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Abstract: Pareto dominance-based algorithms face a significant challenge in handling many-objective
optimization problems. As the number of objectives increases, the sharp rise in non-dominated
individuals makes it challenging for the algorithm to differentiate their quality, resulting in a loss
of selection pressure. The application of the penalty-based boundary intersection (PBI) method can
balance convergence and diversity in algorithms. The PBI method guides the evolution of indi-
viduals by integrating the parallel and perpendicular distances between individuals and reference
vectors, where the penalty factor is crucial for balancing these two distances and significantly af-
fects algorithm performance. Therefore, a comprehensive adaptive penalty scheme was proposed
and applied to NSGA-III, named caps-NSGA-III, to achieve balance and symmetry between con-
vergence and diversity. Initially, each reference vector’s penalty factor is computed based on its
own characteristic. Then, during the iteration process, the penalty factor is adaptively adjusted
according to the evolutionary state of the individuals associated with the corresponding reference
vector. Finally, a monitoring strategy is designed to oversee the penalty factor, ensuring that adaptive
adjustments align with the algorithm’s needs at different stages. Through a comparison involv-
ing benchmark experiments and two real-world problems, the competitiveness of caps-NSGA-III
was demonstrated.

Keywords: many-objective optimization; penalty-based boundary intersection; comprehensive
adaptive penalty scheme; NSGA-III

1. Introduction

Many real-world optimization problems often involve multiple conflicting objectives
to be optimized simultaneously, which are referred to as multi-objective optimization
problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are powerful tools for
addressing MOPs as they can extensively explore the decision space and evaluate and select
individuals to achieve the optimization of multiple objectives. MOEAs can be broadly cate-
gorized into three categories: Pareto dominance-based approaches [1–3], decomposition-
based approaches [4–6], and indicator-based approaches [7–9]. Among these, Pareto
dominance-based algorithms, such as NSGA-II and SPEA2, have been widely applied
to various engineering and real-world problems, such as path decision [10], flight
optimization [11], and distributed generation system planning [12]. However, these algo-
rithms encounter considerable difficulties when addressing many-objective optimization
problems (MaOPs) involving more than three objectives. The primary challenge arises from
the sharp increase in the proportion of non-dominated individuals within the population as
the dimensionality of objectives increases. This results in the Pareto dominance relationship
becoming ineffective, making the algorithm’s convergence not guaranteed.
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To address the aforementioned issues, extensive research has been conducted, which
can be primarily categorized into three approaches. The first approach is improvements to
the Pareto dominance relationship, such as ϵ-dominance [13], hpaEA [14], and PeEA [15].
Specifically, ϵ-dominance is a novel dominance relation that divides the objective space into
multiple hyperboxes, each containing at most one solution, thereby maintaining a balance
between convergence and diversity. The hpaEA identifies non-dominated solutions with
significant Pareto front tendencies as prominent and then refines these non-dominated
solutions using hyperplanes formed by them and their neighbors, thereby relaxing the
Pareto dominance relationship. PeEA is a method for estimating the shape of the Pareto
front (PF) by guiding the search process with a curvature-based approach, which handles
the issue of selection pressure loss in problems with varying PF shapes. The second ap-
proach is to define new diversity criteria. Deb and Jain [3] proposed NSGA-III, which uses a
reference point-based method to increase selection pressure and maintain solution diversity.
The third approach is the adoption of collaborative strategies, such as θ-NSGA-III [16] and
SSCEA [17]. θ-NSGA-III builds on NSGA-III by incorporating the θ-dominance relationship
to balance the algorithm’s convergence and diversity. SSCEA is a coevolutionary method
that combines indicator-based and Pareto dominance-based approaches.

Notably, the θ-dominance relationship in θ-NSGA-III makes use of the PBI method [4].
The PBI method effectively balances algorithm convergence and diversity, with its perfor-
mance primarily dependent on the penalty factor θ. A smaller θ promotes convergence,
while a larger θ promotes diversity. However, setting a fixed penalty factor based on empir-
ical knowledge does not guarantee the performance of PBI when dealing with Pareto fronts
(PFs) of different shapes. An excessively large penalty factor may result in a uniformly dis-
tributed PF, which may not represent the true PF. Conversely, an excessively small penalty
factor could lead to the loss of boundary individuals. Therefore, adaptive adjustment of
the penalty factor is necessary. Yang et al. [18] proposed two penalty schemes: the adaptive
penalty scheme (APS) and the subproblem-based penalty scheme (SPS). In APS, all subprob-
lems have the same θ, which progressively increases as the iterations proceed, gradually
shifting the focus from convergence to diversity. In SPS, penalty values are calculated
based on the subproblems. To prevent the loss of boundary individuals during itera-
tions, larger penalty values are assigned to boundary subproblems to emphasize diversity,
while smaller penalty values are set for intermediate subproblems to emphasize conver-
gence. Additionally, based on population and weight vector distribution information,
Han et al. [19] proposed a dynamic penalty scheme. Specifically, when a subproblem
is farther from the associated individuals and neighboring subproblems, the penalty
factor is increased to enhance diversity. Conversely, the penalty factor is decreased to
enhance convergence.

The adaptive penalty schemes enhance the algorithm’s performance in handling
MaOPs. Different penalty schemes involve the algorithm’s needs at different stages, charac-
teristics of subproblems, and the state of population evolution. However, existing works do
not comprehensively consider these factors, which could be more beneficial for designing
penalty schemes. In summary, we proposed a comprehensive adaptive penalty scheme
and applied it to NSGA-III (caps-NSGA-III) to balance the convergence and diversity of the
algorithm. The main contributions of this paper are as follows:

1. An adaptive penalty scheme is proposed. Each penalty factor is initially calculated
based on its reference vector and is then adaptively adjusted according to the evo-
lutionary state of the individuals associated with that reference vector during the
iteration process.

2. A monitoring strategy is proposed, in which the adaptive penalty scheme is monitored
and adjusted to meet the algorithm’s needs at different stages. For example, if diversity
adjustment is performed during the algorithm’s early stage (convergence phase), this
is considered a violation. Once the violation handling criterion is met, a convergence
operation is performed.
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3. Through comparisons with five state-of-the-art many-objective evolutionary algo-
rithms on benchmark function experiments and two real-world applications, the com-
petitiveness of caps-NSGA-III is demonstrated.

The rest of the paper is structured as follows: Basic definitions and improvement moti-
vations are introduced in Section 2. The proposed caps-NSGA-III algorithm is presented in
Section 3. The experimental setup and results are described in Section 4. Finally, Section 5
concludes this paper and discusses some future work.

2. Related Work
2.1. Basic Definitions

A multi-objective optimization problem (MOP) is typically considered as a minimiza-
tion problem and can be mathematically defined as follows [20]:

min F(x) = ( f1(x), f2(x), · · · , fm(x))T

subject to x ∈ Ω
(1)

where x = (x1, x2, · · · , xn)T is an n-dimensional decision variable vector from the decision
space Ω and m is the number of objectives. F : Ω→ Rm is the vector of m objective function
values, and Rm represents the objective space. When m > 3, the problem is termed a
many-objective optimization problem (MaOP).

Pareto dominance

For two solutions x1, x2 ∈ Ω, x1 is said to Pareto dominate x2 (x1 ≺ x2), if fi(x1) ≤ fi(x2),
for every i ∈ {1, 2, · · · , m}, and f j(x1) < f j(x2), for at least one index j ∈ {1, 2, · · · , m}.

Pareto optimal

For a decision vector x∗ ∈ Ω, if there does not exist another vector x ∈ Ω such that
x ≺ x∗, then x∗ is Pareto optimal.

Pareto set

The Pareto set (PS) is defined as

PS = {x ∈ Ω | x is Pareto optimal}

Pareto front

The Pareto front (PF) is defined as

PF = { f (x) ∈ Rm | x ∈ PS}

2.2. NSGA-III

The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is one of the most
outstanding many-objective evolutionary algorithms available today. It has proven ef-
fective in addressing various engineering optimization problems, leading to significant
outcomes [21–23]. However, as a Pareto dominance-based algorithm, it has a significant
limitation. With increasing dimensionality of objectives, the Pareto non-dominance relation
gradually fails, making the algorithm’s convergence not guaranteed. Additionally, in the
selection process of NSGA-III, only those individuals closest to the reference vectors are con-
sidered. While this approach can achieve good diversity, the convergence is unsatisfactory.
Therefore, there is a need to enhance the consideration of convergence.

2.3. PBI and SPS

The penalty-based boundary intersection (PBI) method can balance convergence and
diversity, and its computation is as follows:

gpbi(x | ω, Z∗) = d1 + θd2 (2)
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where x is the decision vector, ω is the reference vector, Z∗ is the ideal point in the objective
space, θ is penalty factor, d1 is the projection of F(x) onto ω, and d2 is the perpendicular
distance from F(x) to ω. The calculations for d1 and d2 are as follows:

d1 =
∥ (F(x)− Z∗)Tw ∥

∥ w ∥ (3)

d2 =∥ F(x)− Z∗ − d1
w
∥ w ∥ ∥ (4)

where F(x) is the objective vector for the individual x. d1 and d2 are illustrated
in Figure 1.

Figure 1. Illustration of distances d1 and d2.

The penalty factor in PBI significantly impacts its performance. The subproblem-based
penalty scheme (SPS) is a method for calculating penalty factors as follows:

θi = eαβi

βi = max
1≤j≤m

ω
j
i − min

1≤j≤m
ω

j
i

(5)

where i is the ith reference vector, α is a control parameter for the magnitude of the penalty,
and βi is the difference between the maximum and minimum component of i.

Within SPS, boundary weight vectors and intermediate weight vectors have differ-
ent penalty factors θ. For boundary weight vectors, especially near the coordinate axes,
βi approaches 1 and θi takes a higher value, which emphasizes diversity. For the inter-
mediate weight vectors, where all components are nearly equal, βi approaches 0 and θi
approaches 1, emphasizing convergence. It is worth noting that after initialization, θ values
remain constant during the iteration, which could potentially lead to the abandonment of
valuable solutions.

In Figure 2, ω = (0.1, 0.9)T is a boundary weight vector, and segment A− B is part of
the true PF. As seen in Figure 2, for ω and the associated individuals a and b, it is evident
that individual b is closer to the expected PF segment than individual a. However, due
to gpbi of b being greater than that of a, individual b is not selected. This indicates that an
excessive focus on the weight vectors themselves, while neglecting the algorithm’s need
for individuals with strong convergence in the early stage, and a blind pursuit of diversity,
may impair the algorithm’s convergence performance.

In Figure 3, ω = (0.5, 0.5)T is an intermediate weight vector. Individuals a and b are
two points associated with ω, located near the segment A− B of the true PF. As seen in
Figure 3, for ω and the associated individuals a and b, it is evident that individual b is closer
to ω. However, because the gpbi of a is less than that of b, the more diverse individual b is
abandoned. This indicates that an excessive focus on the weight vectors themselves, while
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neglecting the algorithm’s need for individuals with strong diversity in the late stage, and a
blind pursuit of convergence, could result in a decrease in solution diversity.

Figure 2. Illustration of the limitation of the fixed θ value in SPS using boundary weight vector.

Figure 3. Illustration of the limitation of the fixed θ value in SPS using intermediate reference vector.

2.4. Motivation

Pareto-based methods have limitations in addressing many-objective optimization
problems (MaOPs). Researchers have extensively explored improvements by improving the
Pareto dominance relationship, defining new diversity criteria, and adopting collaborative
approaches. In fact, collaborative approaches essentially combine the Pareto dominance
relationship with additional convergence metrics. Solutions are initially ranked based on
Pareto dominance and further selected according to convergence metrics. For example,
the knee point proposed by Zhang et al. [24] and the grid dominance measure proposed
by Yang et al. [25] are both additional convergence metrics. Additionally, the PBI method
used in θ-NSGA-III is also a convergence-related metric. It calculates the parallel distance
(measuring convergence) and the perpendicular distance (measuring diversity) between
solutions and reference vectors, adjusting the importance of both through a penalty factor.
Notably, the penalty factor significantly affects the algorithm’s performance, and a fixed
value based on experience may not be suitable for all types of problems. To address this
issue, Yang et al. [18] proposed two adaptive penalty schemes: APS and SPS. APS adjusts
the penalty factor based on the algorithm’s needs at different stages. In the early stage,
it focuses on convergence, and as the iterations progress, the penalty factor gradually
increases to emphasize diversity. SPS sets the penalty factors based on the characteristics
of each subproblem, with central subproblems focusing on convergence and boundary
subproblems emphasizing diversity. Additionally, Han et al. [19] proposed an adaptive
penalty scheme that adjusts the penalty factor based on the evolutionary state of the
population. However, existing methods do not comprehensively consider these aspects.
Therefore, we propose a comprehensive penalty scheme. Based on the limitations of the SPS
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method described in Section 2.3 and the adaptive adjustment strategy for the penalty factor
based on the population’s evolutionary state, we propose an adaptive penalty scheme to
improve the performance of the algorithm in handling MaOPs, as detailed in Section 3.2.
Additionally, there is a key threshold in the adaptive penalty scheme that determines the
algorithm’s convergence and diversity behavior. This threshold should not be fixed but
should be adjusted throughout the entire evolutionary process. Therefore, we propose a
monitoring strategy to adjust the threshold, allowing the adaptive penalty scheme to meet
the algorithm’s varying requirements for convergence and diversity at different stages,
thus improving its ability to handle MaOPs, as detailed in Section 3.3.

3. Proposed Algorithm

The main framework of caps-NSGA-III is shown in Algorithm 1. First, the reference
vectors are generated and the initial penalty factors are calculated. Next, the population is
initialized using chaotic mapping, after which the iteration process begins. First, the offspring
population Qt is generated using NSGA-III’s genetic operators and then combined with Pt to
form the population Rt. After, non-dominated sorting is utilized to divide Rt into various
Pareto-based non-domination levels, with the final layer denoted as layer l. Next, starting
from F1, each Pareto layer is added to the set St until the number of individuals in St is greater
than or equal to N. If the number equals N, the next iteration begins. Otherwise, individuals
from the first l layers are stored, and a PBI distance-based NSGA-III selection procedure
(replacing the perpendicular distance with the PBI distance (PBI value)) is executed in layer
l to select the remaining required individuals. After generating the population Pt+1, each
penalty factor is adaptively adjusted, and the monitoring strategy is then executed.

Algorithm 1 General framework of caps-NSGA-III

Input: N (Population size), M (Number of objectives), V (Number of decision variables),
ub (Upper bounds of decision variables), lb (Lower bounds of decision variables), MFEs
(Maximum number of fitness evaluations), ε (Threshold of convergence metric), VF
(Violation factor)

Output: population P
1: Z ← Generate Reference Vectors()
2: θ0 ← Calculate the initial penalty factor //SPS
3: P0 ← Chaotic mapping population initialization(N, V, ub, lb) //Algorithm 2
4: while termination condition is not met do
5: Qt ← Genetic Operator(Pt)
6: Rt = Pt ∪Qt
7: (F1, F2, · · · ) = Non-dominated-sort(Rt)
8: repeat
9: St = St ∪ Fi and i = i + 1

10: until |St| ⩾ N
11: Last front to be included: Fl = Fi
12: if |St| = N then
13: Pt+1 = St, break
14: else
15: Pt+1 = ∪l−1

j=1Fj

16: Pt+1 ← The selection process of NSGA-III based on PBI distance.
17: end if
18: θt+1 ← Adaptive penalty factor(Pt, Pt+1, θt, t, MFEs, N, Z, ε) //Algorithm 3
19: [ε, θt+1, VF]←Monitoring strategy(Pt, Pt+1, θt, θt+1, VF, ε) //Algorithm 4
20: end while

3.1. Chaotic Mapping Population Initialization

With increasing objective dimensions, the initial population may exhibit duplication
or clustering, leading to reduced diversity. Therefore, we introduced a widely used chaotic
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mapping method [26] to initialize the population [27,28]. The Logistic equation is a typical
chaotic mapping system [29] and is calculated as follows:

xl = µx(1− x) (6)

where x is a random number in [0, 1], and µ is a logistic control parameter, a random
floating-point number in the range [0, 4].

The specific process for chaotic mapping initialization of the population is detailed
in Algorithm 2.

Algorithm 2 Chaotic mapping population initialization (N, V, ub, lb)

Input: N, V, ub , lb
Output: P0

1: P0 = ∅
2: for i = 1 : | N | do
3: for j = 1 : | V | do
4: xj = rand(0, 1)
5: xlj = µxj(1− xj)
6: xi,j = lbj + (ubj − lbj)xlj
7: end for
8: P0 = P0 ∪ xi
9: end for

3.2. Adaptive Penalty Factor

In the SPS method, after initializing the penalty factor (θ) it remains fixed, which
may lead to the abandonment of some excellent individuals and affect the algorithm’s
performance. Therefore, we proposed an adaptive method based on SPS. Initially, each ref-
erence vector’s penalty factor is computed based on its own characteristic. Then, during the
iteration process, the penalty factor is adaptively adjusted according to the evolutionary
state of the individuals associated with the corresponding reference vector. Specifically,
for reference vector i, the PBI of the centroid of the individuals associated with i is calcu-
lated in Pt and Pt+1, respectively. The d1 of PBI is used as a convergence indicator: a smaller
d1 means the next-generation centroid is closer to the true PF, suggesting that individuals
associated with i are converging. When d1 changes relatively significantly, the θ value is
reduced to emphasize convergence. Conversely, the θ value is increased to emphasize
diversity. The detailed process is outlined in Algorithm 3.

Algorithm 3 Adaptive penalty factor (Pt, Pt+1, θt, t, MFEs, N, Z, ε)

Input: Pt , Pt+1 , θt , t , MFEs , N, Z , ε
Output: θt+1

1: CP = Pt ∪ Pt+1
2: Perform associated operation on CP.
3: for i = 1 : | Z | do
4: ASt ← Find the set of individuals in Pt associated with Z(i)
5: ASt+1 ← Find the set of individuals in Pt+1 associated with Z(i)
6: Calculate the centroids ct and ct+1 of ASt and ASt+1, respectively.
7: Calculate d1, d2, and PBI for ct and ct+1, respectively.
8: if d1,ct − d1,ct+1 /d1,ct > ε then

9: θt+1 = θt − t∗N
MFEs ×

|PBIct+1−PBIct |
PBIct

10: else
11: θt+1 = θt +

t∗N
MFEs ×

|PBIct+1−PBIct |
PBIct

12: end if
13: end for
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3.3. Monitoring Strategy

Algorithms have varying requirements at different stages. The adaptive adjustment of
the penalty factor should align with the algorithm’s needs, with controlling the threshold for
increasing or decreasing θ being crucial, as it directly impacts the algorithm’s convergence
and diversity behavior. To achieve symmetry between convergence and diversity, we
proposed a monitoring strategy. Specifically, if a diversity adjustment is performed during
the convergence phase, it is considered a violation. When the predefined violation factor
is exceeded, convergence adjustment is then performed. Similarly, during the diversity
phase, if the number of convergence adjustments exceeds the violation factor, a diversity
adjustment is then performed. The specific process is detailed in Algorithm 4.

Algorithm 4 Monitoring strategy(Pt, Pt+1, θt, θt+1, VF, ε)

Input: Pt , Pt+1 , θt , θt+1 , VF , ε
Output: ε, θt+1, VF

1: Phase = 0 //Phase = 0 represents the early stage of the algorithm.
2: [d1,t, d1,t+1] = Calculate the sum of d1 for individuals’ PBI in Pt and Pt+1.
3: if t > T/2 then
4: if d1,t - d1,t+1/d1,t < 10−3 then
5: Phase = 1 // Phase = 1 represents the late stage of the algorithm.
6: end if
7: end if
8: if Phase = 0 then
9: if θt+1 − θt > 0 then

10: VF = VF − 1 //Violation
11: end if
12: if VF = 0 then
13: ε = ε − | crd | * rand(0, 1) //crd is the rate of change of d1 in the centroid’s PBI at

the first violation.
14: θt+1 = θt+1 − | crpbi | * rand(0, 1) //crpbi is the sum of the rate of change of the

PBI of the centroid for the three violations.
15: end if
16: else
17: if θt+1 − θt < 0 then
18: VF = VF − 1 //Violation
19: end if
20: if VF = 0 then
21: ε = ε + | crd | * rand(0, 1)
22: θt+1 = θt+1 + | crpbi | * rand(0, 1)
23: end if
24: end if

3.4. Complexity Analysis

The time complexity calculation for caps-NSGA-III primarily includes chaotic map-
ping population initialization (Algorithm 2), non-dominated sorting (line 7), environmental
selection (line 16), adaptive penalty factor (Algorithm 3), and monitoring strategy (Algo-
rithm 4). Assuming the population size is N, the number of objectives is M, the number of
decision variables is V, and the number of reference vectors is K. Consequently, the time
complexity of chaotic mapping population initialization is O(NV) and the time complexity
of non-dominated sorting is O(MN2). The main components of environmental selection
include normalization, PBI calculation, and niche selection. The time complexity for nor-
malization is O(MN2), for PBI calculation is O(MNK), and for niche selection is O(N2)
(in the worst case, selecting N individuals). Since K ≤ N, the time complexity of environ-
mental selection is O(MN2). Additionally, the time complexity of the adaptive penalty
factor (Algorithm 3) is O(NK) and that of the monitoring strategy (Algorithm 4) is O(K).
In summary, the overall time complexity of caps-NSGA-III is O(MN2).
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4. Experimental Studies
4.1. Benchmark Function and Algorithm Parameter Settings
4.1.1. Benchmark Function Settings

The experiments utilize the widely used DTLZ [30] and WFG [31] test suites. For DTLZ,
we focus only on the DTLZ1 to DTLZ4 problems, similar to NSGA-III. The decision variable
V is defined as V = M + r − 1, where the objective dimension M ranges from 3 to 15
and the parameter r is 10 (or 5 for DTLZ1). For WFG, we consider all problems and define
the decision variable V as V = k + l, where the position-related variable k = 2(M− 1) and
the distance-related variable l = 20.

4.1.2. Algorithm Parameter Settings

The experiment compared five many-objective evolutionary algorithms: SSCEA, PeEA,
hpaEA, θ-NSGA-III, and NSGA-III. These five algorithms were all designed to address the
limitations of the traditional Pareto dominance method in handling many-objective opti-
mization problems, covering the three approaches mentioned in Section 1. Among them,
SSCEA and θ-NSGA-III, like caps-NSGA-III, belong to the third approach; NSGA-III be-
longs to the second approach; and PeEA and hpaEA belong to the first approach. Our aim
is to validate the effectiveness of caps-NSGA-III by comparing it with similar methods as
well as those from the other two approaches. The algorithms’ parameter settings involved
in this study are as follows:

1. Population size settings: The population size is determined by the parameter H and
the objective dimension M, with specific settings detailed in Table 1. We use the
method of Das and Dennis [32] to generate reference vectors. When M exceeds 3,
the method of Deb and Jain [3] is employed.

2. Runs and termination criteria: The number of runs is 20 for each instance, with the
termination criteria for the algorithms defined as the maximum number of fitness
evaluations, as detailed in Table 2.

3. Crossover and mutation operator settings: The crossover probability is 1, with the dis-
tribution index set to 30 (20 for SSCEA, PeEA, and hpaEA). The mutation probability
is 1/V, with a distribution index of 20.

4. Parameter Settings: All algorithms use the parameter settings from the original
studies. In caps-NSGA-III, µ = 4 for the Logistic equation and α = 4 for SPS. The initial
threshold is defined as cd ∗ rand, where cd is the initial rate of change of d1 of the
centroid associated with the reference vector, and the violation factor is set to 3.

Table 1. Settings of population size.

M H Population Size

3 12 91
5 6 210
8 H1 = 3, H2 = 2 156

10 H1 = 3, H2 = 2 275
15 H1 = 3, H2 = 1 135

H1 and H2 represent the number of divisions for the boundary layer and the inner layer, respectively.

Table 2. Settings of termination condition.

Test Instance M = 3 M = 5 M = 8 M = 10 M = 15

DTLZ1-DTLZ4 18,200 42,000 31,200 55,000 27,000
WFG1-WFG9 36,400 157,500 234,000 550,000 405,000
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4.2. Performance Metrics
4.2.1. Inverted Generational Distance (IGD)

Let P represent the set of points on the final obtained PF and P∗ represent a set of
points uniformly spread over the true PF. The IGD [33] is then calculated as follows:

IGD(P, P∗) =
∑
|P|
i=1 d(Pi, P∗)
|P∗| (7)

where |P| is the number of individuals in set P, d(Pi, P∗) is the minimum Euclidean distance
from the solution Pi to P∗, and |P∗| is the number of individuals in set P∗.

4.2.2. Hypervolume (HV)

Let P represent the set of points on the final obtained PF and Z = (z1, z2, · · · , zm)T

represent an m-dimensional reference point in the objective space that is dominated by all
Pareto optimal points. The HV [34] is then calculated as follows:

HV(P, Z) = Volume(∪F∈P[ f1, z1] ∗ · · · ∗ [ fm, zm]) (8)

4.3. Results and Discussion
4.3.1. Results on DTLZ Suite

The IGD values obtained by the six algorithms under different DTLZ1-4 instances are
shown in Table 3, with the best results highlighted. According to Table 3, caps-NSGA-III
excels in 10 out of 20 tests on DTLZ1-4. Especially on DTLZ3, caps-NSGA-III outper-
forms other algorithms in tests with all objectives except for the 10-objective instance.
Additionally, SSCEA works well on the eight-objective and ten-objective DTLZ1 instances,
the 10-objective DTLZ2 instance, and the 10-objective DTLZ3 instance. PeEA excels on
the 10-objective DTLZ4 instance. The hpaEA demonstrates superior performance on the
three-objective DTLZ2 instance and on the three-objective and five-objective DTLZ4 in-
stances. θ-NSGA-III excels on the 15-objective DTLZ2 instance. NSGA-III performs well on
the three-objective DTLZ1 instance.

Figure 4 presents the final PFs generated by six algorithms on the 15-objective DTLZ4
instance. As seen in Figure 4, caps-NSGA-III’s overall performance surpasses other al-
gorithms. The diversity performance of θ-NSGA-III and NSGA-III is slightly inferior.
Notably, hpaEA exhibits poor convergence, with the maximum function values for all
objectives exceeding 1.

4.3.2. Results on WFG Suite

Table 4 presents the HV values obtained by the six algorithms on the WFG suite,
with the best results highlighted. According to Table 4, caps-NSGA-III excels in 24 out of
45 tests. Notably, it outperforms other algorithms across all objectives on the WFG3 and
WFG8 test problems. Additionally, SSCEA, hpaEA, θ-NSGA-III, and NSGA-III achieve the
best performance in nine, two, eight, and two instances, respectively. Among them, SSCEA
performs well on WFG2 and WFG4. Additionally, it also demonstrates superior results on
the eight-objective and fifteen-objective WFG1 instances. The hpaEA performs excellently
only on the three-objective and five-objective WFG9 instances. θ-NSGA-III demonstrates
excellent performance on WFG6 and achieves superior results in high-dimensional (10- and
15-objective) tests on WFG5 and WFG7. Additionally, it also attains superior performance
on the 10-objective WFG9 instance. Finally, NSGA-III shows excellent performance only on
the 10-objective WFG6 instance and the 15-objective WFG9 instance. Notably, PeEA does
not show any advantages in the comparisons.
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caps-NSGA-III SSCEA PeEA

hpaEA θ-NSGA-III NSGA-III

Figure 4. Parallel coordinates of the non-dominated fronts obtained by the six algorithms on the
15-objective DTLZ4 instance.

Figure 5 presents the final PFs generated by six algorithms on the 15-objective WFG4
instance. As seen in Figure 5, caps-NSGA-III’s overall performance surpasses the other
algorithms. θ-NSGA-III and NSGA-III exhibit marginally lower performance compared to
caps-NSGA-III. Notably, hpaEA shows poor diversity, as does PeEA for objectives 2–8.

caps-NSGA-III SSCEA PeEA

hpaEA θ-NSGA-III NSGA-III

Figure 5. Parallel coordinates of the non-dominated fronts obtained by the six algorithms on the
15-objective WFG4 instance.
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Table 3. The IGD values (mean and standard deviation) obtained by caps-NSGA-III and other algorithms on the DTLZ test suite.

Problem M NSGA-III θ-NSGA-III hpaEA PeEA SSCEA caps-NSGA-III

DTLZ1

3 1.464 × 10−1 (1.63 × 10−1) 2.360 × 10−1 (3.12 × 10−1) 1.989 × 10−1 (1.78 × 10−1) 2.046 × 10−1(2.26 × 10−1) 2.705 × 10−1 (2.68 × 10−1) 3.515 × 10−1 (1.02 × 10−4)
5 2.084 × 10−1 (1.73 × 10−1) 1.145 × 10−1 (1.39 × 10−1) 2.180 × 10−1 (1.79 × 10−1) 7.526 × 10−2(5.66 × 10−2) 7.342 × 10−2 (5.84 × 10−2) 5.592 × 10−2 (5.34 × 10−3)
8 9.122 × 10−1 (3.31 × 10−3) 4.305 × 10−1 (3.29 × 10−1) 1.277 × 100 (7.22 × 10−1) 1.937 × 10−1(1.21 × 10−1) 1.162 × 10−1 (4.63 × 10−2) 4.199 × 10−1 (2.14 × 10−1)

10 2.996 × 10−1 (1.99 × 10−1) 2.458 × 10−1 (1.98 × 10−1) 3.023 × 100 (1.15 × 100) 1.443 × 10−1(6.18 × 10−2) 1.070 × 10−1 (4.45 × 10−3) 1.855 × 10−1 (4.61 × 10−2)
15 8.530 × 10−1 (5.76 × 10−1) 5.601 × 10−1 (2.78 × 10−1) 3.703 × 100 (9.28 × 10−1) 3.380 × 10−1(1.79 × 10−1) 3.411 × 10−1 (1.86 × 10−1) 3.357 × 10−1 (1.54 × 10−1)

DTLZ2

3 5.449 × 10−2 (2.41 × 10−5) 5.448 × 10−2 (1.59 × 10−5) 5.361 × 10−2 (1.78 × 10−1) 6.471 × 10−2(4.45 × 10−3) 5.795 × 10−2 (1.05 × 10−3) 8.223 × 10−1 (8.50 × 10−2)
5 1.651 × 10−1 (1.01 × 10−4) 1.651 × 10−1 (8.64 × 10−4) 1.674 × 10−1 (2.00 × 10−2) 1.763 × 10−1(3.24 × 10−3) 1.652 × 10−1 (8.64 × 10−4) 1.651 × 10−1 (4.99 × 10−5)
8 4.017 × 10−1 (8.92 × 10−2) 3.235 × 10−1 (2.50 × 10−3) 5.267 × 10−1 (5.52 × 10−2) 3.670 × 10−1(4.28 × 10−3) 3.477 × 10−1 (6.92 × 10−3) 3.217 × 10−1 (5.15 × 10−3)

10 4.655 × 10−1 (4.49 × 10−2) 4.266 × 10−1 (2.39 × 10−3) 6.238 × 10−1 (4.50 × 10−2) 4.214 × 10−1(2.35 × 10−2) 3.870 × 10−1 (4.82 × 10−3) 4.319 × 10−1 (1.50 × 10−2)
15 6.527 × 10−1 (2.14 × 10−2) 6.172 × 10−1 (1.01 × 10−2) 9.358 × 10−1 (3.55 × 10−2) 7.521 × 10−1(5.69 × 10−2) 6.432 × 10−1 (5.64 × 10−2) 6.393 × 10−1 (1.65 × 10−2)

DTLZ3

3 1.302 × 101 (5.49 × 100) 8.846 × 100 (4.42 × 100) 1.534 × 101 (9.83 × 100) 5.328 × 100(2.97 × 100) 1.742 × 101 (1.32 × 101) 9.933 × 10−1 (2.10 × 10−4)
5 4.914 × 100 (4.09 × 100) 5.605 × 100 (3.04 × 100) 5.359 × 100 (3.03 × 100) 3.833 × 100(3.20 × 100) 3.242 × 100 (2.08 × 100) 1.020 × 100 (8.38 × 10−1)
8 1.360 × 101 (6.24 × 100) 1.281 × 101 (9.54 × 100) 3.358 × 101 (5.52 × 10−2) 1.202 × 101(8.69 × 100) 7.162 × 100 (4.01 × 100) 7.148 × 100 (4.64 × 100)

10 9.363 × 100 (5.06 × 100) 6.361 × 100 (5.17 × 100) 5.414 × 101 (1.83 × 101) 3.762 × 100(3.26 × 100) 2.846 × 100 (2.72 × 100) 6.693 × 100 (6.93 × 100)
15 2.385 × 101 (9.98 × 100) 1.421 × 101 (5.60 × 100) 8.530 × 101 (2.28 × 101) 9.575 × 100(6.39 × 100) 9.853 × 100 (6.53 × 100) 9.567 × 100(4.62 × 100)

DTLZ4

3 5.449 × 10−2 (1.82 × 10−5) 5.449 × 10−2 (1.17 × 10−5) 5.352 × 10−2 (3.59 × 10−4) 6.149 × 10−2(1.10 × 10−3) 5.765 × 10−2 (7.68 × 10−4) 8.135 × 10−1 (9.64 × 10−2)
5 1.651 × 10−1 (1.21 × 10−4) 1.650 × 10−1 (6.17 × 10−5) 1.612 × 10−1 (7.55 × 10−4) 1.729 × 10−1(2.05 × 10−3) 1.674 × 10−1 (1.24 × 10−3) 1.651 × 10−1 (5.96 × 10−5)
8 3.260 × 10−1 (1.62 × 10−3) 3.285 × 10−1 (2.50 × 10−2) 3.594 × 10−1 (1.26 × 10−2) 3.656 × 10−1(2.85 × 10−3) 3.510 × 10−1 (1.01 × 10−3) 3.251 × 10−1 (1.17 × 10−3)

10 4.351 × 10−1 (3.31 × 10−3) 4.312 × 10−1 (2.58 × 10−3) 5.156 × 10−1 (1.71 × 10−2) 4.080 × 10−1(4.42 × 10−3) 4.081 × 10−1 (8.42 × 10−3) 4.375 × 10−1 (2.63 × 10−3)
15 6.333 × 10−1 (1.63 × 10−2) 6.320 × 10−1 (4.47 × 10−3) 6.479 × 10−1 (1.09 × 10−2) 1.115 × 100(8.88 × 10−2) 8.627 × 10−1 (1.01 × 10−1) 6.317 × 10−1 (1.30 × 10−2)

Table 4. The HV values (mean and standard deviation) obtained by caps-NSGA-III and other algorithms on the WFG test suite.

Problem M NSGA-III θ-NSGA-III hpaEA PeEA SSCEA caps-NSGA-III

WFG1

3 6.746 × 10−1 (4.34 × 10−3) 7.122 × 10−1 (6.21 × 10−4) 4.859 × 10−1 (3.13 × 10−3) 7.268 × 10−1 (2.14 × 10−3) 5.905 × 10−1 (6.46 × 10−3) 8.025 × 10−1 (3.81 × 10−2)
5 8.553 × 10−1 (2.47 × 10−4) 8.708 × 10−1 (5.37 × 10−3) 8.731 × 10−1 (3.08 × 10−2) 9.199 × 10−1 (3.20 × 10−3) 8.955 × 10−1 (2.78 × 10−3) 9.313 × 10−1 (4.33 × 10−2)
8 7.840 × 10−1 (2.16 × 10−3) 8.034 × 10−1 (6.43 × 10−3) 7.872 × 10−1 (6.17 × 10−3) 9.086 × 10−1 (4.86 × 10−2) 9.113 × 10−1 (9.39 × 10−2) 8.838 × 10−1 (7.07 × 10−2)

10 9.340 × 10−1 (7.66 × 10−3) 9.466 × 10−1 (4.35 × 10−3) 9.142 × 10−1 (6.78 × 10−2) 9.224 × 10−1 (1.95 × 10−2) 9.773 × 10−1 (9.64 × 10−2) 9.858 × 10−1 (2.45 × 10−3)
15 8.056 × 10−1 (3.21 × 10−3) 7.754 × 10−1 (6.42 × 10−3) 7.859 × 10−1 (1.28 × 10−3) 9.217 × 10−1 (4.57 × 10−3) 9.770 × 10−1 (2.11 × 10−3) 9.197 × 10−1 (1.80 × 10−1)

WFG2

3 8.319 × 10−1 (9.62 × 10−2) 8.153 × 10−1 (5.79 × 10−2) 7.941 × 10−1 (8.36 × 10−3) 8.112 × 10−1 (8.71 × 10−3) 8.428 × 10−1 (6.33 × 10−3) 9.046 × 10−1 (8.40 × 10−3)
5 9.497 × 10−1 (4.38 × 10−3) 9.235 × 10−1 (5.24 × 10−3) 8.624 × 10−1 (9.77 × 10−2) 9.046 × 10−1 (9.32 × 10−2) 9.583 × 10−1 (9.31 × 10−2) 9.794 × 10−1 (6.59 × 10−4)
8 8.961 × 10−1 (8.95 × 10−3) 3.862 × 10−1 (9.31 × 10−2) 5.058 × 10−1 (1.23 × 10−3) 9.236 × 10−1 (6.64 × 10−2) 9.571 × 10−1 (6.58 × 10−2) 9.318 × 10−1 (2.11 × 10−2)

10 9.503 × 10−1 (4.25 × 10−3) 8.669 × 10−1 (6.82 × 10−2) 9.394 × 10−1 (2.32 × 10−2) 4.051 × 10−1 (5.26 × 10−3) 9.751 × 10−1 (6.29 × 10−3) 9.352 × 10−1 (1.89 × 10−2)
15 8.237 × 10−1 (6.82 × 10−3) 7.129 × 10−1 (8.41 × 10−3) 8.087 × 10−1 (2.19 × 10−2) 8.865 × 10−1 (2.81 × 10−2) 9.296 × 10−1 (9.02 × 10−2) 3.027 × 10−1 (9.79 × 10−2)

WFG3

3 3.446 × 10−1 (6.55 × 10−3) 3.407 × 10−1 (5.49 × 10−3) 3.324 × 10−1 (3.46 × 10−3) 3.247 × 10−1 (2.14 × 10−3) 3.835 × 10−1 (1.49 × 10−3) 4.631 × 10−1 (2.72 × 10−2)
5 1.086 × 10−1 (3.97 × 10−2) 1.444 × 10−1 (3.18 × 10−3) 1.149 × 10−1 (5.51 × 10−3) 1.605 × 10−1 (5.76 × 10−2) 1.610 × 10−1 (5.48 × 10−3) 6.142 × 10−1 (5.04 × 10−3)
8 0.000 × 100 (0.00 × 100) 4.469 × 10−4 (3.13 × 10−1) 0.000 × 100 (0.00 × 100) 1.681 × 10−2 (5.95 × 10−2) 6.349 × 10−3 (3.97 × 10−3) 4.317 × 10−1 (1.93 × 10−2)

10 0.000 × 100 (0.00 × 100) 0.000 × 100 (0.00 × 100) 0.000 × 100 (0.00 × 100) 5.147 × 10−1 (4.72 × 10−3) 0.000 × 100 (0.00 × 100) 5.335 × 10−1 (2.63 × 10−3)
15 0.000 × 100 (0.00 × 100) 0.000 × 100 (0.00 × 100) 0.000 × 100 (0.00 × 100) 0.000 × 100 (0.00 × 100) 0.000 × 100 (0.00 × 100) 3.237 × 10−1 (1.15 × 10−1)
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Table 4. Cont.

Problem M NSGA-III θ-NSGA-III hpaEA PeEA SSCEA caps-NSGA-III

WFG4

3 5.456 × 10−1 (2.75 × 10−2) 5.471 × 10−1 (4.57 × 10−3) 5.056 × 10−1 (3.25 × 10−3) 5.338 × 10−1 (4.66 × 10−3) 5.496 × 10−1 (1.27 × 10−3) 5.474 × 10−1 (1.87 × 10−3)
5 7.879 × 10−1 (3.62 × 10−3) 7.898 × 10−1 (2.54 × 10−3) 6.468 × 10−1 (4.13 × 10−3) 7.693 × 10−1 (5.52 × 10−3) 7.983 × 10−1 (9.47 × 10−3) 7.858 × 10−1 (2.85 × 10−2)
8 8.918 × 10−1 (4.33 × 10−3) 9.039 × 10−1 (6.47 × 10−3) 5.615 × 10−1 (2.39 × 10−3) 7.963 × 10−1 (3.82 × 10−3) 9.065 × 10−1 (7.16 × 10−3) 8.996 × 10−1 (4.05 × 10−3)

10 9.327 × 10−1 (5.74 × 10−3) 9.561 × 10−1 (4.16 × 10−2) 6.008 × 10−1 (6.79 × 10−3) 6.811 × 10−1 (3.81 × 10−3) 9.570 × 10−1 (9.47 × 10−2) 9.508 × 10−1 (5.43 × 10−1)
15 9.596 × 10−11 (2.06 × 10−2) 9.779 × 10−1 (8.30 × 10−3) 4.659 × 10−1 (9.78 × 10−3) 8.226 × 10−1 (2.24 × 10−1) 9.568 × 10−1 (9.30 × 10−3) 9.843 × 10−1 (1.63 × 10−3)

WFG5

3 5.073 × 10−1 (3.95 × 10−3) 5.069 × 10−1 (2.59 × 10−3) 5.001 × 10−1 (5.29 × 10−2) 5.006 × 10−1 (5.64 × 10−3) 5.009 × 10−1 (4.43 × 10−3) 5.289 × 10−1 (3.58 × 10−3)
5 7.517 × 10−1 (3.07 × 10−4) 7.529 × 10−1 (5.81 × 10−3) 7.330 × 10−1 (4.27 × 10−3) 7.240 × 10−1 (4.75 × 10−3) 7.200 × 10−1 (8.26 × 10−2) 7.628 × 10−1 (1.86 × 10−3)
8 8.496 × 10−1 (5.24 × 10−2) 8.536 × 10−1 (4.16 × 10−3) 7.366 × 10−1 (2.87 × 10−2) 8.086 × 10−1 (2.01 × 10−2) 8.067 × 10−1 (5.70 × 10−1) 8.599 × 10−1 (1.06 × 10−3)

10 8.980 × 10−1 (5.87 × 10−2) 9.020 × 10−1 (5.42 × 10−2) 7.794 × 10−1 (9.41 × 10−2) 3.546 × 10−1 (8.19 × 10−2) 8.517 × 10−1 (2.63 × 10−1) 8.942 × 10−1 (2.45 × 10−3)
15 9.082 × 10−1 (5.29 × 10−2) 9.147 × 10−1 (5.33 × 10−2) 5.713 × 10−1 (3.89 × 10−3) 8.136 × 10−1 (1.41 × 10−3) 8.275 × 10−1 (6.59 × 10−1) 9.137 × 10−1 (6.11 × 10−2)

WFG6

3 5.137 × 10−1 (3.89 × 10−3) 5.128 × 10−1 (3.11 × 10−3) 5.060 × 10−1 (3.39 × 10−3) 4.963 × 10−1 (1.16 × 10−3) 5.141 × 10−1 (2.64 × 10−2) 5.198 × 10−1 (2.01 × 10−3)
5 7.600 × 10−1 (6.58 × 10−2) 7.618 × 10−1 (4.33 × 10−3) 7.439 × 10−1 (5.80 × 10−3) 7.132 × 10−1 (5.01 × 10−3) 7.592 × 10−1 (2.63 × 10−3) 7.422 × 10−1 (3.49 × 10−3)
8 8.610 × 10−1 (1.13 × 10−2) 8.661 × 10−1 (6.52 × 10−3) 7.972 × 10−1 (1.55 × 10−3) 7.190 × 10−1 (4.79 × 10−3) 8.654 × 10−1 (8.67 × 10−2) 8.384 × 10−1 (6.63 × 10−3)

10 9.124 × 10−1 (1.38 × 10−2) 9.120 × 10−1 (1.57 × 10−2) 8.471 × 10−1 (2.72 × 10−2) 7.681 × 10−1 (1.52 × 10−2) 9.091 × 10−1 (1.19 × 10−1) 8.732 × 10−1 (5.79 × 10−3)
15 9.171 × 10−1 (1.67 × 10−2) 9.259 × 10−1 (6.66 × 10−3) 6.445 × 10−1 (1.44 × 10−2) 8.495 × 10−1 (2.79 × 10−2) 9.130 × 10−1 (1.31 × 10−1) 8.808 × 10−1 (9.39 × 10−3)

WFG7

3 5.391 × 10−1 (1.35 × 10−3) 5.395 × 10−1 (5.71 × 10−3) 5.376 × 10−1 (1.16 × 10−2) 5.371 × 10−1 (4.55 × 10−3) 4.923 × 10−1 (7.26 × 10−3) 5.517 × 10−1 (3.93 × 10−3)
5 8.000 × 10−1 (1.19 × 10−3) 8.011 × 10−1 (9.44 × 10−4) 7.732 × 10−1 (2.13 × 10−3) 7.721 × 10−1 (9.63 × 10−4) 7.268 × 10−1 (7.09 × 10−1) 8.020 × 10−1 (5.04 × 10−3)
8 8.261 × 10−1 (5.41 × 10−3) 9.045 × 10−1 (7.63 × 10−4) 7.343 × 10−1 (6.05 × 10−2) 8.761 × 10−1 (4.35 × 10−3) 8.023 × 10−1 (2.19 × 10−1) 9.124 × 10−1 (3.75 × 10−3)

10 8.754 × 10−1 (6.43 × 10−3) 9.623 × 10−1 (7.11 × 10−1) 7.757 × 10−1 (7.26 × 10−3) 9.240 × 10−1 (3.08 × 10−3) 8.762 × 10−1 (9.03 × 10−1) 9.535 × 10−1 (2.63 × 10−3)
15 9.652 × 10−1 (8.18 × 10−3) 9.866 × 10−1 (5.81 × 10−2) 5.897 × 10−1 (6.42 × 10−2) 8.825 × 10−1 (4.57 × 10−2) 8.792 × 10−1 (7.39e+) 9.860 × 10−1 (1.10 × 10−2)

WFG8

3 4.470 × 10−1 (2.88 × 10−3) 4.533 × 10−1 (3.71 × 10−3) 4.463 × 10−1 (5.16 × 10−3) 4.367 × 10−1 (5.16 × 10−3) 4.684 × 10−1 (4.88 × 10−2) 5.068 × 10−1 (2.15 × 10−2)
5 6.730 × 10−1 (2.19 × 10−3) 6.748 × 10−1 (3.51 × 10−2) 6.730 × 10−1 (4.42 × 10−3) 6.411 × 10−1 (6.07 × 10−3) 6.720 × 10−1 (7.46 × 10−1) 7.522 × 10−1 (2.85 × 10−2)
8 7.529 × 10−1 (9.69 × 10−3) 7.468 × 10−1 (1.19 × 10−2) 6.789 × 10−1 (7.65 × 10−3) 7.544 × 10−1 (1.39 × 10−2) 7.533 × 10−1 (6.26 × 10−1) 8.863 × 10−1 (1.23 × 10−2)

10 8.520 × 10−1 (8.49 × 10−3) 8.405 × 10−1 (1.75 × 10−2) 7.473 × 10−1 (9.28 × 10−3) 8.529 × 10−1 (8.73 × 10−2) 8.398 × 10−1 (2.86 × 10−1) 9.440 × 10−1 (5.43 × 10−1)
15 8.635 × 10−1 (1.42 × 10−1) 8.852 × 10−1 (5.24 × 10−2) 6.432 × 10−1 (1.49 × 10−2) 8.744 × 10−1 (1.77 × 10−2) 8.946 × 10−1 (3.21e+) 9.769 × 10−1 (4.26 × 10−3)

WFG9

3 4.674 × 10−1 (2.05 × 10−3) 4.678 × 10−1 (1.84 × 10−2) 5.006 × 10−1 (2.28 × 10−3) 4.685 × 10−1 (5.27 × 10−3) 4.566 × 10−1 (3.02 × 10−1) 4.971 × 10−1 (9.71 × 10−4)
5 6.667 × 10−1 (2.16 × 10−2) 6.747 × 10−1 (3.41 × 10−3) 6.814 × 10−1 (2.56 × 10−2) 6.678 × 10−1 (8.07 × 10−3) 6.196 × 10−1 (2.06 × 10−1) 6.799 × 10−1 (2.85 × 10−2)
8 7.042 × 10−1 (1.68 × 10−2) 7.138 × 10−1 (1.93 × 10−2) 6.716 × 10−1 (2.38 × 10−2) 6.970 × 10−1 (9.09 × 10−3) 6.328 × 10−1 (3.49 × 10−1) 7.347 × 10−1 (3.04 × 10−3)

10 7.616 × 10−1 (3.73 × 10−3) 7.860 × 10−1 (4.18 × 10−2) 7.288 × 10−1 (8.77 × 10−3) 5.620 × 10−1 (4.07 × 10−3) 6.921 × 10−1 (6.34 × 10−2) 7.627 × 10−1 (5.43 × 10−1)
15 7.475 × 10−1 (2.78 × 10−2) 7.445 × 10−1 (4.05 × 10−2) 5.730 × 10−1 (1.87 × 10−3) 7.103 × 10−1 (5.01 × 10−2) 6.172 × 10−1 (2.77 × 10−1) 7.337 × 10−1 (5.93 × 10−3)
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Overall, caps-NSGA-III performs the best in many-objective tests for DTLZ1-4 and
WFG1-9, particularly in DTLZ3, WFG3, and WFG8. This demonstrates the effectiveness of
the penalty scheme we proposed in tackling complex many-objective problems. The adap-
tive penalty scheme enhances the algorithm’s performance, and the monitoring strategy
further harmonizes its convergence and diversity performance across different stages.

4.4. Real-World Problem Applications

Two real-world cases were selected for experimental comparison: car side impact [35,36]
and water resource planning [35,36]. Among these, water resource planning refers to the
optimal planning problem for urban storm drainage systems. It involves three variables (lo-
cal detention storage capacity, maximum treatment rate, and maximum allowable overflow
rate) and five objective functions, which include costs (drainage network, storage facility,
treatment facility, and expected flood damage) and expected economic loss due to flood.
The car side impact problem involves seven variables, including the thicknesses of the
B-Pillars, floor, crossmembers, door beam, roof rail, etc. It aims to achieve three objectives:
minimizing the car’s weight, minimizing the public force experienced by a passenger, and
minimizing the average velocity of the V-Pillar responsible for withstanding impact load.
As recommended by Tanabe and Ishibuchi [35], an additional objective function was added
to each problem: minimizing the total constraint violation.

For both problems, the population sizes are 100 and 150, respectively, and the termi-
nation conditions are 10,000 and 21,000 fitness evaluations, respectively. Other algorithm
settings remain consistent with those outlined in Section 4.1.2. Due to the unavailability
of the true PF, the HV metric is employed for evaluation, with the obtained HV results
presented in Table 5. According to Table 5, caps-NSGA-III exhibits the best performance
for both problems. This demonstrates the algorithm’s effectiveness in addressing real-
world problems.

Table 5. The HV values (mean and standard deviation) obtained by caps-NSGA-III and other
algorithms on real-world problems.

Problem NSGA-III θ-NSGA-III SPS-NSGA-III hpaEA PeEA SSCEA caps-NSGA-III

Car side impact 2.677 × 10−2 2.537 × 10−2 2.653 × 10−2 1.795 × 10−2 1.779 × 10−2 2.323 × 10−2 2.732 × 10−2

(1.27 × 10−3) (1.05 × 10−3) (1.20 × 10−3) (2.31 × 10−3) (2.50 × 10−3) (1.56 × 10−3) (1.11 × 10−3)
Water resource

planning
1.097 × 10−1 6.780 × 10−2 1.105 × 10−1 1.221 × 10−1 1.192 × 10−1 1.217 × 10−1 1.249 × 10−1

(2.35 × 10−2) (2.69 × 10−2) (2.24 × 10−2) (1.68 × 10−2) (2.81 × 10−2) (1.73 × 10−2) (2.70 × 10−2)

4.5. Parameter Sensitivity Analysis

To investigate the impact of parameters on caps-NSGA-III, we conducted a sensitivity
analysis on the parameter α in the SPS method with values of 1, 2, and 4. The experimental
setup is consistent with Section 4. We selected four test problems—WFG3 (linear PF), WFG8
(concave PF), WFG2 (convex PF), and WFG1 (mixed PF)—to identify the optimal value of α.

Figure 6 presents the HV line plots for different values of α across various types of PF.
It can be observed from the figure that different values of α indeed affect the performance
of caps-NSGA-III. Although performance differences on WFG8 are small, indicating that
concave problems may be less influenced by the penalty factor θ, caps-NSGA-III overall
performs best when α = 4. On the whole, caps-NSGA-III achieves the best results when
α = 4, especially on WFG2, where the difference compared to other α values is the most
significant. This may be because the boundary regions of convex problems are harder to
identify, and larger values of α can lead to higher θ values for boundary vectors, thereby
helping to maintain diversity.
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WFG3 WFG8

WFG2 WFG1
Figure 6. Analysis of the impact of α on caps-NSGA-III for the WFG1, WFG2, WFG3, and WFG8
problems. The blue line represents α = 1, the orange line represents α = 2, and the yellow line
represents α = 4.

4.6. Ablation Studies

To verify the effectiveness of the adaptive penalty factor and monitoring strategy
components, we conducted a series of ablation experiments on the three-, eight-, and fifteen-
objective WFG test suites, with the experimental setup consistent with that described in
Section 4. The algorithms compared include the original PBI-NSGA-III, SPS-NSGA-III,
adaptive penalty factor-NSGA-III (AP-NSGA-III), and caps-NSGA-III, which combines
the adaptive penalty factor with the monitoring strategy. Among these, PBI-NSGA-III
represents the baseline algorithm, SPS-NSGA-III is used to validate the effectiveness of the
SPS component, AP-NSGA-III is used to validate the effectiveness of the adaptive penalty
factor component, and caps-NSGA-III is used to validate the effectiveness of the monitoring
strategy component.

Table 6 presents the HV values obtained by the four algorithms on the WFG suite,
with the best results highlighted. The results show that caps-NSGA-III performed the best,
achieving the top performance in 20 out of 27 comparisons. It is followed by AP-NSGA-III,
which achieved the best performance in four comparisons, and then SPS-NSGA-III, which
achieved the best performance in three comparisons. Notably, PBI-NSGA-III did not show
any advantages in the comparisons. By comparing the four algorithms both as a whole and
individually, it can be observed that the introduction of each component indeed improved
the performance of the algorithms.
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Table 6. The HV values (mean and standard deviation) obtained by caps-NSGA-III and other
algorithms on the WFG test suite.

Problem M PBI-NSGA-III SPS-NSGA-III AP-NSGA-III caps-NSGA-III

WFG1
3 7.477 × 10−1 (4.26 × 10−2) 7.780 × 10−1 (2.67 × 10−2) 7.881 × 10−1 (3.08 × 10−2) 8.025 × 10−1 (3.81 × 10−2)
8 7.488 × 10−1 (1.63 × 10−1) 9.174 × 10−1 (1.06 × 10−1) 9.340 × 10−1 (7.05 × 10−2) 8.838 × 10−1 (7.07 × 10−2)
15 7.686 × 10−1 (2.48 × 10−1) 8.863 × 10−1 (1.90 × 10−1) 8.637 × 10−1 (2.15 × 10−1) 9.197 × 10−1 (1.80 × 10−1)

WFG2
3 8.001 × 10−1 (9.38 × 10−2) 8.311 × 10−1 (8.54 × 10−2) 9.018 × 10−1 (1.15 × 10−2) 9.046 × 10−1 (8.40 × 10−3)
8 7.856 × 10−1 (6.63 × 10−2) 8.466 × 10−1 (1.14 × 10−1) 9.018 × 10−1 (2.94 × 10−2) 9.318 × 10−1 (2.11 × 10−2)
15 3.303 × 10−1 (7.13 × 10−2) 4.540 × 10−1 (9.23 × 10−2) 4.467 × 10−1 (1.45 × 10−1) 3.027 × 10−1 (9.79 × 10−2)

WFG3
3 4.481 × 10−1 (3.28 × 10−2) 4.595 × 10−1 (2.52 × 10−2) 4.889 × 10−1 (1.79 × 10−2) 4.631 × 10−1 (2.72 × 10−2)
8 4.141 × 10−1 (3.33 × 10−2) 4.107 × 10−1 (2.54 × 10−2) 4.116 × 10−1 (2.42 × 10−2) 4.317 × 10−1 (1.93 × 10−2)
15 3.851 × 10−1 (4.09 × 10−2) 3.998 × 10−1 (5.18 × 10−2) 3.931 × 10−1 (5.01 × 10−2) 3.237 × 10−1 (1.15 × 10−1)

WFG4
3 5.463 × 10−1 (1.76 × 10−3) 5.471 × 10−1 (1.69 × 10−3) 5.473 × 10−1 (1.42 × 10−3) 5.474 × 10−1 (1.87 × 10−3)
8 8.615 × 10−1 (7.47 × 10−2) 8.664 × 10−1 (6.15 × 10−2) 8.797 × 10−1 (5.39 × 10−2) 8.996 × 10−1 (4.05 × 10−3)
15 9.720 × 10−1 (1.41 × 10−2) 9.721 × 10−1 (1.42 × 10−2) 9.517 × 10−1 (5.01 × 10−2) 9.843 × 10−1 (1.63 × 10−3)

WFG5
3 5.273 × 10−1 (3.53 × 10−3) 5.273 × 10−1 (2.97 × 10−3) 5.277 × 10−1 (3.03 × 10−3) 5.289 × 10−1 (3.58 × 10−3)
8 8.482 × 10−1 (4.92 × 10−2) 8.449 × 10−1 (9.32 × 10−2) 8.510 × 10−1 (3.27 × 10−2) 8.599 × 10−1 (1.06 × 10−3)
15 8.913 × 10−1 (6.73 × 10−2) 8.766 × 10−1 (8.30 × 10−2) 8.526 × 10−1 (1.05 × 10−1) 9.137 × 10−1 (6.11 × 10−2)

WFG6
3 5.194 × 10−1 (2.75 × 10−3) 5.194 × 10−1 (1.89 × 10−3) 5.202 × 10−1 (2.95 × 10−3) 5.198 × 10−1 (2.01 × 10−3)
8 8.371 × 10−1 (6.49 × 10−3) 8.395 × 10−1 (8.29 × 10−3) 8.325 × 10−1 (4.62 × 10−3) 8.384 × 10−1 (6.63 × 10−3)
15 8.764 × 10−1 (2.02 × 10−2) 8.762 × 10−1 (1.64 × 10−2) 8.802 × 10−1 (1.12 × 10−2) 8.808 × 10−1 (9.39 × 10−3)

WFG7
3 5.522 × 10−1 (3.62 × 10−3) 5.518 × 10−1 (2.96 × 10−3) 5.525 × 10−1 (1.46 × 10−3) 5.517 × 10−1 (3.93 × 10−3)
8 9.045 × 10−1 (3.69 × 10−2) 8.499 × 10−1 (4.61 × 10−2) 8.700 × 10−1 (7.61 × 10−2) 9.124 × 10−1 (3.75 × 10−3)
15 9.811 × 10−1 (4.26 × 10−3) 9.809 × 10−1 (4.52 × 10−3) 9.630 × 10−1 (3.74 × 10−2) 9.860 × 10−1 (1.10 × 10−2)

WFG8
3 4.992 × 10−1 (1.72 × 10−2) 4.989 × 10−1 (1.92 × 10−2) 4.991 × 10−1 (1.80 × 10−2) 5.068 × 10−1 (2.15 × 10−2)
8 7.833 × 10−1 (2.17 × 10−2) 7.892 × 10−1 (2.03 × 10−2) 7.471 × 10−1 (1.77 × 10−2) 8.863 × 10−1 (1.23 × 10−2)
15 8.837 × 10−1 (6.71 × 10−2) 9.002 × 10−1 (1.04 × 10−2) 9.424 × 10−1 (4.41 × 10−2) 9.769 × 10−1 (4.26 × 10−3)

WFG9
3 4.966 × 10−1 (1.09 × 10−3) 4.968 × 10−1 (1.62 × 10−3) 4.963 × 10−1 (1.22 × 10−3) 4.971 × 10−1 (9.71 × 10−4)
8 7.010 × 10−1 (9.82 × 10−2) 7.247 × 10−1 (7.30 × 10−2) 7.134 × 10−1 (6.39 × 10−2) 7.347 × 10−1 (3.04 × 10−3)
15 7.150 × 10−1 (6.20 × 10−2) 6.856 × 10−1 (8.63 × 10−2) 6.445 × 10−1 (8.38 × 10−2) 7.337 × 10−1 (5.93 × 10−3)

Best/Worse 3/24 5/22 6/21
Best means that the algorithm’s HV value is better than caps-NSGA-III, while Worse means it is worse than
caps-NSGA-III.

5. Conclusions

In this paper, an improved algorithm named caps-NSGA-III is proposed. This al-
gorithm integrates NSGA-III with a comprehensive adaptive penalty scheme to balance
convergence and diversity. Specifically, chaotic mapping is used in caps-NSGA-III to ini-
tialize the population, achieving a more uniform distribution and enhanced population
diversity. Additionally, in the initial stage, penalty factors are computed according to
the properties of the reference vectors themselves. Then, during iterations, these penalty
factors are adaptively adjusted according to the evolutionary state of the individuals asso-
ciated with the corresponding reference vectors, thereby better balancing the algorithm’s
convergence and diversity. Simultaneously, controlling the threshold for convergence or di-
versity operation is crucial. To meet the algorithm’s needs at different stages, we proposed
a monitoring strategy. The adaptive adjustment of penalty factors is monitored during
algorithm iterations to achieve adaptive threshold changes, thereby further enhancing
the algorithm’s performance. Caps-NSGA-III’s effectiveness was demonstrated through
comparisons with five many-objective evolutionary algorithms. Additionally, the capabil-
ity of caps-NSGA-III to address practical issues was also validated through comparative
experiments on real-world problems. Although our proposed caps-NSGA-III shows im-
provements in solving MaOPs, its performance on large-scale MaOPs requires further study.
Therefore, future work will focus on further exploring caps-NSGA-III and delving into
the following aspects: decision variable analysis (DVA [37]), cooperative coevolution (CC)
frameworks (incorporating various grouping methods like random grouping [38], dynamic
grouping [39], and differential grouping [40]), and problem transformation techniques
(such as the Weighted Optimization Framework, WOF [41]) to enhance its performance on
MaOPs involving a large number of decision variables.
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The following abbreviations are used in this manuscript:

PBI Penalty-based boundary intersection
caps-NSGA-III Comprehensive adaptive penalty scheme-NSGA-III
MOPs Multi-objective optimization problems
MOEAs Multi-objective evolutionary algorithms
MaOPs Many-objective optimization problems
PF Pareto front
PS Pareto set
APS Adaptive penalty scheme
SPS Subproblem-based penalty scheme
crd Rate of change of d1 in the centroid’s PBI at the first violation
crpbi Sum of the rate of change of the PBI of the centroid for the three violations
IGD Inverted generational distance
HV Hypervolume
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