41,42].

Definition 1. Let the function ϕ be defined on the interval [a, b). The General Conformable
Derivative (GCD) of ϕ at the initial real value a is defined as follows:

Tθ,ψa
a ϕ(t) = lim

ε→0

ϕ(t + εψa(t, θ))− ϕ(t)
ε

, for every t > a. (1)

The parameter θ belongs to (0, 1], and ψa(t, θ) represents a continuous non-negative function that
is dependent on t, meeting the following condition:

ψa(t, 1) = 1, ψa(·, θ1) ̸= ψa(·, θ2), where θ1 ̸= θ2 and ( θ1, θ2) ∈ (0, 1].

If Tθ,ψa
a ϕ(t) exists, for all t ∈ (a, c), for some c > a and lim

t−→a+
Tθ,ψa

a ϕ(t) exists; therefore,

Tθ,ψa
a ϕ(a) := lim

t−→a+
Tθ,ψa

a ϕ(t). (2)

Remark 1. The GCD serves as a generalization that encompasses both the classical derivative
case, when θ = 1, and the Conformable Derivative, denoted by ψa(t, θ) = (t − a)1−θ (refer to [34]
and [33] for the case when a = 0).

Remark 2. For an in-depth exploration of the properties of the GCD, we make the following as-
sumptions:

• The function ψa(t, θ) is increasing and satisfies ψa(t, θ) > 0 for all t > a.
• The function 1

ψa
(., θ) is locally integrable.

• The integral from a to ∞ of 1
ψa(x,θ)dx diverges, as indicated by

∫ ∞
a

1
ψa(x,θ)dx = ∞.

Definition 2. For 0 < θ < 1, the Conformable Integral of a function ϕ is defined as follows:

Iθ,ψa
a ϕ(t) =

∫ t

a

ϕ(x)
ψa(x, θ)

dx. (3)

Lemma 1. Consider a function ϕ defined on [a, b]. Then, for every t, such that t ≥ a, it follows that

Tθ,ψa
a Iθ,ψa

a ϕ(t) = ϕ(t). (4)

Lemma 2. If ϕ is an absolutely continuous function defined on the interval [a, b], then for all t,
such that t ≥ a, the following holds:

Iθ,ψa
a Tθ,ψa

a ϕ(t) = ϕ(t)− ϕ(a). (5)
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Lemma 3. Let ν1, ν2, ν3 ∈ R, and the functions ϕ1, ϕ2 : [a, b) −→ R such that Tθ,ψa
a ϕ1(t) and

Tθ,ψa
a ϕ2(t) exist on (a, b). Then,

• Tθ,ψa
a (ν1ϕ1 + ν2ϕ2)(t) = ν1Tθ,ψa

a ϕ1(t) + ν2Tθ,ψa
a ϕ2(t);

• Tθ,ψa
a ν3 = 0;

• Tθ,ψa
a (ϕ1ϕ2)(t) = ϕ1(t)T

θ,ψa
a ϕ2(t) + ϕ2(t)T

θ,ψa
a ϕ1(t);

• Tθ,ψa
a ( ϕ1

ϕ2
)(t) =

ϕ2(t)T
θ,ψa
a ϕ1(t)− ϕ1(t)T

θ,ψa
a ϕ2(t)

ϕ2
2(t)

, for each t ∈ (a, b), such that

ϕ2(t) ̸= 0.

Remark 3. Let ζ ∈ R∗. If g(t) := Eψa
θ

(
ζ, t, a

)
= eζ

∫ t
a

1
ψa(x,θ) dx, then Tθ,ψa

a g(t) = ζg(t) and

Iθ,ψa
a g(t) = 1

ζ

(
g(t)− 1

)
.

Let consider the nonlinear system:

Tθ,ψa
a ξ(ν) = F(ν, ξ(ν), ξ(ν − β)), ν ≥ a, (6)

ξ(ν) = ϱ(ν), ν ∈ [a − β, a]

where F ∈ C
(
[a, ∞)×Rn ×Rn,Rn) and ϱ ∈ C

(
[a − β, a),Rn).

Definition 3. The system (6) is referred to exponentially stable if we have positive scalars M and δ,
such that

∥ξ(ν)∥ ≤ M∥ξa∥Eψa
θ

(
− δ, ν, a

)
, ∀ν ≥ a, (7)

where ∥ξa∥ = sup
ν∈[a−β,a]

∥ξ(ν)∥.

Definition 4. Let f (ξ(ρ)) ∈ ℑ. If ∃ { f1(ξ(ρ)), f2(ξ(ρ)), . . . , fm(ξ(ρ))} ∈ ℑ, such that

f (ξ(ρ)) =
m

∑
j=1

f 2
j (ξ(ρ)), (8)

then f (ξ(ρ)) ∈ ∆, which implies that f (ξ(ρ)) > 0.

3. Problem Formulation

Consider a nonlinear system with delay described by the delayed PF model, which
consists of the following r rules:

Plant Rule i(i = 1, 2, · · · , r): If α1(ξ(ρ)) is ςi1 and · · · and αp(ξ(ρ)) is ςip then,

Tθ,ψa
a ξ(ρ) = Ai(ξ(ρ))ξ(ρ) +Aβi(ξ(ρ))ξ(ρ − β) +Bi(ξ(ρ))u(ρ) (9)

where the measurable premise variables are represented by αj(ξ(ρ)), j = 1 . . . p. The fuzzy
sets are ςij, i = 1 . . . r and j = 1 . . . p, s and the rules’ number is r. ξ(ρ) represents the
current state vector, ξ(ρ − β) represents the delayed state vector, and u(ρ) is the vector for
control inputs. The sets {Ai(ξ(ρ)),Aβi(ξ(ρ)),Bi(ξ(ρ))} belong to the set ℑ. The delay β is
presumed to remain constant and be known.

After the defuzzication process of model (9), we obtain the following result:

Tθ,ψa
a ξ(ρ) =

r

∑
i=1

ιi(ξ(ρ))
(
Ai(ξ(ρ))ξ(ρ) +Aβi(ξ(ρ))ξ(ρ − β) +Bi(ξ(ρ))u(ρ)

)
(10)
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where ιi(ξ(ρ)) =

r

∏
i=1

ςij(αj(ξ(ρ)))

r

∑
i=1

p

∏
j=1

ςij(αj(ξ(ρ)))

are the FMFs.

In the remaining equations, ιi(ξ(ρ)) and ξ(ρ) are denoted as ιi(ξ) and ξ, respectively.
To incorporate the information regarding FMFs, we employ the polynomial curve

fitting technique to approximate each FMF ιi(ξ) as a square of a polynomial pi(ξ). To en-
hance the precision of this approximation, ξ is partitioned into m sub-segments se, in which
e ∈ M = {1, 2, . . . , m}. Within each of these segments se, an approximation by a square of
polynomial pi,se(ξ) is employed for every ιi(ξ):

ιi(ξ) ≈ pi,se(ξ), for ξ ∈ se. (11)

4. Main Results
4.1. Stability Analysis

Theorem 1. For positive scalars σ, β and a, the system (10), with u = 0, is exponentially stable if
there are symmetric matrices P and Q, such that the following S-O-S conditions are satisfied:

ϵT
1 (P − n1 I)ϵ1 ∈ ∆, (12)

ϵT
1 (Q − n2 I)ϵ1 ∈ ∆, (13)

−ϵT
2 (

r

∑
i=1

pi,se(ξ)Λi(ξ) + n3(ξ)I)ϵ1 ∈ ∆, ∀se, (14)

where κT =
[

ξT ξT(ρ − β)
]T , Λi(ξ) =

[
[PAi(ξ) + σP]T + Q PAβi(ξ)

∗ −e−2σ
∫ a+β

a
du

ψa(u,θ) Q

]
, ϵ1

and ϵ2 are vectors such that ϵ2 is independent of ξ, n1, n2 are strictly positive scalars, and n3(ξ) is
a non-negative polynomial, such that n3(ξ) > 0 for ξ ̸= 0.

Proof. Let the Lyapunov–Krasovskii functional candidate presented below,

V(ρ) = V1(ρ) + V2(ρ) (15)

where

V1(ρ) = ξT Pξ,

V2(ρ) =
∫ ρ+β

ρ

1
ψa(r, θ)

e2σ(
∫ r

a
du

ψa(u,θ)−
∫ ρ

a
du

ψa(u,θ)−
∫ a+β

a
du

ψa(u,θ) )ξT(r − β)Qξ(r − β)dr.

(29) and (13) imply that P > 0 and Q > 0.
For ρ > a, we obtain the following GCD of V1(ρ) and V2(ρ)

Tθ,ψa
a V1(ρ) = 2

(
Tθ,ψa

a ξ
)T Pξ

Tθ,ψa
a V2(ρ) = ψa(ρ, θ)

[
e2σ(

∫ ρ+β
a

du
ψa(u,θ)−

∫ ρ
a

du
ψa(u,θ)−

∫ a+β
a

du
ψa(u,θ) )

ξT(ρ)Qξ(ρ)

ψa(ρ + β, θ)

−e2σ(
∫ ρ

a
du

ψa(u,θ)−
∫ ρ

a
du

ψa(u,θ)−
∫ a+β

a
du

ψa(u,θ) )
ξT(ρ − β)Qξ(ρ − β)

ψa(ρ, θ)

]
− 2σ

ψa(ρ, θ)
V2(ρ) (16)

Since ρ 7−→ ψa(ρ, θ) is increasing, then

ψa(ρ, θ)

ψa(ρ + β, θ)
≤ 1
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and ∫ ρ+β

a

du
ψa(u, θ)

−
∫ ρ

a

du
ψa(u, θ)

−
∫ a+β

a

du
ψa(u, θ)

≤ 0.

Hence,

Tθ,ψa
a V2(ρ) ≤ ξT(ρ)Qξ − e−2σ

∫ a+β
a

du
ψa(u,θ) ξT(ρ − β)Qξ(ρ − β)− 2σV2(ρ) (17)

From (16) and (17), we obtain the following result:

Tθ,ψa
a V1(ρ) + 2σV1(ρ) = 2

(
Tθ,ψa

a ξ
)T Pξ + 2σξT Pξ (18)

Tθ,ψa
a V2(ρ) + 2σV2(ρ) ≤ ξT(ρ)Qξ − e−2σ

∫ a+β
a

du
ψa(u,θ) ξT(ρ − β)Qξ(ρ − β) (19)

From (15), (18) and (19), we obtain

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤ 2

(
Tθ,ψa

a ξ
)T Pξ + 2σξT Pξ + ξT(ρ)Qξ − e−2σ

∫ a+β
a

du
ψa(u,θ) ξT(ρ − β)Qξ(ρ − β)

≤ 2
r

∑
i=1

ιi(ξ)
(

ξTAT
i (ξ) + ξT(ρ − β)AT

βi(ξ)
)

Pξ + 2σξT Pξ + ξT(ρ)Qξ

−e−2σ
∫ a+β

a
du

ψa(u,θ) ξT(ρ − β)Qξ(ρ − β). (20)

The GCD of V(ρ) satisfies

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤

r

∑
i=1

ιi(ξ)κ
TΛi(ξ)κ (21)

By employing the polynomial curve fitting technique, we can approximate the FMF ιi(ξ)
as square polynomials. So, according to (11), we can rewrite the previous inequality
as follows:

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤

r

∑
i=1

pi,sr (ξ)κ
TΛi(ξ)κ (22)

Therefore, if (14) holds, then

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤ 0.

It follows from Theorem 2 in [43] that

V(ρ) ≤ V(a)Eψa
θ

(
− 2σ, ρ, a

)
, ∀ρ ≥ a. (23)

We have

V(a) ≤ K1∥ξ∥2,

V(ρ) ≥ K2∥ξ(ρ)∥2, (24)

where

K1 =
(

λmax(P) + λmax(Q)
∫ a+β

a

1
ψa(r, θ)

dr
)

and
K2 = λmim(P).

Therefore,
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∥ξ(ρ)∥ ≤

√
K1

K2
∥ξa∥Eψa

θ

(
− σ, ρ, a

)
, ∀ρ ≥ a. (25)

4.2. Stabilization via SOS

Since the PDC replicates the structure of the fuzzy model of a system, it is possible
to build a fuzzy controller with polynomial rule consequences using the provided PF
model (9):

Plant Rule i(i = 1, 2, · · · , r): If α1(ρ) is ςi1 and · · · and αp(ρ) is ςip then,

u(ρ) = −Fi(ξ)ξ (26)

We can determine the complete fuzzy controller by

u(ρ) = −
r

∑
i=1

ιi(ξ)Fi(ξ)ξ (27)

Using (10) and (27), we can express the closed-loop system as

Tθ,ψa
a ξ =

r

∑
i=1

r

∑
j=1

ιi(ξ)ιj(ξ)
(
{Ai(ξ)−Bi(ξ)Fj(ξ)}ξ +Aβi(ξ)ξ(ρ − β)

)
(28)

Theorem 2. For positive scalars σ, β and a, the system (28) is exponentially stable if we have
symmetric matrices P and Q̃, such that the following S-O-Ss are satisfied:

ϵT
1 (P − n1 I)ϵ1 ∈ ∆, (29)

ϵT
1 (Q̃ − n2 I)ϵ1 ∈ ∆, (30)

−ϵT
2 (

r

∑
i=1

r

∑
j=1

pi,se(ξ)pj,se(ξ){Γij(ξ) + Γji(ξ)}+ n3(ξ)I)ϵ2 ∈ ∆, ∀se, (31)

where Γij(ξ) =

[
[Ai(ξ)P −Bi(ξ)Mj(ξ) + σP]T + Q̃ Aβi(ξ)P

∗ −e−2σ
∫ a+β

a
du

ψa(u,θ) Q̃

]
, ϵ1 and ϵ2 are

vectors such that ϵ2 is independent of ξ, n1, n2 are strictly positive scalars, and n3(ξ) is a non-
negative polynomial, such that n3(ξ) > 0 for ξ ̸= 0. In this case, the controller’s gains are
as follows:

Fj(ξ) = Mj(ξ)P−1
1 . (32)

Proof. The Lyapunov–Krasovskii functional candidate is presented below:

V(ρ) = V1(ρ) + V2(ρ), (33)

where V1(ρ) = ξT P−1ξ and V2(ρ) is the same as (16).
By following the same steps as outlined in the proof of Theorem 1, we obtain

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤ 2

(
Tθ,ψa

a ξ
)T P−1ξ + 2σξT P−1ξ + ξT(ρ)Qξ − e−2σ

∫ a+β
a

du
ψa(u,θ) ξT(ρ − β)Qξ(ρ − β)

≤ 2
r

∑
i=1

r

∑
j=1

ιi(ξ)ιj(ξ)
(

ξT{Ai(ξ)−Bi(ξ)Fj(ξ)}T + ξT(ρ − β)AT
βi(ξ)

)
P−1ξ

+2σξT P−1ξ + ξT(ρ)Qξ − e−2σ
∫ a+β

a
du

ψa(u,θ) ξT(ρ − β)Qξ(ρ − β) (34)
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The GCD of V(ρ) satisfies

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤

r

∑
i=1

r

∑
i=j

ιi(ξ)ιj(ξ)κ
T∇ij(ξ)κ =

1
2

r

∑
i=1

r

∑
i=j

ιi(ξ)ιj(ξ)κ
T{∇ij(ξ) +∇ji(ξ)}κ (35)

where ∇ij(ξ) =

[
[P−1{Ai(ξ)−Bi(ξ)Fj(ξ)}+ σP−1]T + Q P−1Aβi(ξ)

∗ −e−2σ
∫ a+β

a
du

ψa(u,θ) Q

]
.

The condition (31) implies that

r

∑
i=1

r

∑
j=1

pi,se(ξ)pj,se(ξ){Γij(ξ) + Γji(ξ)} ⩾ 0 ∀se (36)

Define Mj(ξ) = Fj(ξ)P, Q̃ = PQP, and if we multiply the last expression on both sides,
diag{P−1, P−1}, we obtain

r

∑
i=1

r

∑
j=1

pi,se(ξ)pj,se(ξ){∇ij(ξ) +∇ji(ξ)} ⩾ 0 ∀se (37)

Based on Equation (11), we can express (37) as follows:

r

∑
i=1

r

∑
j=1

ιi(ξ)ιj(ξ){∇ij(ξ) +∇ji(ξ)} ⩾ 0 ∀i ≤ j (38)

Therefore, if (31) holds, then

Tθ,ψa
a V(ρ) + 2σV(ρ) ≤ 0.

Similar to the proof of Theorem 1, we achieve the exponential stability of the GCD
systems (28).

Remark 4. In [45], we utilized a conformable derivative within the context of LS. In contrast,
this work expands upon this by employing a GCD and introducing PF models. These models
provide a more general framework, surpassing both LS and T-SF models in terms of applicability
and flexibility.

Remark 5. The use of FP models instead of T-SF models allows a reduction in the number of if–then
rules, which in turn decreases the overall system complexity. An example is given in the next section
to illustrate this point.

5. Illustrative Examples
5.1. Example 1

Consider the following PF model with GCD and time delay:

Tθ,ψa
a ξ =

2

∑
i=1

ιi(ξ){Ai(ξ)ξ +Aβiξ(ρ − β)} (39)

where A1(ξ) =

[
−1 − ξ2

1 3
−10 −35

]
, A2(ξ) =

[
−ξ2

1 3
−10 −35

]
,Aβ1(ξ) =

[
−0.1ξ2

1 0
1 0

]
,

Aβ2(ξ) =

[
−0.1ξ2

1 0
0.2 0

]
. The FMFs are defined as follows:

ι1(ξ) =
1
2
(1 − sin(ξ2)); ι2(ξ) = 1 − ι1(ξ2).
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We consider three sub-regions s1 = {ξ2,−2 ≤ ξ2 ≤ 0}, s2 = {ξ2, 0 ≤ ξ2 ≤ 2} and
s3 = {ξ2, 2 ≤ ξ2 ≤ 4}. Using the polynomial approximation method, we approximate the
FMFs with fourth-degree square polynomials as follows:

p1,s1(ξ2) = (−0.1174ξ2
2 − 0.3714ξ2 + 0.7053)2

p1,s2(ξ2) = (0.1932ξ2
2 − 0.7079ξ2 + 0.7666)2

p1,s3(ξ2) = (−0.0802ξ2
2 + 0.8476ξ2 − 1.1659)2

p2,s1(ξ2) = (0.1932ξ2
2 + 0.7079ξ2 + 0.7666)2

p2,s2(ξ2) = (−0.1174ξ2
2 + 0.3714ξ2 + 0.7053)2

p2,s3(ξ2) = (−0.0924ξ2
2 + 0.2368ξ2 + 0.8768)2

The approximation of FMF by eight-degree square polynomials are given as follows:

p1,s1(ξ2) = (0.0024ξ4
2 + 0.0156ξ3

2 − 0.0878ξ2
2 − 0.3534ξ2 + 0.7071)2

p1,s2(ξ2) = (0.1871ξ4
2 − 0.4635ξ3

2 + 0.2714ξ2
2 − 0.4286ξ2 + 0.7075)2

p1,s3(ξ2) = (0.0016ξ4
2 − 0.0357ξ3

2 + 0.1484ξ2
2 + 0.2689ξ2 − 0.660)2

p2,s1(ξ2) = (0.1871ξ4
2 + 0.4635ξ3

2 + 0.2714ξ2
2 + 0.4286ξ2 + 0.7075)2

p2,s2(ξ2) = (0.0024ξ4
2 + 0.0156ξ3

2 − 0.0878ξ2
2 − 0.3534ξ2 + 0.7071)2

p2,s3(ξ2) = (0.0019ξ4
2 − 0.0098ξ3

2 − 0.1104ξ2
2 + 0.3918ξ2 + 0.6830)2

In Figures 1 and 2, we present FMFs and their estimates within the areas labeled s1, s2,
and s3. It is clear that when we increase the degree of the polynomial, the accuracy of the
polynomial approximation method improves.

The S-O-S design conditions in Theorem 1 are feasible for σ = 0.8, β = 0.9 and
n1 = n2 = n3 = 10−6. Figure 3 illustrates the temporal progression of ξ(ρ), for ρ ∈ [−0.9, 0]
and we can see from this figure that the system becomes stable.

T ime ρ(s)
-2 -1 0 1 2 3 4

ι i
(ξ

2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ι1(ξ2)
p1,se(ξ2)
ι2(ξ2)
p2,se(ξ2)

Figure 1. FMF and their fourth-degree square polynomials approximations in ξ2 ∈ [−2, 4].
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T ime ρ(s)
-2 -1 0 1 2 3 4

ι i
(ξ

2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ι1(ξ2)
p1,se(ξ2)
ι2(ξ2)
p2,se(ξ2)

Figure 2. FMF and their eighth-degree square polynomials approximations in ξ2 ∈ [−2, 4].

Time ρ(s)
0 1 2 3 4 5 6 7 8 9 10

ξ
(ρ
)

-1

0

1

2

3

4

5

6

ξ1(ρ)
ξ2(ρ)

Figure 3. Temporal progression of ξ(ρ).

5.2. Example 2

Consider the following delayed NS:

Tθ,ψa
a ξ = A(ξ)ξ +Aβξ(ρ − β) +B(ξ)u, (40)

where A(ξ) =
[

−1 + ξ1 + ξ2
1 + ξ1ξ2 − ξ2

2 1
− sin(ζ1) −1

]
, Aβ(ξ) =

[
ξ1 0
0.2 0

]
, B(ξ) =

[
ξ2

1 + 5
0

]
.

Let ymin = min
|ξ1|<q1, |ξ2|<q2

(y) and ymax = max
|ξ1|<q1, |ξ2|<q2

(y), where y = −1 + ξ1 + ξ2
1 +

ξ1ξ2 − ξ2
2.

By using the concept of sector nonlinearity, the NS (40) is represented by the following
T-SF model for ξ1 ∈

[
−q1 q1

]
, ξ2 ∈

[
−q2 q2

]
:

Tθ,ψa
a ξ =

8

∑
i=1

ιi{Aiξ +Aβiξ(ρ − β) +Biu}, (41)
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whereA1 = A2 =

[
ymax 1
−1 −1

]
,A3 = A4 =

[
ymax 1
− sin q1

q1
−1

]
, A5 = A6

[
ymin 1
−1 −1

]
,A7 =

A8 =

[
ymin 1
− sin q1

q1
−1

]
, Aβ1 = Aβ3 = Aβ5 = Aβ7 =

[
q1 0
0.2 0

]
, Aβ2 = Aβ4 = Aβ6 = Aβ8 =[

−q1 0
0.2 0

]
, B1 = B3 = B5 = B7

[
q1
0

]
, B2 = B4 = B6 = B8

[
−q1

0

]
.

The FMFs are defined as

ι1(ξ) =
y − ymin

ymax − ymin
.
sin ξ1 − (sin q1/q1)ξ1

(1 − (sin q1/q1))ξ1
.
ξ1 + q1

2q1

ι2(ξ) =
y − ymin

ymax − ymin
.
sin ξ1 − (sin q1/q1)ξ1

(1 − (sin q1/q1))ξ1
.
q1 − ξ1

2q1

ι3(ξ) =
y − ymin

ymax − ymin
.

ξ1 − sin ξ1

(1 − (sin q1/q1))ξ1
.
ξ1 + q1

2q1

ι4(ξ) =
y − ymin

ymax − ymin
.

ξ1 − sin ξ1

(1 − (sin q1/q1))ξ1
.
q1 − ξ1

2q1

ι5(ξ) =
ymax − y

ymax − ymin
.
sin ξ1 − (sin q1/q1)ξ1

(1 − (sin q1/q1))ξ1
.
ξ1 + q1

2q1

ι6(ξ) =
ymax − y

ymax − ymin
.
sin ξ1 − (sin q1/q1)ξ1

(1 − (sin q1/q1))ξ1
.
q1 − ξ1

2q1

ι7(ξ) =
ymax − y

ymax − ymin
.

ξ1 − sin ξ1

(1 − (sin q1/q1))ξ1
.
ξ1 + q1

2q1

ι8(ξ) =
ymax − y

ymax − ymin
.

ξ1 − sin ξ1

(1 − (sin q1/q1))ξ1
.
q1 − ξ1

2q1

In opposition to the T-SF model, the consequence part of the PF model is represented by
a polynomial equation rather than a linear one. Then, the NS (40) is represented by the
following PF model:

Tθ,ψa
a ξ =

2

∑
i=1

ιi{Ai(ξ)ξ +Aβiξ(ρ − β) +Bi(ξ)u} (42)

where A1(ξ) =

[
−1 + ξ1 + ξ2

1 + ξ1ξ2 − ξ2
2 1

−1 −1

]
, A2(ξ) =

[
−1 + ξ1 + ξ2

1 + ξ1ξ2 − ξ2
2 1

0.2172 −1

]
,

Aβ1 (ξ) = Aβ2 (ξ)

[
ξ1 0
0.2 0

]
, B1(ξ) = B2(ξ) =

[
ξ2

1 + 5
0

]
.

The FMFs are defined as

ι1 =
sin(ξ1) + 0.2172ξ1

1.2172ξ1
; ι2 =

ξ1 − sin(ξ1)

1.2172ξ1

Figure 4 shows the behavior of (42) with u = 0 for these initial states: ξ(ρ) =[
8 −3

]T ,
[
−5 −5

]T ,
[

5 5
]T and

[
−8 3

]T for ρ ∈ [−0.9, 0]. From this fig-
ure, we can see that the system (42) is unstable.

We assume that ξ1 ∈ [0.01, 4] and the interval divides into two segments as s1 =
[0.01, 2] and s2 = [2, 4]. Using the polynomial approximation method, we approximate the
fuzzy MFs using the following fourth-degree square polynomials:

p1,s1(ξ1) = (−0.0617ξ2
1 − 0.0066ξ1 + 1.0010)2

p1,s2(ξ1) = (−0.0186ξ2
1 − 0.1869ξ1 + 1.1944)2

p2,s1(ξ1) = (−0.0253ξ2
1 + 0.3885ξ1 − 0.0026)2

p2,s2(ξ1) = (−0.0560ξ2
1 + 0.4958ξ1 − 0.0989)2
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Figure 5 displays the FMFs and their approximations in regions s1 and s2. From this
figure, it is evident that the polynomial approximation method works effectively. This
polynomial approximation allows us to include the precise information of the FMFs in the
stabilization conditions.

ξ1(ρ)
-10 -8 -6 -4 -2 0 2 4 6 8 10

ξ
2
(ρ
)

-6

-4

-2

0

2

4

6

Figure 4. Behaviors in ξ1(ρ)–ξ2(ρ) plane (without feedback).

T ime ρ(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

ι i
(ξ

1
)

0

0.2

0.4

0.6

0.8

1

1.2

ι1(ξ1)
p1,se(ξ1)
ι2(ξ1)
p2,se(ξ1)

Figure 5. FMFs and their square polynomials approximations in ξ1 ∈ [0.01, 4].

In our example, we solved the S-O-S conditions in Theorem 2 for σ = 0.9, β = 0.9 and
n1 = n2 = n3 = 10−4. We obtained the following solution:

F1(ξ2) =
[

0.1964ξ2
2 + 0.0416ξ2 + 2.6623 3.2530 × 10−5ξ2

2 + 4.9540 × 10−5ξ2 − 0.00408
]

F2(ξ2) =
[

2.7990ξ2
2 + 0.0681ξ2 + 4.2348 2.3139 × 10−4ξ2

2 − 4.1918 × 10−5ξ2 + 0.00568
]

(43)

Figure 6 shows the behavior of (42) for the same initial states as in Figure 4. It is
important to highlight that the proposed controller effectively stabilizes the system’s states
across different initial conditions.
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ξ1(ρ)
-8 -6 -4 -2 0 2 4 6 8

ξ
2
(ρ
)

-5
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-2

-1

0

1

2

3

4

5

Figure 6. Behaviors in ξ1(ρ)–ξ2(ρ) plane.

6. Conclusions

This paper has focused on the SAS of delayed nonlinear dynamic systems with GCD.
We have presented a novel framework for GCPF modeling. PF models have been used
extensively in the literature to describe delayed nonlinear systems with integer-order
derivatives. However, these models were utilized for the first time in this work, representing
the dynamic of delayed nonlinear systems with GCD. We have derived the exponential
SAS conditions of these systems using a novel Lyapunov–Krasovskii function. Notably,
these conditions are represented in terms of S-O-Ss, allowing for numerical (and partially
symbolic) solutions using the recently developed SOSTOOLS. Further improvement is
introduced by taking the FMFs into account. In fact, these functions are estimated as square
polynomials, through a polynomial approximation method, in order to derive the SAS
conditions dependent on FMFs. Two design examples are provided to demonstrate the
effectiveness and applicability of our approach.

Author Contributions: I.I.A.: Conceptualization, Investigation. H.G.: Writing—review and editing,
Investigation. M.R.: Conceptualization, Writing—review and editing, Investigation. L.M.: Software,
Visualization. A.B.M.: Methodology and Validation. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by King Saud University through Researchers Supporting Project
number (RSPD2024R683), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: No underlying data were collected or produced in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern.

1985, 15, 116–132. [CrossRef]
2. Kim, E.; Lee, H. New Approaches to Relaxed Quadratic Stability Condition of Fuzzy Control Systems. IEEE Trans. Fuzzy Syst.

2000, 8, 523–634.
3. Fang, C.-H.; Liu, Y.-S.; Kau, S.-W.; Hong, L.; Lee, C.-H. A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy

control systems. IEEE Trans. Fuzzy Syst. 2006, 14, 386–397. [CrossRef]
4. Wang, Y.; Xia, Y.; Ahn, C.K.; Zhu, Y. Exponential Stabilization of Takagi–Sugeno Fuzzy Systems with Aperiodic Sampling: An

Aperiodic Adaptive Event-Triggered Method. IEEE Trans. Fuzzy Syst. 2018, 49, 444–454. [CrossRef]
5. Teixeira, M.C.M.; Assuncao, E.; Avellar, R.G. On relaxed LMI based designs for fuzzy regulators and fuzzy observers. IEEE Trans.

Fuzzy Syst. 2003, 11, 613–623. [CrossRef]
6. Chadli, M.; El Hajjaji, A. Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst.

2006, 157, 1276–1281. [CrossRef]

http://doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1109/TFUZZ.2006.876331
http://dx.doi.org/10.1109/TSMC.2018.2834967
http://dx.doi.org/10.1109/TFUZZ.2003.817840
http://dx.doi.org/10.1016/j.fss.2005.09.004


Symmetry 2024, 16, 1259 14 of 15

7. Khallouq, A.; Karama, A. Fault tolerant control of Takagi-Sugeno systems: Application to an activated sludge process. J. Water
Process Eng. 2024, 61, 105265. [CrossRef]

8. Tanaka, K.; Yoshida, H.; Ohtake, H.; Wang, H.O. A sum of squares approach to stability analysis of polynomial fuzzy systems. In
Proceedings of the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 4071–4076.

9. Prajna, S.; Papachristodoulou, A.; Parrilo, P.A. Introducing SOSTOOLS: A general purpose sum of squares programming solver.
In Proceedings of the 41st IEEE Conference on Decision Control, Las Vegas, NV, USA, 10–13 December 2002; pp. 741–746.

10. Tanaka, K.; Yoshida, H.; Ohtake, H.; Wang, H.O. A sum-of-squares approach to modeling and control of nonlinear dynamical
systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 2009, 17, 911–922. [CrossRef]

11. Papachristodoulou, A.; Anderson, J.; Valmorbida, G.; Prajna, S.; Seiler, P.; Parrilo, P.; Peet, M.; Jagt, J. SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB Version 4.00. 2021. Available online: https://par.nsf.gov/biblio/10353822 (accessed on 1
January 2020).

12. Erkus, B.; Lee, Y.J. Linear Matrix Inequalities and Matlab lmi Toolbox; University of Southern California Group Meeting Report;
University of Southern California: Los Angeles, CA, USA, 2004.

13. Saenz, J.M.; Tanaka, M.; Tanaka, K. Relaxed stabilization and disturbance attenuation control synthesis conditions for polynomial
fuzzy systems. IEEE Trans. Cybern. 2021, 51, 2093–2106. [CrossRef]

14. Tanaka, K.; Ohtake, H.; Seo, T.; Tanaka, M.; Wang, H.O. Polynomial fuzzy observer designs: A sum-of-squares approach. IEEE
Trans. Fuzzy Syst. 2012, 42, 1330–1342. [CrossRef]

15. Sabbghian-Bidgoli, F.; Farrokhi, M. Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with
uncertainty and disturbance. IEEE Trans. Fuzzy Syst. 2022, 30, 741–754. [CrossRef]

16. Razumikhin, B. Applications of Lyapunov’s method to problems in the stability of systems with a delay. Autom. Remote Control
1960, 21, 515–520.

17. Krasovskii, N.N. On the Application of The Second Method of Lyapunov for Equations with Time Delays. Prikl. Mat. Mekh. 1956,
20, 315–327.

18. Gao, Q.; Olgac, N. Bounds of imaginary spectra of LTI systems in the domain of two of the multiple time delays. Automatica 2016,
72, 235–241. [CrossRef]

19. Gao, Q.; Olgac, N. Stability analysis for LTI systems with multiple time delays using the bounds of its imaginary spectra. Syst.
Control Lett. 2017, 102, 112–118. [CrossRef]

20. Liao, W.; Zeng, H.; Lin, H. Stability Analysis of Linear Time-Varying Delay Systems via a Novel Augmented Variable Approach.
Mathematics 2024, 12, 1638. [CrossRef]

21. Oliveiraa, F.S.S.D.; Souza, F.O. Strong delay-independent stability of linear delay systems. J. Frankl. Inst. 2019, 356, 5421–5433.
[CrossRef]

22. Cai, J.; Gao, Q.; Liu, Y.; Wu, A. Generalized Dixon Resultant for Strong Delay-Independent Stability of Linear Systems with
Multiple Delays. IEEE Trans. Autom. Control 2023, 69, 2697–2704. [CrossRef]

23. Cao, Y.Y.; Frank, P.M. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst.
2000, 8, 200–211.

24. Sheng, Z.; Lin, C.; Chen, B.; Wang, Q.-G. Stability and Stabilization of T–S Fuzzy Time-Delay Systems Under Sampled-Data
Control via New Asymmetric Functional Method. IEEE Trans. Fuzzy Syst. 2023, 31, 3197–3209. [CrossRef]

25. Ma, Y.; Yan, H. Delay-dependent robust H∞ filter for T-S fuzzy time-delay systems with exponential stability. Adv. Differ. Equ.
2013, 2013, 362. [CrossRef]

26. Islam, S.I.; Lim, C.-C.; Shi, P. Functional observer based controller for stabilizing Takagi–Sugeno fuzzy systems with time-delays.
J. Frankl. Inst. 2018, 355, 3619–3640. [CrossRef]

27. Kang, Y.; Yao, L.; Wang, H. Fault Isolation and Fault-Tolerant Control for Takagi–Sugeno Fuzzy Time-Varying Delay Stochastic
Distribution Systems. IEEE Trans. Fuzzy Syst. 2022, 3, 1185–1195. [CrossRef]

28. Li, X.; Mehran, K.; Bao, Z. Stability Analysis of Discrete-Time Polynomial Fuzzy-Model-Based Control Systems with Time Delay
and Positivity Constraints Through Piecewise Taylor Series Membership Functions. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51,
12. [CrossRef]

29. Tsai, S.-H.; Jen, C.-Y. stabilization for polynomial fuzzy time delay system: A sum-of-squares approach. IEEE Trans. Fuzzy Syst.
2018, 26, 3630–3644. [CrossRef]

30. Li, X.; Shan, Y.; Lam, H.-K.; Bao, Z.; Zhao, J. Exponential Stabilization of Polynomial Fuzzy Positive Switched Systems with Time
Delay Considering MDADT Switching Signal. IEEE Trans. Fuzzy Syst. 2024, 23, 174–187. [CrossRef]

31. Han, M.; Lam, H.K.; Li, Y.; Liu, F.; Zhang, C. Observer-based control of positive polynomial fuzzy systems with unknown time
delay. Neurocomputing 2019, 349, 77–90. [CrossRef]

32. Gassara, H.; Boukattaya, M.; El Hajjaji, A. Polynomial Adaptive Observer-Based Fault Tolerant Control for Time Delay Polynomial
Fuzzy Systems Subject to Actuator Faults. Int. J. Fuzzy Syst. 2023, 25, 1327–1337. [CrossRef]

33. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014,
264, 65–70. [CrossRef]

34. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [CrossRef]
35. Martínez, F.; Martínez, I.; Kaabar MK, A.; Paredes, S. New properties of conformable derivative. J. Math. 2021, 2021, 5528537.

http://dx.doi.org/10.1016/j.jwpe.2024.105265
http://dx.doi.org/10.1109/TFUZZ.2008.924341
https://par.nsf.gov/biblio/10353822
http://dx.doi.org/10.1109/TCYB.2019.2957154
http://dx.doi.org/10.1109/TSMCB.2012.2190277
http://dx.doi.org/10.1109/TFUZZ.2020.3048505
http://dx.doi.org/10.1016/j.automatica.2016.05.011
http://dx.doi.org/10.1016/j.sysconle.2017.02.003
http://dx.doi.org/10.3390/math12111638
http://dx.doi.org/10.1016/j.jfranklin.2019.05.011
http://dx.doi.org/10.1109/TAC.2023.3337691
http://dx.doi.org/10.1109/TFUZZ.2023.3247030
http://dx.doi.org/10.1186/1687-1847-2013-362
http://dx.doi.org/10.1016/j.jfranklin.2018.03.007
http://dx.doi.org/10.1109/TFUZZ.2021.3053320
http://dx.doi.org/10.1109/TSMC.2020.2969095
http://dx.doi.org/10.1109/TFUZZ.2018.2841373
http://dx.doi.org/10.1109/TFUZZ.2023.3289650
http://dx.doi.org/10.1016/j.neucom.2019.04.016
http://dx.doi.org/10.1007/s40815-023-01458-5
http://dx.doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/10.1016/j.cam.2014.10.016


Symmetry 2024, 16, 1259 15 of 15

36. Weberszpil, J.; Godinho CF, L.; Liang, Y. Dual conformable derivative: Variational approach and nonlinear equations. Europhys.
Lett. 2019, 128, 31001. [CrossRef]

37. Rosa, W.; Weberszpil, J. Dual conformable derivative: Definition, simple properties and perspectives for applications. Chaos
Solitons Fractals 2018, 117, 137–141. [CrossRef]

38. Cuchta, T.; Poulsen, D.; Wintz, N. Linear quadratic tracking with continuous conformable derivatives. Eur. J. Control 2023,
72, 100808. [CrossRef]

39. Huyen NT, T.; Thanh, N.T.; Sau, N.H.; Binh, T.N.; Thuan, M.V. Mixed H∞ and Passivity Performance for Delayed Conformable
Fractional-Order Neural Networks. Circuits, Syst. Signal Process. 2023, 42, 5142–5160. [CrossRef]

40. Alharbi, F.M.; Baleanu, D.; Ebaid, A. Physical properties of the projectile motion using the conformable derivative. Chin. J. Phys.
2019, 58, 18–28. [CrossRef]

41. Zhao, D.; Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 2015, 54, 903–917. [CrossRef]
42. Li, S.; Zhang, S.; Liu, R. The Existence of Solution of Diffusion Equation with the General Conformable Derivative. J. Funct. Spaces

2020, 2020, 3965269. [CrossRef]
43. Meléndez-Vázquez, M.; Fernández-Anaya, G.; Hernández-Martínez, E.G. General conformable estimators with finite-time

stability. Adv. Differ. Equ. 2020, 2020, 551. [CrossRef]
44. Kutahyalioglu, A.; Karakoc, F. Exponential stability of Bam-type neural networks with conformable derivative. Proc. Inst. Math.

Mech. 2023, 49, 78–94.
45. Kharrat, M.; Gassara, H.; Rhaima, M.; Mchiri, L. Ben Makhlouf, Practical Stability for Conformable Time-Delay Systems. Discret.

Dyn. Nat. Soc. 2023, 2023, 9375360. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1209/0295-5075/128/31001
http://dx.doi.org/10.1016/j.chaos.2018.10.019
http://dx.doi.org/10.1016/j.ejcon.2023.100808
http://dx.doi.org/10.1007/s00034-023-02358-7
http://dx.doi.org/10.1016/j.cjph.2018.12.010
http://dx.doi.org/10.1007/s10092-017-0213-8
http://dx.doi.org/10.1155/2020/3965269
http://dx.doi.org/10.1186/s13662-020-03003-2
http://dx.doi.org/10.1155/2023/9375360

	Introduction 
	Preliminaries 
	Problem Formulation 
	Main Results 
	Stability Analysis
	Stabilization via SOS

	Illustrative Examples 
	Example 1
	Example 2

	Conclusions 
	References

