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Abstract: An infinite homogeneous tree is a special type of graph that has a completely symmetrical
structure in all directions. For an infinite homogeneous tree T = (V , E) with the natural distance
d defined on graphs and a weighted measure µ of exponential growth, the authors introduce the
variable Lebesgue space Lp(·)(µ) over (V , d, µ) and investigate it under the global Hölder continuity
condition for p(·). As an application, the strong and weak boundedness of the maximal operator
relevant to admissible trapezoids on Lp(·)(µ) is obtained, and an unbounded example is presented.
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1. Introduction

The generalization of Lebesgue space—variable Lebesgue space Lp(·)(Rn), which was
first introduced by Orlicz [1] in 1931—has been studied profoundly in recent years for its
applications to partial differential equations with non-standard growth conditions [2]. Many
scholars have paid attention to the boundedness of the Hardy–Littlewood maximal operator
M on Lp(·)(Rn), and various conditions have been proposed to ensure this; see [3–5].

In the past few decades, many achievements in function space and operator theory
over Rn have been extended to some more general metric measure spaces, such as the
spaces of homogeneous type (X , d, µ) in the sense of Coifman and Weiss [6]. In 2018,
Cruz-Uribe and Shukla [7] considered the variable Lebesgue space Lp(·)(X ) over (X , d, µ)
and pointed out that, if a measurable function p : [1,+∞) satisfies that, for all x, y ∈ X
with 0 < d(x, y) < 1/2, ∣∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣∣ ≤ C
− log(d(x, y))

, (1)

and for some p0 ≥ 1, x0 ∈ X , and all x ∈ X ,∣∣∣∣ 1
p(x)

− 1
p0

∣∣∣∣ ≤ C
log(e + d(x, x0))

, (2)

then the weak boundedness of M on Lp(·)(X ) holds. Furthermore, an additional condition

p− := ess inf
x∈X

p(x) > 1

implies the strong boundedness.
Inequalities (1) and (2) are respectively called the local log-Hölder continuity condition

and the global log-Hölder continuity condition. Specifically, (1) requires that, when x is
sufficiently close to y, the difference between p(x) and p(y) is limited in the logarithmic
form, and (2) claims that p(x) tends towards a constant at a logarithmic rate when x tends
towards infinity.

As another type of metric measure space with properties very different from homoge-
neous spaces (see Remark 1), an infinite homogeneous tree V equipped with the natural

Symmetry 2024, 16, 1283. https://doi.org/10.3390/sym16101283 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16101283
https://doi.org/10.3390/sym16101283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1541-5316
https://doi.org/10.3390/sym16101283
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16101283?type=check_update&version=1


Symmetry 2024, 16, 1283 2 of 15

distance d and a weighted measure µ (see Definition 1 through Definition 3) has been
considered by many researchers. In 2003, Hebisch and Steger [8] established an abstract
Calderón–Zygmund theory, which is suitable for (V , d, µ). As applications of this theory,
they obtained the weak (1, 1) boundedness of the maximal operator related to admissible
trapezoids, MR , and further studied the properties of several other operators. In 2020,
Arditti, Tabacco, and Vallarino [9] introduced and investigated the atomic Hardy space
H1(µ) over (V , d, µ) and obtained the boundedness of singular integrals on H1(µ). It is
worth noting that the weak (1, 1) boundedness of MR was utilized again. In 2021, Arditti,
Tabacco, and Vallarino [10] introduced the space BMO(µ) over (V , d, µ) as the dual space
of H1(µ) and studied the interpolation theory involving Lp(µ), H1(µ), and BMO(µ).

Throughout these works, the boundedness of MR on Lebesgue space also has a
fundamental importance for studying the properties of function spaces and other operators.
Can conditions (1) and (2) ensure the boundedness of MR on variable Lebesgue space
Lp(·)(µ) over (V , d, µ)? Unfortunately, both (1) and (2) are not applicable to our setting. On
the one hand, the metric in (V , d, µ) only takes integral values, so the analogue of (1) is
trivial. On the other hand, the condition (2) with p0 = ∞ implies the constant function
1∈ Lp(·)(X ), which plays a crucial role in [7]. However, since the measure in (V , d, µ) does
not satisfy the doubling condition (see Remark 1), from a simple calculation, the analogue
of (2) with p0 = ∞ can not imply 1 ∈ Lp(·)(µ). There is another reason forcing us to find
a new condition for p(·). From (1) and the doubling condition in (X , d, µ), for a ball B in
X with small enough measure, the oscillation of p(·) on B is also small. However, this
property does not hold for (V , d, µ); thus, another important lemma also fails, although (1)
holds unconditionally.

The main purpose of this article is to search for new conditions that can replace
conditions (1) and (2) in order to ensure the boundedness of MR on variable Lebesgue
space Lp(·)(µ). From a full utilization of the exponential growth property in (V , d, µ), we
put forward the global Hölder condition 1/p(·) ∈ H; see Definition 8. This condition solves
the above two difficulties together and further leads to the strong and weak boundedness
of MR on Lp(·)(µ).

This paper is organized as follows. In Section 2, we recall some classical concepts in
graph theory and define Lp(·)(µ) over (V , d, µ). In Section 3, some properties of Lp(·)(µ)
are proven. In Section 4, the strong and weak boundedness of MR on Lp(·)(µ) is obtained,
and a counterexample is presented to show the failure of strong boundedness for p− = 1.

Throughout this paper, we use C to denote a positive constant independent of the
main parameters, which may vary in different places. Additionally, Z denotes the set of
all integers, Z+ := Z∩ [0, ∞), and N := Z∩ [1, ∞). For a locally integrable function f and
E ⊂ V ,  

E
f (v)dµ(v) :=

1
µ(E)

ˆ
E

f (v)dµ(v).

2. Propositions

In this section, we review some basic definitions for weighted homogeneous trees,
admissible trapezoids, and variable Lebesgue spaces, and we cite or prove some lemmas.
These definitions and lemmas are the basis for our subsequent discussions.

2.1. Weighted Homogeneous Tree

Let us first review the following concepts about weighted homogeneous trees.

Definition 1 ([8]). (Weighted homogeneous tree and the level of points.)

• An infinite homogeneous tree of order m + 1 is a graph T = (V , E) satisfying the following
conditions, where V is the set of vertices, and E is the set of edges:

(i) T is connected and acyclic.
(ii) Each vertex in V has exactly m + 1 neighbors.
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The natural distance d(x, y) of x, y ∈ V is the length of the shortest path between x and y.

• Let T = (V , E) be an infinite homogeneous tree; a doubly-infinite geodesic g in T is a connected
subset of V such that:

(i) For each vertex v ∈ g, there are exactly two neighbors of v in g.
(ii) For each two vertices u, v ∈ g, the shortest path between u and v is contained in g.

• Let T = (V , E) be an infinite homogeneous tree with a doubly-infinite geodesic g. Choose a
mapping N : g → Z such that, for all u, v ∈ g,

|N(u)− N(v)| = d(u, v).

Then, for any v ∈ V , define its level l(v) as

l(v) = N(v′)− d(v, v′),

where v′ is the unique vertex that minimizes d(u, v) for u ∈ g.

Actually, the function l : V → Z depends on the choice of g, the unique vertex o ∈ g
satisfying N(o) = 0 (called the origin of V), and the orientation of g. In what follows, for a
given T, we assume that they have been determined, and then l is determined.

Definition 2 ([8]). Let T = (V , E) be an infinite homogeneous tree. For u, v ∈ V , v lies above u,
or u lies below v, if

l(v)− l(u) = d(u, v).

Starting from the definition of each point’s level, we can sort all points from top
to bottom based on their levels. Under this sorting, each point x ∈ V has one neigh-
bor lying above it and m neighbors lying below it, and the latter neighbors generate m
symmetric branches.

For example, the weighted homogeneous tree T for m = 3 is actually an upside down
“tree”, with the bottom endpoint of each branch growing two new branches downwards.
We refer the reader to [9], Figure 1.

Definition 3 ([8]). Let T = (V , E) be an infinite homogeneous tree of order m + 1; the measure µ
on V is defined as

µ(v) = ml(v) f or v ∈ V .

To simplify writing, in this article, we always use T,V , E , m, d, l, and µ to denote the
corresponding concepts in Definition 1 through Definition 3.

Obviously, any function f : V → R is measurable, and if f is non-negative,
ˆ
V

f (v)dµ(v) = ∑
v∈V

f (v)ml(v).

The measure of a ball in V was accurately calculated.

Lemma 1 ([9]). For r ∈ N and a ball B = B(v0, r) ⊂ V ,

µ(B) =
ml(v0)(mr+1 + mr − 2)

m − 1
.

Remark 1. From Lemma 1, the measure µ is of exponential growth; thus, (V , d, µ) does not
satisfy the doubling condition on homogeneous space [6] or the upper doubling condition on non-
homogeneous space [11].
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2.2. Admissible Trapezoid

Definition 4 ([9]). An admissible trapezoid R is a subset of V satisfying at least one of the
following conditions:

(i) R consists of a single point vR.
(ii) There exist vR ∈ V and h(R) ∈ N such that

R = {v ∈ V : v lies below vR, h(R) ≤ l(vR)− l(v) < 2h(R)}.

We agree that h(R) = 1 in the first case. Then, in both cases, h(R) is called the
height of R and is the number of different levels of vertices in R. Meanwhile, the quantity
w(R) = ml(vR) is called the width of R. It is easy to calculate that

µ(R) = h(R)w(R).

Denote R as the set of all admissible trapezoids.

Definition 5 ([9]). Let R ∈ R contain more than one vertex; the envelope of R is defined as

R∗ =

{
v ∈ V : v lies below vR,

1
2

h(R) ≤ l(vR)− l(v) < 4h(R)
}

.

In fact, an admissible trapezoid is an array contained in the tree, where all vertices are
divided into h(R) layers from top to bottom, and the number of points in the next layer is q
times that of the previous layer, which is why it is called a trapezoid. The envelope of R is
another trapezoid with more layers than R.

There are two lemmas that characterize the geometric structure of admissible trape-
zoids and their envelopes.

Lemma 2 ([9]). Let R ∈ R; then, µ(R∗) ≤ 4µ(R).

Lemma 3 ([9]). Let R, R′ ∈ R; if R ∩ R′ ̸= Φ and w(R′) ≤ w(R), then R′ ⊂ R∗.

Lemma 4. Let {Rλ}λ∈Λ ⊂ R satisfy supλ∈Λ µ(Rλ) < ∞; then, there exists a pairwise disjoint
subcollection R ′ ⊂ {Rλ}λ∈Λ such that, for any λ ∈ Λ, there exists R ∈ R ′ with Rλ ⊂ R∗.

Proof. For any λ ∈ Λ, h(Rλ) ≥ 1, the condition supλ∈Λ µ(Rλ) < ∞ implies that

W := sup
λ∈Λ

w(Rλ) < ∞.

Denote

Rj =

{
R ∈ {Rλ}λ∈Λ : w(R) =

W
mj

}
, j ∈ Z+,

and use the following method to choose R ′:
(a) Let R ′

0 be any maximal pairwise disadjoint subcollection of R0.
(b) Assume that R ′

1, R ′
2, · · · , R ′

k−1 has been selected and let R ′
k be the any maximal

pairwise disadjoint subcollection ofR ∈ Rk : R ∩ R′ = Φ for all R′ ∈
k−1⋃
j=0

R ′
j

.

(c) Fix R ′ =
⋃∞

j=0 R ′
j .

In fact, for any λ ∈ Λ, there exists a unique k ∈ Z+ such that Rλ ∈ Rk. If Rλ ∈ R ′
k, the

proof is finished. Otherwise, there exists j ≤ k and R ∈ R ′
j ⊂ R ′ with Rλ ∩ R ̸= Φ. Since

j ≤ k, w(Rλ) ≤ w(R), then, by Lemma 3, Rλ ⊂ R∗.
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2.3. Exponent Function and Variable Lebesgue Space

Definition 6. For r : V → [0, ∞], E ⊂ V , define

r−(E) = inf
v∈E

r(v), r+(E) = sup
v∈E

r(v),

and simply write r− := r−(V), r+ := r+(V).

Denote P as the set of all functions p : V → [1, ∞).

Definition 7. Let p ∈ P ; the modular of f : V → R associated with p is defined as

ρp(·)( f ) =
ˆ
V
| f (v)|p(v)dµ(v).

Then, the variable Lebesgue space Lp(·)(µ) is defined as the set of all functions f : V → R such that

∥ f ∥p(·) := inf
{

λ > 0 : ρp(·)

(
f
λ

)
≤ 1

}
< ∞,

where we agree that the infimum of an empty set is ∞.

Remark 2. If p(x) = p for all x ∈ V , we have

ρp(·)( f ) =
ˆ
V
| f (v)|pdµ(v) = ∥ f ∥p

p,

then

ρp(·)

(
f
λ

)
≤ 1 ⇔ 1

λp ∥ f ∥p
p ≤ 1 ⇔ λ ≥ ∥ f ∥p,

which implies that ∥ f ∥p(·) = ∥ f ∥p, and thus Lp(·)(µ) = Lp(µ).

In what follows, we abbreviate Lp(·)(µ) and Lp(µ) as Lp(·) and Lp, respectively. By
some similar arguments as in [5], the following lemmas about ρp(·) and ∥ · ∥p(·) can be
obtained. We omit the details here.

Lemma 5. Let p ∈ P . Then, ∥ · ∥p(·) is a norm; that is:

(i) ∥ f ∥p(·) ≥ 0, and ∥ f ∥p(·) = 0 ⇔ f (v) ≡ 0.
(ii) ∥λ f ∥p(·) = |λ|∥ f ∥p(·) for λ ∈ R.
(iii) ∥ f + g∥p(·) ≤ ∥ f ∥p(·) + ∥g∥p(·).

Lemma 6. Let p ∈ P ; then, ρp(·) and ∥ · ∥p(·) have the following properties:

(i) If | f (v)| ≤ |g(v)| for all v ∈ V , then ρp(·)( f ) ≤ ρp(·)(g), and ∥ f ∥p(·) ≤ ∥g∥p(·).
(ii) For λ > 0,

ρp(·)

(
f
λ

)
≤

ρp(·)( f )
λ

.

(iii) There holds ∥ f ∥p(·) ≤ C1 ⇔ ρp(·)( f ) ≤ C2. Meanwhile, one of the constants C1, C2 equals 1
will make the other equal 1.

(iv) If ∥ f ∥p(·) ≤ 1, then ρp(·)( f ) ≤ ∥ f ∥p(·); if ∥ f ∥p(·) > 1, then ρp(·)( f ) ≥ ∥ f ∥p(·).

Lemma 7. Let p, q, r ∈ P such that, for any v ∈ V ,

1
p(v)

=
1

q(v)
+

1
r(v)

,



Symmetry 2024, 16, 1283 6 of 15

f ∈ Lq(·), and g ∈ Lr(·); then, f g ∈ Lp(·) with the norm

∥ f g∥p(·) ≤ 3∥ f ∥q(·)∥g∥r(·).

As we describe above, the boundedness of the maximal operator on Lp(·) relies on the
following condition.

Definition 8. A function r : V → [0, ∞] is called global Hölder continuous with respect to v0 ∈ V
if there exists C0 > 0 and r0 ≥ 0 such that, for any v ∈ V ,

|r(v)− r0| ≤
C0

1 + d(v, v0)
.

Remark 3. Suppose that r is global Hölder continuous with respect to v0. For another point
v1 ∈ V , from the inequality

1
1 + d(v, v0)

=
1

1 + d(v, v1)

(
1 +

d(v, v1)− d(v, v0)

1 + d(v, v0)

)
≤ 1 + d(v0, v1)

1 + d(v, v1)
,

r is global Hölder continuous with respect to v1. Therefore, we always assume v0 = o and denote
the set of all such r as H.

3. Properties of Lp(·) over (V , d, µ)

In this section, we present some more profound properties of Lp(·), which will be
utilized in Section 4.

Lemma 8. Let r ∈ H; then, there exists C > 0 such that, for any set S ⊂ V and v ∈ S,

µ(S)r(v)−r+(S) ≤ C, µ(S)r−(S)−r(v) ≤ C.

Proof. If µ(S) ≥ 1, these inequalities hold obviously. Otherwise, let

d0 = min
v∈S

d(v, o);

then, µ(S) ≥ m−d0 , and, for all v ∈ S,

|r(v)− r0| ≤
C0

1 + d(v, o)
≤ C0

1 + d0
;

thus,

r(v)− r+(S) = −|r+(S)− r(v)| ≥ −(|r+(S)− r0|+ |r(v)− r0|) ≥ − 2C0

1 + d0
,

r−(S)− r(v) = −|r(v)− r−(S)| ≥ −(|r(v)− r0|+ |r−(S)− r0|) ≥ − 2C0

1 + d0
.

Therefore,

µ(S)r(v)−r+(S) ≤ (m−d0)
− 2C0

1+d0 < m2C0 ,

µ(S)r−(S)−r(v) ≤ (m−d0)
− 2C0

1+d0 < m2C0 ,

which completes the proof.

Lemma 9. Define

R(v) =
1

m2d(v,o)
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for v ∈ V ; then ˆ
V

R(v)dµ(v) < ∞.

Proof. Denote Br := B(o, r) for any r ∈ N; then

ˆ
V

R(v)dµ(v) = lim
r→∞

ˆ
Br

R(v)dµ(v) = R(o) +
∞

∑
k=1

ˆ
Bk\Bk−1

R(v)dµ(v).

For any v ∈ Bk\Bk−1,

R(v) =
1

m2k ,

and by Lemma 1,

µ(Bk\Bk−1) = µ(Bk)− µ(Bk−1) = mk + mk−1 < 2mk.

Therefore, ˆ
V

R(v)dµ(v) < 1 + 2
∞

∑
k=1

mk

m2k < ∞,

which completes the proof.

Lemma 10. Let p ∈ P , 1/p(·) ∈ H with r0 = 0; then, 1 ∈ Lp(·).

Proof. For any v ∈ V , there holds

1
p(v)

≤ C0

1 + d(v, o)
;

thus, for λ > 1,

ρp(·)

(
1
λ

)
=

ˆ
V

λ−p(v)dµ(v) ≤
ˆ
V

λ
− 1+d(v,o)

C0 dµ(v).

Fix λ0 = m2C0 ; then, λ
− 1+d(v,o)

C0
0 = m−2−2d(v,o) < R(v) by Lemma 9, and

ρp(·)

(
1

λ0

)
<

ˆ
V

R(v)dµ(v) < ∞.

By Lemma 6, 1/λ0 ∈ Lp(·); then, by Lemma 5, 1 ∈ Lp(·).

Lemma 11. Let p1, p2 ∈ P such that p1(v) ≤ p2(v) for all v ∈ V , f ∈ Lp1(·) and | f (v)| ≤ 1 for
all v ∈ V ; then, f ∈ Lp2(·) with the norm

∥ f ∥p2(·) ≤ ∥ f ∥p1(·).

Proof. If ∥ f ∥p1(·) ≤ 1, by Lemma 6, ρp1(·)( f ) ≤ ∥ f ∥p1(·); then

ρp2(·)( f ) =
ˆ
V
| f (v)|p2(v)dµ(v) ≤

ˆ
V
| f (v)|p1(v)dµ(v) = ρp1(·)( f ) ≤ ∥ f ∥p1(·).

By Lemma 6,

ρp2(·)

(
f

∥ f ∥p1(·)

)
≤ 1,
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thus ∥ f ∥p2(·) ≤ ∥ f ∥p1(·).
If ∥ f ∥p1(·) > 1, let

g(v) =
f (v)

∥ f ∥p1(·)
;

then, |g(v)| ≤ 1 for all v ∈ V , and ∥g∥p1(·) = 1. By the known result, ∥g∥p2(·) ≤ ∥g∥p1(·) =
1, that is, ∥ f ∥p2(·) ≤ ∥ f ∥p1(·).

4. The Maximal Operator Relevant to Admissible Trapezoids

In this section, we focus on the maximal operator MR . Another maximal operator
MR∗ is also needed.

Definition 9 ([9]). The maximal operator MR is defined as

MR f (x) = sup
R∈R,R∋x

 
R
| f (v)|dµ(v).

Definition 10. Denote R∗ = {R∗ : R ∈ R}; the maximal operator MR∗ is defined as

MR∗ f (x) = sup
R∗∈R∗ ,R∗∋x

 
R∗

| f (v)|dµ(v).

Remark 4. The maximal operators MR and MR∗ are the variants of the classical Hardy–Littlewood
maximal operator in harmonic analysis, where the balls B ∋ x are replaced with the admissible
trapezoids R ∋ x or their envelopes R∗ ∋ x. The new maximal operators clearly retain some
properties of the Hardy–Littlewood maximal operator, such as not changing the infinity norm of
functions.

The first inequality in the following lemma is from [8], Theorem 3.1. By using the
further expansion of the envelopes, one can obtain the second inequality in the same way.

Lemma 12. For any f ∈ L1 and t > 0,

∥tχ{v∈V :MR f (v)>t}∥1 ≤ C∥ f ∥1,

∥tχ{v∈V :MR∗ f (v)>t}∥1 ≤ C∥ f ∥1.

By Remark 4, Lemma 12, and the Marcinkiewicz interpolation theorem on measure
space ([12], Theorem 1.3.2), the following corollary, which shows the strong (p, p) bound-
edness of MR and MR∗ for 1 < p < ∞, is directly obtained.

Corollary 1. For any p > 1 and f ∈ Lp,

∥MR f ∥p ≤ C∥ f ∥p,

∥MR∗ f ∥p ≤ C∥ f ∥p.

Remark 5. For p > 1, the weak (p, p) boundedness of MR and MR∗ still holds. Specifically, for
any f ∈ Lp and t > 0,

∥tχ{v∈V :MR f (v)>t}∥p =

(ˆ
{v∈V :MR f (v)>t}

tpdµ(v)

) 1
p

≤
(ˆ

{v∈V :MR f (v)>t}
(MR f (v))pdµ(v)

) 1
p
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≤
(ˆ

V
(MR f (v))pdµ(v)

) 1
p
= ∥MR f ∥p ≤ C∥ f ∥p,

and similarly,
∥tχ{v∈V :MR∗ f (v)>t}∥p ≤ C∥ f ∥p.

We first prove the strong boundedness of MR on Lp(·) for p− > 1.

Theorem 1. Let p ∈ P with 1/p(·) ∈ H and p− > 1, f ∈ Lp(·); then,

∥MR f ∥p(·) ≤ C∥ f ∥p(·). (3)

Proof. Since MR | f | = MR f and f ≡ 0 ⇒ MR f ≡ 0, (3) suffices for f that are non-negative
and not identical to 0. By Lemma 5 and Lemma 6, without the loss of generalization, we
assume ∥ f ∥p(·) = 1; thus, ρp(·)( f ) ≤ 1, and we can prove ∥MR f ∥p(·) < C.
Decompose

f = f1 + f2 := f χ{v: f (v)>1} + f χ{v: f (v)≤1},

and then it suffices to show that, for i = 1, 2, ∥MR fi∥p(·) < C.
To estimate ∥MR f1∥p(·), let λ1, λ2, λ3 be constants that will be determined later. Fix A > 1
and define

Ωk = {v ∈ V : MR f1(v) > Ak};

then,
V =

⋃
k∈Z

Ωk\Ωk+1.

For given k ∈ N and v ∈ Ωk, there exists Rv ∈ R containing v, such that
 

Rv

f1(v)dµ(v) > Ak.

From f1(v) > 1 or f1(v) = 0, and ∥ f1∥p(·) ≤ 1, there holds

ˆ
V
| f1(v)|dµ(v) ≤

ˆ
V
| f1(v)|p(v)dµ(v) ≤ 1,

so
lim

µ(R)→∞

 
R

f1(v)dµ(v) = 0,

and thus
sup
v∈Ωk

µ(Rv) < ∞.

By Lemma 4, there exists a pairwise disjoint set family {Rk
j }j∈N ⊂ {Rv}v∈Ωk (we agree that

N can also represent the finite set {1, 2, · · · , n0} here), such that, for any v ∈ Ωk, there exists
j ∈ N with Rv ⊂ (Rk

j )
∗. By Lemma 2, for any j ∈ N,

 
(Rk

j )
∗

f1(v)dµ(v) ≥
µ(Rk

j )

µ((Rk
j )

∗)

 
Rk

j

f1(v)dµ(v) >
Ak

4
.

Define Sk
1 = (Ωk\Ωk+1) ∩ (Rk

1)
∗, Sk

2 = ((Ωk\Ωk+1) ∩ (Rk
2)

∗)\Sk
1, Sk

3 = ((Ωk\Ωk+1) ∩
(Rk

3)
∗)\(Sk

1 ∪ Sk
2), and so on. Therefore, {Sk

j } is a pairwise disjoint family for all k ∈ Z and
j ∈ N, and

Ωk\Ωk+1 =
⋃
j∈N

Sk
j
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for all k ∈ Z. Let λ1 = (4A)−1, pjk = p−((Rk
j )
∗), and then pjk ≥ p−. By the Hölder inequality,

ρp(·)(λ1λ2λ3MR f1) = ∑
k∈Z

ˆ
Ωk\Ωk+1

(λ1λ2λ3MR f1(v))p(v)dµ(v)

≤ ∑
k∈Z,j∈N

ˆ
Sk

j

(
λ2λ3

Ak

4

)p(v)

dµ(v)

≤ ∑
k∈Z,j∈N

ˆ
Sk

j

(
λ2λ3

 
(Rk

j )
∗

f1(w)dµ(w)

)p(v)

dµ(v)

≤ ∑
k∈Z,j∈N

ˆ
Sk

j

λ2λ3

( 
(Rk

j )
∗

f1(w)
pjk
p− dµ(w)

) p−
pjk

p(v)

dµ(v).

Let r(·) = 1/p(·); then, r ∈ LH, and r+((Rk
j )

∗) = 1/pjk. By Lemma 8, there exists

λ2 ∈ (0, 1) such that, for all v ∈ (Rk
j )

∗,

µ((Rk
j )

∗)
r(v)−r+((Rk

j )
∗) ≤ λ

− 1
p−

2 ⇔ λ2µ((Rk
j )

∗)
− p−

pjk ≤ µ((Rk
j )

∗)
− p−

p(v) .

Since f1(v) > 1 or f1(v) = 0,
ˆ
(Rk

j )
∗

f1(w)
p(w)
p− dµ(w) ≤

ˆ
(Rk

j )
∗

f1(w)p(w)dµ(w) ≤ ρp(·)( f1) ≤ 1;

thus, for λ3 ∈ (0, 1),

ρp(·)(λ1λ2λ3MR f1) ≤ ∑
k∈Z,j∈N

ˆ
Sk

j

λ2µ((Rk
j )
∗)

− p−
pjk

(
λ3

ˆ
(Rk

j )
∗

f1(w)
pjk
p− dµ(w)

) p−
pjk

p(v)

dµ(v)

≤ λ3 ∑
k∈Z,j∈N

ˆ
Sk

j

µ((Rk
j )
∗)−p−

(ˆ
(Rk

j )
∗

f1(w)
p(w)
p− dµ(w)

) p−p(v)
pjk

dµ(v)

≤ λ3 ∑
k∈Z,j∈N

ˆ
Sk

j

µ((Rk
j )
∗)−p−

(ˆ
(Rk

j )
∗

f1(w)
p(w)
p− dµ(w)

)p−

dµ(v)

≤ λ3 ∑
k∈Z,j∈N

ˆ
Sk

j

(MR∗( f1(·)
p(·)
p− )(v))p−dµ(v)

≤ λ3

ˆ
V
(MR∗( f1(·)

p(·)
p− )(v))p−dµ(v).

Since p− > 1, by Corollary 1, there exists λ3 ∈ (0, 1) such that
ˆ
V
(MR∗( f1(·)

p(·)
p− )(v))p−dµ(v) ≤ 1

λ3

ˆ
V

f1(v)p(v)dµ(v),

and thus
ρp(·)(λ1λ2λ3MR f1) ≤

ˆ
V

f1(v)p(v)dµ(v) ≤ 1;

that is,

∥MR f1∥p(·) ≤
1

λ1λ2λ3
.
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To estimate ∥MR f2∥p(·), divide V as the union of sets

V1 = {v ∈ V : p(v) > p0}, V2 = {v ∈ V : p(v) = p0}, V3 = {v ∈ V : p(v) < p0},

where p0 = limd(v,o)→∞ p(v). From 1/p(·) ∈ H and p− > 1, this limit exists (or equals ∞)
and is greater than 1.
We first estimate ∥χVi f2∥p0 for i = 1, 2, 3. For v ∈ V1, define q as

1
p0

=
1

p(v)
+

1
q(v)

;

then, q ∈ P , 1/q(·) ∈ H, and limd(v,o)→∞ q(v) = ∞. By Lemma 7 and Lemma 10,

∥χV1 f2∥p0 ≤ 3∥χV1 f2∥p(·)∥1∥q(·) ≤ C∥χV1 f2∥p(·) ≤ C∥ f2∥p(·) ≤ C.

For v ∈ V2, p(v) = p0; thus,

∥χV2 f2∥p0 = ∥χV2 f2∥p(·) ≤ ∥ f2∥p(·) ≤ 1.

For v ∈ V3, p(v) < p0, and | f (v)| ≤ 1; thus, by Lemma 11,

∥χV3 f2∥p0 ≤ ∥χV3 f2∥p(·) ≤ ∥ f2∥p(·) ≤ 1.

Therefore, by the Minkowski inequality,

∥ f2∥p0 ≤ ∥χV1 f2∥p0 + ∥χV2 f2∥p0 + ∥χV3 f2∥p0 ≤ C.

Finally, we estimate ∥χVi MR f2∥p(·) for i = 1, 2, 3. For v ∈ V1, since p(v) > p0 and
|MR f2(v)| ≤ 1, by Lemma 11 and Corollary 1,

∥χV1 MR f2∥p(·) ≤ ∥χV1 MR f2∥p0 ≤ ∥MR f2∥p0 ≤ C∥ f2∥p0 ≤ C.

For v ∈ V2, p(v) = p0; thus,

∥χV2 MR f2∥p(·) = ∥χV2 MR f2∥p0 ≤ C∥MR f2∥p0 ≤ C.

For v ∈ V3, define q as
1

p(v)
=

1
p0

+
1

q(v)
,

then q ∈ P , 1/q(·) ∈ H, and limd(v,o)→∞ q(v) = ∞. By Lemma 7 and Lemma 10,

∥χV3 MR f2∥p(·) ≤ 3∥χV3 MR f2∥p0∥1∥q(·) ≤ C∥MR f2∥p0 ≤ C.

Therefore, by Lemma 5,

∥MR f2∥p(·) ≤ ∥χV1 MR f2∥p(·) + ∥χV2 MR f2∥p(·) + ∥χV3 MR f2∥p(·) ≤ C,

which, combined with the estimate of ∥MR f1∥p(·), finishes the proof.

While p− = 1, the strong boundedness of MR may fail. In fact, though p(v) > 1 for
all v ∈ V , MR can still be unbounded on Lp(·).

Theorem 2. For v ∈ V , let

p(v) = 1 +
1

d(v, o) + 1
;

then, p ∈ P , 1/p(·) ∈ H, and MR is unbounded on Lp(·).
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Proof. The fact that p ∈ P is obvious, and the inequality∣∣∣∣ 1
p(v)

− 1
∣∣∣∣ = 1

d(v, o) + 2
<

1
d(v, o) + 1

implies 1/p(·) ∈ H. In order to prove that MR is unbounded, fix f (v) = χ{o}(v);
there holds

∥ f ∥p(·) := inf
{

λ > 0 :
1

λ2 ≤ 1
}

= 1,

and then we show MR f /∈ Lp(·).
Denote vk as the unique vertex that lies above o with d(o, vk) = k. For integer k ≥ 2, define

Sk = {v ∈ V : v lies below v2k−1, d(v2k−1, v) = k}.

Note that o and all vertices in Sk are contained in the admissible trapezoid

Rk = {v ∈ V : v lies below v2k−1, k ≤ d(v2k−1, v) < 2k},

and µ(Rk) = h(Rk)w(Rk) = km2k−1; thus, for any v ∈ Sk,

MR f (v) ≥ 1
µ(Rk)

ˆ
Rk

f (v)dµ(v) =
1

km2k−1 .

Meanwhile, it is easy to calculate that any v ∈ Sk satisfies d(v, o) ≥ k − 1, the number of
vertices in Sk is mk, and each vertex in Sk has measure mk−1. Therefore,

ˆ
Sk

(MR f (v))p(v)dµ(v) ≥
(

1
km2k−1

)1+ 1
k
mk−1mk =

1

k1+ 1
k m2− 1

k
>

1
3
√

3m2k
;

thus, for any λ > 0,

ρp(·)

(
MR f

λ

)
=

ˆ
V

(
MR f (v)

λ

)p(v)
dµ(v)

> min
{

1
λ

,
1

λ2

} ∞

∑
k=2

ˆ
Sk

(MR f (v))p(v)dµ(v)

>
1

3
√

3m2
min

{
1
λ

,
1

λ2

} ∞

∑
k=2

1
k
= ∞,

which completes the proof.

However, the weak boundedness holds for p− = 1.

Theorem 3. Let p ∈ P with 1/p(·) ∈ H, f ∈ Lp(·); then, for any t > 0,

∥tχ{v∈V :MR f (v)>t}∥p(·) ≤ C∥ f ∥p(·).

Proof. From the same reason as mentioned in the proof of Theorem 1, we also assume that
f is non-negative with the norm ∥ f ∥p(·) = 1. Then, we prove ∥tχ{v∈V :MR f (v)>t}∥p(·) < C
for any t > 0.
Decompose

f = f1 + f2 := f χ{v: f (v)>1} + f χ{v: f (v)≤1};

then,

{v ∈ V : MR f (v) > t} ⊂
{

v ∈ V : MR f1(v) >
t
2

}
∪
{

v ∈ V : MR f2(v) >
t
2

}
=: F1 ∪ F2,
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and thus it suffices to show that, for i = 1, 2, ∥tχFi∥p(·) < C.
To estimate ∥tχF1∥p(·), let λ1, λ2, λ3 be constants that will be determined later. For any
v ∈ F1, there exists Rv ∈ R containing v such that

 
Rv

f1(v)dµ(v) >
t
2

.

From the same reason as in Theorem 1 again, there exists a pairwise disjoint set family
{Rj}j∈N ⊂ {Rv}v∈F1 such that, for any v ∈ F1, there exists j ∈ N with Rv ⊂ (Rj)

∗. Then, for
any j ∈ N,  

Rj

f1(v)dµ(v) >
t
2

.

Define S1 = F1 ∩ (R1)
∗, S2 = (F1 ∩ (R2)

∗)\S1, S3 = (F1 ∩ (R3)
∗)\(S1 ∪ S2), and so on.

Therefore, {Sj} is a pairwise disjoint family for all j ∈ N, and

F1 =
⋃
j∈N

Sj.

Let λ1 = 1/2, pj = p−(Rj); then, pj ≥ p−. By the Hölder inequality,

ρp(·)(λ1λ2λ3tχF1) =

ˆ
F1

(λ1λ2λ3t)p(v)dµ(v)

= ∑
j∈N

ˆ
Sj

(
λ2λ3

t
2

)p(v)
dµ(v)

≤ ∑
j∈N

ˆ
Sj

(
λ2λ3

 
Rj

f1(w)dµ(w)

)p(v)

dµ(v)

≤ ∑
j∈N

ˆ
Sj

λ2λ3

( 
Rj

f1(w)
pj
p− dµ(w)

) p−
pj

p(v)

dµ(v).

Let r(·) = 1/p(·); then, r ∈ LH, and r+(Rj) = 1/pj. By Lemma 8, there exists λ2 ∈ (0, 1)
such that, for all v ∈ Rj,

µ(Rj)
r(v)−r+(Rj) ≤ λ

− 1
p−

2 ⇔ λ2µ(Rj)
− p−

pj ≤ µ(Rj)
− p−

p(v) .

Since f1(v) > 1 or f1(v) = 0,
ˆ

Rj

f1(w)
p(w)
p− dµ(w) ≤

ˆ
Rj

f1(w)p(w)dµ(w) ≤ ρp(·)( f1) ≤ 1;

thus, for λ3 ∈ (0, 1),

ρp(·)(λ1λ2λ3tχF1) ≤ ∑
j∈N

ˆ
Sj

λ2µ(Rj)
− p−

pj

(
λ3

ˆ
Rj

f1(w)
pj
p− dµ(w)

) p−
pj

p(v)

dµ(v)

≤ λ3 ∑
j∈N

ˆ
Sj

µ(Rj)
−p−

(ˆ
Rj

f1(w)
p(w)
p− dµ(w)

) p− p(v)
pj

dµ(v)

≤ λ3 ∑
j∈N

ˆ
Sj

µ(Rj)
−p−

(ˆ
Rj

f1(w)
p(w)
p− dµ(w)

)p−

dµ(v)
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≤ λ3 ∑
j∈N

ˆ
Sj

µ(Rj)
−1

(ˆ
Rj

f1(w)p(w)dµ(w)

)
dµ(v)

≤ λ3 ∑
j∈N

µ(Sj)

µ(Rj)

ˆ
Rj

f1(w)p(w)dµ(w)

≤ 4λ3

ˆ
F1

f1(w)p(w)dµ(w) ≤ 4λ3.

Fix λ3 = 1/4. Then, ρp(·)(λ1λ2λ3tχF1) ≤ 1; that is,

∥tχF1∥p(·) ≤
1

λ1λ2λ3
.

To estimate ∥tχF2∥p(·), note that F2 = Φ for t > 2, and we only consider the case 0 < t ≤ 2.
Divide F2 as the union of sets

F21 = {v ∈ F2 : p(v) > p0}, F22 = {v ∈ F2 : p(v) = p0}, F23 = {v ∈ F2 : p(v) < p0},

where p0 = limd(v,o)→∞ p(v). From 1/p(·) ∈ H and p− ≥ 1, this limit exists (or equals ∞)
and is not smaller than 1.
By using the same method as that in Theorem 1,

∥ f2∥p0 ≤ C.

For v ∈ F21, since p(v) > p0 and |tχF21(v)/2| ≤ 1, by Lemma 5, Lemma 11, and Lemma 12,

∥tχF21∥p(·) = 2
∥∥∥∥1

2
tχF21

∥∥∥∥
p(·)

≤ 2
∥∥∥∥1

2
tχF21

∥∥∥∥
p0

≤ ∥tχF2∥p0 ≤ C∥ f2∥p0 ≤ C.

For v ∈ F22, p(v) = p0; thus,

∥tχF22∥p(·) = ∥tχF22∥p0 ≤ ∥tχF2∥p0 ≤ C.

For v ∈ F23, define q as
1

p(v)
=

1
p0

+
1

q(v)
,

then q ∈ P , 1/q(·) ∈ H and limd(v,o)→∞ q(v) = ∞. By Lemma 7 and Lemma 10,

∥tχF23∥p(·) ≤ 3∥tχF23∥p0∥1∥q(·) ≤ C∥tχF2∥p0 ≤ C.

Therefore, by Lemma 5,

∥tχF2∥p(·) ≤ ∥tχF21∥p(·) + ∥tχF22∥p(·) + ∥tχF23∥p(·) ≤ C,

which, combined with the estimate of ∥tχF1∥p(·), finishes the proof.

5. Conclusions

We study the variable Lebesgue space over the weighted homogeneous tree. Under
the global Hölder condition for exponent p(·), some properties are obtained. Furthermore,
the weak and strong boundedness of the maximal operator MR on variable Lebesgue space
is proven, and a counterexample for clarifying the range of p(·) is provided.
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