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Abstract: This paper introduces a novel Particle Swarm Optimization (RLPSO) algorithm based
on reinforcement learning, embodying a fundamental symmetry between global and local search
processes. This symmetry aims at addressing the trade-off issue between convergence speed and
diversity in traditional algorithms. Traditional Particle Swarm Optimization (PSO) algorithms often
struggle to maintain good convergence speed and particle diversity when solving multi-modal
function problems. To tackle this challenge, we propose a new algorithm that incorporates the
principles of reinforcement learning, enabling particles to intelligently learn and adjust their behavior
for better convergence speed and richer exploration of the search space. This algorithm guides particle
learning behavior through online updating of a Q-table, allowing particles to selectively learn effective
information from other particles and dynamically adjust their strategies during the learning process,
thus finding a better balance between convergence speed and diversity. The results demonstrate
the superior performance of this algorithm on 16 benchmark functions of the CEC2005 test suite
compared to three other algorithms. The RLPSO algorithm can find all global optimum solutions
within a certain error range on all 16 benchmark functions, exhibiting outstanding performance
and better robustness. Additionally, the algorithm’s performance was tested on 13 benchmark
functions from CEC2017, where it outperformed six other algorithms by achieving the minimum
value on 11 benchmark functions. Overall, the RLPSO algorithm shows significant improvements
and advantages over traditional PSO algorithms in aspects such as local search strategy, parameter
adaptive adjustment, convergence speed, and multi-modal problem handling, resulting in better
performance and robustness in solving optimization problems. This study provides new insights and
methods for the further development of Particle Swarm Optimization algorithms.

Keywords: PSO algorithm; convergence; diversity; reinforcement learning; Q-learning; Q-table

1. Introduction

The PSO algorithm is a population-based stochastic optimization technique developed
by Kennedy and Eberhart in 1995 [1]. The algorithm is inspired by the behavior of birds
foraging, and finds the optimal solution by simulating the process of particles moving
in the search space. The PSO algorithm has the advantages of a simple implementation,
high computational efficiency, and easy convergence, and has quickly become an effective
tool to solve complex optimization problems. The core idea of the PSO algorithm is to
find the optimal solution by simulating the process of particles flying in the search space.
In the algorithm, each particle represents a potential solution, and the position of the
particle is updated by adjusting its position and velocity. The particle adjusts its position
according to its own experience and the experience of the group to find the global optimal
solution. This way of simulating the behavior of swarm intelligence in nature makes the
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PSO algorithm perform well in dealing with high-dimensional, nonlinear and multi-modal
optimization problems.

With its fast computation speed and relatively good stability, the PSO algorithm
has been widely applied in various fields, such as neural network training [2,3], fault
diagnosis [4,5], economics and pattern recognition, power system optimization, signal
processing, data mining, image processing, finance, and medicine. It can be applied to
multiple aspects of power systems, including power generation scheduling, grid planning,
and power market analysis. It can help optimize the efficiency, reliability, and economy of
power systems. Although the traditional PSO algorithm performs well in many problems,
it also has some limitations and disadvantages. The traditional PSO algorithm tends to fall
into local optima when dealing with complex optimization problems, especially for high-
dimensional, non-convex, nonlinear problems, where particles may prematurely converge
to local optima and fail to discover the global optimum. The convergence speed of the
PSO algorithm may be slow, and especially when the search space of the optimization
problem is large or the number of particles is small, it may take a long time to converge.
The traditional PSO algorithm involves many parameters, such as inertia weight and
acceleration coefficient, whose values have a significant impact on the performance of the
algorithm. Lacking a universal selection method, experimentation and adjustment are
required to determine the optimal parameter values. Additionally, the PSO algorithm is
sensitive to the initial conditions and parameter settings of the problem, which makes the
algorithm unstable in some cases and susceptible to noise and interference. As regards
premature convergence and premature stagnation, in some cases, the PSO algorithm may
miss better solutions due to premature convergence, or experience premature stagnation,
leading to algorithmic stagnation.

Currently, various improved and optimized PSO algorithms have been proposed by
researchers to address the shortcomings of traditional PSO algorithms, such as with param-
eter adjustments [6–9], multi-strategy cooperative PSOs [10–17], and hybrid evolutionary
algorithms [18–24]. Based on existing research, improvements in PSO algorithms can be
mainly classified into the following three categories:

Class one: Adaptive parameter adjustment. This category of algorithms mainly adjusts
the design parameters of the PSO algorithm, such as the inertia weight of velocity and the
weights between individual best (pbest) and global best (gbest), to change the convergence
speed of the algorithm. For example, the PSO with inertia weight (PSO-w) algorithm is
used to increase the convergence speed [6], while Ratnaweera et al. proposed various
inertia weight adjustment strategies [7]. Additionally, some algorithms such as the Q-
learning-based Particle Swarm Optimization (QLPSO) [8] and Adaptive Weighted PSO
(AWPSO) [9] algorithms adjust the convergence speed by controlling algorithm parameters.

Class two: Comprehensive learning from other particles. The main idea of such
algorithms is to fully utilize information from other particles to update the flight speed
and position of the current particle, including the current positions and pbests of other
particles. Every particle in the swarm can comprehensively learn from other particles. In
the Fully Informed Particle Swarm (FIPS) algorithm, each particle utilizes information
from all neighboring particles, not just from gbest [10]. In the PSO-w-local algorithm,
each particle compares the performances of every other member in the social network
structure and imitates the best-performing particle [11]. The Cooperative Particle Swarm
Optimization (CPSO) algorithm divides the particle swarm into multiple subgroups to
optimize different components of the solution vector cooperatively. In each iteration, the
CPSO algorithm uses each dimension of particles to update gbest, avoiding the issue of
“two steps forward, one step back” [12]. The Comprehensive Learning Particle Swarm
Optimization (CLPSO) algorithm utilizes pbests of all other particles to update the velocity
of particles. This learning strategy can prevent premature convergence [13]. The Example-
based Learning Particle Swarm Optimization (ELPSO) algorithm proposes a strategy
to update particle positions using an example set of multiple global best particles [14].
The Heterogeneous Comprehensive Learning Particle Swarm Optimization (HCLPSO)
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algorithm divides the swarm into two subgroups, one focusing on exploration and the
other on exploitation [15]. The Terminal Crossover and Direction-based Particle Swarm
Optimization (TCSPSO) utilizes pbest to enhance population diversity at the terminal stage
of iteration, helping particles jump out of local optima [16]. G.P. Xu et al. proposed the Two-
Swarm Learning PSO (TSLPSO) algorithm, which is a dimensional learning strategy (DLS)
for discovering and integrating promising information of the population best solution [17].

Class three: Hybrid particle swarm optimization. This category of algorithms inte-
grates different optimization ideas to improve traditional PSO algorithms. For example,
the PSO-GA algorithm incorporates mutation operators from genetic algorithms into the
PSO algorithm [18,19]. Uriarte A et al. integrated the gradient descent method (BP algo-
rithm) as an operator into the PSO algorithm [20]. Additionally, hybrid particle swarm
optimization algorithms combine the PSO algorithm with other optimization techniques
such as simulated annealing [21]. Aydilek et al. proposed a hybrid (HFPSO) algorithm
that combines advantages of the firefly algorithm and PSO algorithm [22]. Moreover, the
PSO-CL algorithm adopts a crossover learning strategy, utilizing a comprehensive learning
strategy (CCL) and stochastic example learning strategy (SEL), to balance global exploration
and local exploitation capabilities [23]. Zhang et al. constructed the TLS-PSO algorithm,
utilizing a worst–best example learning strategy, to achieve a hybrid learning mechanism
with three learning strategies in PSO [24].

Despite the improved performance of PSO algorithms in respective problems, they
still have limitations when solving complex problems. For example, a high convergence
speed can quickly approach individual best points (pbest) and global best points (gbest), but
it may lead to the loss of diversity in the particle swarm, especially when gbest and pbest are
far from the global optimum but close to each other [14]. The good diversity of the particle
swarm ensures the algorithm’s global search capability but may result in slow convergence.
According to the “no free lunch” theorem [25], many improved PSO algorithms may still
fall into local optima or converge too slowly when solving complex problems. Especially
when balancing convergence speed and diversity, existing algorithms often fail to achieve
ideal results.

The RLPSO algorithm proposed in this paper is inspired by the comprehensive learn-
ing strategy of CLPSO and integrates reinforcement learning policies. Through intelligent
learning strategies, it achieves a better balance between convergence speed and diversity,
endowing particles with more intelligent learning strategies, effective global search capabil-
ities, dynamic adjustment of learning strategies, and a good balance between convergence
speed and diversity, as well as wide applicability. This enables more effective information
sharing and utilization during the learning process, providing an efficient and intelligent
optimization method for problem-solving. RLPSO has a wide range of applications and
can play an important role in engineering [4], science [11], finance [19], medicine [26], and
other fields by improving the performance and robustness of optimization algorithms, thus
providing effective solutions to practical problems.

The remaining parts of this paper are as follows. In Section 2, the theoretical foundation
of the RLPSO algorithm is briefly introduced. In Section 3, the execution process of the
RLPSO algorithm is explained in detail. In Section 4, we discuss parameter selection and
the role of Q-learning, while also selecting 29 benchmark functions to validate the RLPSO
algorithm. Finally, conclusions with a discussion and summary are given in Section 5.

2. The Basic Principle of the CLPSO Algorithm

In the PSO algorithm, the velocity Vd
i update and position Xd

i update of the dth dimen-
sion of the particle i are represented by Equation (1) and Equation (2), respectively [19].

Vd
i = Vd

i + c1 × rd
1 × (pbestd

i − Xd
i ) + c2 × rd

2 × (gbestd − Xd
i ) (1)

Xd
i = Xd

i + Vd
i ∆t (2)
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Xi = (X1
i , X2

i , . . . , XD
i ) and Vi = (V1

i , V2
i , . . . , VD

i ) represent the position and velocity
of the particle i, D is the number of dimensions, pbesti = (pbest1

i , pbest2
i , . . . , pbestD

i ) is the
best-so-far position of the particle i, gbest = (gbest1, gbest2, . . . , gbestD) is the best-so-far
position of the whole swarm, c1 and c2 are constant weights for pbest and gbest, respectively,
rd

1 and rd
2 are two random numbers in the range [0,1]; ∆t = 1. If

∣∣∣Vd
i

∣∣∣ > Vd
max, then

Vd
i = Vd

maxsign(Vd
i ), where Vd

max is maximum allowable velocity of the dth dimension.
The CLPSO algorithm has a solid theoretical foundation, wide application, and effec-

tively utilizes swarm intelligence to address multimodal problems, demonstrating a certain
degree of reliability and effectiveness, especially in tackling multimodal optimization prob-
lems. The CLPSO algorithm [13] can maintain a good diversity within the swarm; it excels
particularly in tackling multimodal problems. Therefore, as the theoretical foundation of
the RLPSO algorithm, CLPSO possesses a certain degree of reliability and effectiveness in
addressing multimodal optimization problems. At the core of the CLPSO algorithm lies
the updating rule, which serves as its main concept. The specific formulas are given as
Equations (3) and (4).

Vd
i = wkVd

i +c × r × (pbestd
fi(d)

− Xd
i ) (3)

Xd
i = Xd

i + Vd
i ∆t (4)

ωk is inertia weight when the number of iterations is k; fi = [ fi(1), fi(2), . . ., fi(D)] defines
the particles’ pbests that the particle i should follow.pbestd

fi(d)
can be the corresponding

dimension of any particle’s pbest as the selection of fi(d) depends on the probability Pci. The
probability of selecting the i particle’s pbest is (1 − Pci), while the probability of selecting
other particles’ pbest is Pci. The value of Pci is computed as in Equation (5).

Pci = 0.05 + 0.45 ×
[

exp
(

10(i − 1)
ps − 1

)
− 1
]

/[exp(10)− 1] (5)

where ps is the population size of the swarm, and i is the particle’s id counter.
In this paper, the objective of the PSO algorithm and its various variants is to locate

the global minimum [3,4]. Figure 1 illustrates the flowchart of the CLPSO algorithm.
Figure 1 illustrates how the CLPSO algorithm updates pbest and gbest by learning

from other particles, although the particles being learned are randomly selected. This may
lead to certain particles being unable to learn from superior ones and deriving no valuable
insights from inferior ones. Consequently, learning may occasionally prove ineffective,
causing the CLPSO algorithm to converge slowly and underutilize swarm information. For

instance, considering the equation f (X) =
d
∑

i=1

{
Xi}2, we assume the following conditions:

V1 = (0, 0, 0), w =1, c =2, r =0.5, X1 = (6, 2, 0),
pbest1 = (4, 1, 4), pbest2 = (1, 2, 5), pbest3 = (1, 2, 1)

The first, second, and third dimensions of this particle learn from pbest1, pbest2, and
pbest3, respectively. X1 is updated according to Equations (3) and (4); we can obtain a new
X1_new = (4, 2, 1) and f (X1_new) = 21, which is better than f (X1) = 40 and f (pbest1) = 33.
So, pbest1 = (4, 2, 1) is updated to pbest1 = X1_new = (4, 2, 1). For this case, although
the new fitness value is better, the second dimension of X1_new is not updated (still at 2),
and the third dimension is updated to be farther away from the optimal point (0, 0, 0),
shifting from 0 to 1. Each dimension of a particle has the potential to learn from a different
particle, but the particles learned may not necessarily be optimal within the context of the
CLPSO algorithm. Therefore, we adjust the particle learning strategy based on the CLPSO
algorithm, optimizing the learning objects and enhancing learning efficiency.
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Figure 1. A flowchart of the CLPSO algorithm. Note: the meanings of the parameters in the figure
are shown in Table 1.

Table 1. The meanings of the parameters for the CLPSO algorithm.

Parameters The Meaning of the Parameters

ω0 inertia weight of the first iteration
ω1 inertia weight of the last iteration

PSO the PSO algorithm
ps population size

max_gen maximum generations
k generation counter
i particle’s id counter
d dimension

ω(k) inertia weight
gbestd the dth dimension’s value of gbest

flagi
the number of generations for which the particle i has not improved its

pbest, and the initial value for flagi of the particle i is 0.
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3. Reinforcement Learning-Based PSO Algorithm

To address the limitations of the aforementioned PSO algorithms, we introduce a novel
PSO algorithm incorporating reinforcement-learning principles. In the RLPSO algorithm,
particles consistently learn from superior peers while preserving diversity. Rather than ran-
domly selecting particles from the swarm, each particle chooses its learned peers based on
the Q table. Moreover, to maximize the effectiveness of each learning instance, the RLPSO
algorithm updates every dimension of the global best (gbest) using all recently updated
personal bests (pbests). Further insights into the RLPSO algorithm are provided below.

3.1. Q-Learning in RLPSO

Reinforcement learning (RL) is a branch of machine learning that dictates how ma-
chines should behave in their current environment to maximize cumulative rewards. Within
machine learning, there are three fundamental components: state, action, and reward [26].
Q-learning, first introduced by Watkins in 1989 [27], is a specific type of RL algorithm.
Q-learning involves the creation and updating of a Q table, which guides the machine’s
actions based on the current state. In some scenarios, the machine selects the action with
the highest Q value from the Q table, updating the Q table during training. The updated
policy is illustrated in Equation (6).

Q(s, a) = Q(s, a) + α×[R(s, a) + γ×maxa′Q(s′, a′)− Q(s, a)] (6)

α is the learning rate, γ is the discount factor, R(s, a) is the immediate reward acquired
from executing action a under the state s, Q(s, a) is an accumulative reward, and s′ is the
next state of the state s when executing action a under the state s; a′ is an optional action
under the state s′ and max a ′ (s′, a′) is the maximum Q value that can be obtained at the
state s′. The model of Q-learning is shown in Figure 2.
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Figure 2. The model of Q-learning.

In the RLPSO algorithm, we randomly generate a (D × ps)-size Q table for each particle
of the swarm. D is the number of particle dimensions; ps is the population size of the
swarm. The Q table dictates from which particle’s pbest each dimension of every particle
learns during each iteration. When updating each dimension of the particle, the particle
with the highest Q value becomes the focal point of learning. In instances where the particle
with the highest Q value is itself, the particle can still learn from its own past experiences.
Each particle maintains its own Q table, as illustrated in Figure 3.
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Figure 3. The Q table of the particle i.

As shown in Figure 3, each dimension of the particle i has only one state, which is how
each dimension learns from other particles’ pbests. Every dimension of the particle i has ps
actions, that is, selects which particle’s pbest to learn from ps particles. Thus, Equation (6)
can be simplified to Equation (7):

Qd, fi(d) = Qd, fi(d)+α × [R + γ × maxQd − Qd, fi(d)] (7)

d represents the dth dimension of the particle i, fi(d) represents which particle’s pbest
the dth dimension of the particle i learns from, Qd,fi(d) is the Q value that the dth dimension
of the particle i can obtain when learning from the pbest of particle fi(d), and maxQd is the
largest Q value of the dth dimension in the Q table of the particle i.

To effectively harness the collective knowledge within the particle swarm, we employ
Q-learning for selecting learned particles, rather than resorting to random selection from
the swarm. Within the RLPSO algorithm, particles initially choose particles to learn from
randomly with a certain probability, thereby exploring the solution space extensively and
updating the Q table at the onset of iterations. As the iterations progress, particles gradually
adjust their selection of particles to learn from based on the Q table, thereby expediting
convergence and preventing divergence in certain dimensions.

Depending on the outcomes of the updates, different rewards are assigned during the
Q table update process. The update strategy is outlined as follows: when gbest undergoes
an update, it receives the highest “global reward” as an immediate reward for updating
the Q table. Conversely, when pbest is updated, it receives a larger “local reward” as an
immediate incentive. In cases where no update occurs, a “penalty” is assigned. The Q table
is updated according to Equation (7).

3.2. The Strategy of Selecting Learned Particles

During each particle’s updating process, the RLPSO algorithm randomly generates
a number dimup from 1 to D as the number of dimensions which need updating, and
randomly selects dimup dimensions from the particle to be updated, leaving the unselected
dimensions unchanged. In the learning process of each dimension within the particle, the
algorithm randomly selects a particle from the swarm of learning with a certain probability
εk and selects a particle to learn from according to the Q table with probability (1 − εk).
Then, Vd

i and Xd
i are updated according to Equation (3) and Equation (4), respectively. After

each iteration, εk updates according to Equation (8); des is the magnitude of the descent per
iteration, and k is the number of iterations.

εk+1 = εk × (1−des) (8)
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Equation (8) reveals that as iterations progress, the likelihood of selecting learned parti-
cles based on the Q table gradually escalates. Consequently, particles begin to incrementally
glean insights from superior counterparts, as dictated by the Q table.

In contrast to the CLPSO algorithm, which relies on the fitness values of two randomly
selected particles to determine learned particles, the RLPSO algorithm expedites this
process by leveraging the Q table. The selection process of fi(d) for the particle i is shown
in Figure 4. Simultaneously, we update the Q table of particle i in response to rewards or
penalties incurred during the updating of gbest and pbest. If the dimension that requires
updating is denoted by d, we update Qd,fi(d) in accordance with Equation (7). Otherwise, no
updates are made. We repeat this process from d = 1 until d = D, resulting in the complete
update of particle i’s Q table.
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3.3. The Full Flow of the RLPSO Algorithm

In this section, we present the specific process of RLPSO, outlined as follows:
Step 1: We initialize the parameters of the RLPSO algorithm, including the position X,

associated velocities V, Q table, ε0, pbest, and gbest of population; set k = 0.
Step 2: Each dimension of the particle i selects the learned particle fi(d) according to

Figure 4 to obtain a new velocity Vi and position Xi.
Step 3: For the particle i, if the pbest is updated, we update each dimension of gbest

based on the 1 to D dimensions of the pbest. This ensures that certain dimensions of gbest
do not stray too far from the optimal point. We can view each dimension of pbest as a gene,
with gbest selectively inheriting useful genes from pbest. If gbest is not updated, we set
flagi = flagi + 1. If flagi ≥ m, run the PSO algorithm and reset flagi = 0. Different from the
CLPSO algorithm where flagi is reset to 0 when pbest is updated, the RLPSO algorithm only
resets flagi to 0 when gbest is updated. This encourages particles to choose learned particles
based on Q-learning more frequently.
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Step 4: If gbest is updated, the particle i receives a global reward; if gbest is not updated
but pbest is, the particle i receives a local reward; if neither gbest nor pbest is updated, particle
i incurs a penalty. Subsequently, we update the Q table of particle i based on the rewards or
penalties obtained from updating gbest and pbest.

Step 5: We set i = i +1; repeat Step 2, Step 3, and Step 4 until i equals the population
size ps.

Step 6: We set k = k + 1; repeat Step 2, Step 3, Step 4, and Step 5 until d equals the
maximum number of iterations.

A detailed description of algorithm pseudocode is shown in Algorithm 1, and the
entire flowchart of the RLPSO algorithm is illustrated in Figure 5. The parameters shown
in Algorithm 1 and Figure 5 are consistent with those set in Figure 1.

Algorithm 1: RLPSO algorithm

Input: Initialize position X, associated velocities V, Q table, ε0, pbest and gbest of population,
and set k = 0, flag = 0, m = 10;
Output: Optimal solution;
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The pseudocode of the RLPSO algorithm reveals a structure consisting of two nested
loops. Each iteration within the outer loop corresponds to a particle within the swarm, and
within each particle’s iteration, every dimension is iterated over. Thus, the time complexity
of the algorithm is influenced by the particle dimension D, the population size ps, and the
number of algorithm iterations max_gen. Consequently, the algorithm’s time complexity
can be inferred as O(max_gen × ps × D).

4. Experimental Validations

For testing the performance of the RLPSO algorithm, a total of 16 famous benchmark
functions were selected from CEC2005 [28], and the performance of the RLPSO algorithm
was compared with other PSO algorithms. The 16 benchmark functions include seven
unimodal functions and nine multimodal functions to ensure the comprehensiveness of
the experiment. The presented algorithm is implemented in Python 3.9 and the program
has been run on a i7-8565U @1.80 GHz Intel(R) Core(TM) 4 Duo processor with 8 GB of
Random Access Memory (RAM). The tested benchmark functions are listed as follows:

Unimodal functions:

(1) f 1: sphere model:

f1(x) =
30

∑
i=1

x2
i , − 100 ≤ xi ≤ 100, min( f1) = f1(0, . . . , 0) = 0

(2) f 2: Schwefel’s problem 2.22:

f2(x) =
30

∑
i=1

|xi|+
30

∏
i=1

|xi|, − 10 ≤ xi ≤ 10, min( f2) = f2(0, . . . , 0) = 0

(3) f 3: Schwefel’s problem 1.2:

f3(x) =
30

∑
i=1

(
i

∑
j=1

xj

)2

, − 100 ≤ xi ≤ 100, min( f3) = f3(0, . . . , 0) = 0

(4) f 4: Schwefel’s problem 2.21:

f4(x) = max{|xi|, 1 ≤ i ≤ 30}, − 100 ≤ xi ≤ 100, min( f4) = f4(0, . . . , 0) = 0

(5) f 5: generalized Rosenbrock’s function:

f5(x) =
29

∑
i=1

[100( xi+1 − x2
i

)2
+(xi−1)2], − 30 ≤ xi ≤ 30, min( f5) = f5(1, . . . , 1) = 0

(6) f 6: step function:

f6(x) =
30

∑
i=1

(⌊xi+0.5⌋)2, − 100 ≤ xi ≤ 100, min( f6) = f6(0, . . . , 0) = 0

(7) f 7: quartic function, i.e., noise:

f7(x) =
30

∑
i=1

ix4
i +random[0, 1), − 1.28 ≤ xi ≤ 1.28, min( f7) = f7(0, . . . , 0) = 0

Multimodal functions:

(8) f 8: generalized Schwefel’s problem 2.26:

f8(x) =
30

∑
i=1

(
xisin(

√
|xi|)) , − 500 ≤ xi ≤ 500, min( f8) = f8(420.9687 , . . . , 420.9687) = −12569.5

(9) f 9: generalized Rastrigin’s function:
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f9(x) =
30

∑
i=1

[
x2

i −10 cos(2πxi)+10] , − 5.12 ≤ xi ≤ 5.12, min( f9) = f9(0, . . . , 0) = 0

(10) f 10: Ackley’s function:

f10(x) = −20exp(−0.2

√
1

30

30
∑

i=1
x2

i )− exp(
1
30

30
∑

i=1
cos 2πxi) + 20+e, − 32 ≤ xi ≤ 32,

min( f10) = f10(0, . . . , 0) = 0

(11) f 11: generalized Griewank function:

f11(x) =
1

4000

30

∑
i=1

x2
i −

30

∏
i=1

cos(
xi√

i
)+1, − 600 ≤ xi ≤ 600, min( f11) = f11(0, . . . , 0) = 0

(12) f 12: generalized penalized function:

f12(x) =
π

30

{
10 sin2(πy1)+

29
∑

i=1
{(yi−1)2 ×[1 + 10 sin2(πyi+1)]}+ (yn−1

)2
}

+
30
∑

i=1
ui(xi , 10, 100, 4) ,

yi= 1+
1
4
(xi+1), u(xi, a, k, m) =


k(xi−a)m xi> a
0 − a ≤ xi ≤ a
k(− xi−a)m xi< −a

−50 ≤ xi ≤ 50, min( f12) = f12(−1, . . . ,−1) = 0

(13) f 13: generalized penalized function:

f13(x) = 0.1
{

sin2(3πx1)+
29
∑

i=1
{( xi−1)2 ×[1 + 10 sin2(3πxi+1)]}+ (xn−1

)2 × [1+ sin2(2πx30)]

}
+

30
∑

i=1
ui(xi , 5, 100, 4) , − 50 ≤ xi ≤ 50, min( f13) = f13(1, . . . , 1) = 0

The function u is the same as above.

(14) f 14: six-hump camel-back function:

f14(x) = 4x2
1−2.1x4

1 +
1
3 x6

1 + x1x2−4x2
2+4x4

2, − 5 ≤ xi ≤ 5
xmin= (0.08983 ,−0.7126), (−0.08983 , 0.7126), min( f14) = −1.0316285

(15) f 15: Branin function:

f15(x) = (x2 − 5.1
4π2 x2

1 +
5
πx1−6)2+10(1− 1

8π ) cosx1+10, − 5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15
xmin= (−3.142 , 12.275), (3.142 , 2.275), (9.425 , 2.425), min( f15) = 0.398

(16) f 16: Goldstein–Price function

f16(x) = [1 + ( x1 + x2+1)2 × (19 − 14 x1+3x2
1−14x2+6x1x2+3x2

2)]

×[30 + (2 x1−3x2)
2 × (18 − 32 x1+12x2

1+48x2−36x1x2+27x2
2)]

−2 ≤ xi ≤ 2, min( f16) = f16(0,−1) = 3

To evaluate the performance of the RLPSO algorithm, comparisons with other algo-
rithms were conducted under the same test parameters. The problem dimension, pop-
ulation size, maximum number of iterations, and number of independent runs were set
uniformly as 30, 40, 5000, and 30 [14]. For the RLPSO algorithm, we randomly generated a
Q table of (D × ps) size for each particle of the population, and each value in the Q table was
randomly generated as an integer between −40 and 0. Then, we compared the performance
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of the PSO, CLPSO, ELPSO, and RLPSO algorithms using experimental data from an H.D.
Shao article [14]. Table 2 presents the parameter settings for all comparison algorithms, as
obtained from their respective studies.

Table 2. Parameter settings for PSO algorithms.

Algorithm Parameter Settings

PSO [1] ω = 0.729, c1 = c2 = 1.494
CLPSO [13] ω = 0.9–0.4, c = 1.494, m = 7
ELPSO [14] ω = 0.729, c1 = 1.49445, c2 = 1.494, m = 7, Bm = 4

RLPSO
ω = 0.9–0.4, c = 1.49445, m = 10, dimup = 30,

global reward = 10, local reward = 2, penalty = −1,
α = 0.1, γ = 0.95, ε0 = 0.6, des = 0.001

4.1. An Analysis of the Role of Q-Learning

To explore the role that Q-learning plays in the RLPSO algorithm, we set some pa-
rameters, such as ε0 = 1 and des = 0, while keeping other parameters constant, to evaluate
performance. Under these conditions, the RLPSO algorithm randomly selects learned
particles without considering the Q table. We denote this configuration of the RLPSO algo-
rithm as “Random RLPSO”. The performance of both “Random RLPSO” and “RLPSO” on
16 benchmark function problems is depicted in Figure 6, while corresponding experimental
results are presented in Table 3.
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Figure 6 illustrates that “RLPSO” achieves earlier convergence compared to “Random
RLPSO” across almost all 16 benchmark functions. Additionally, according to the experi-
mental results in Table 3, “RLPSO” outperforms “Random RLPSO” in terms of convergence
for eight benchmark functions (f 3–f 5, f 7, f 10–f 13). As for the remaining eight benchmark
functions (f 1–f 2, f 6, f 8–f 9, f 14–f 16), both “RLPSO” and “Random RLPSO” converge to
optimal values, but “RLPSO” does so sooner.

The above analysis demonstrates that Q-learning can enhance the RLPSO algorithm’s
fitness value by accelerating convergence at appropriate intervals, thereby achieving a
better balance between convergence speed and diversity. Strategic learning proves to
be more efficient than random learning, as evidenced by experimental results. Initially,
random learning with a certain probability of εk allows for comprehensive exploration
and utilization of population diversity. As εk decreases, particles gradually learn from
superior particles based on the Q table, further expediting convergence. The adjustment of
parameters ε0 and des enables control over the timing of convergence acceleration. With a
maximum of 5000 iterations, we aim for enhanced convergence speed after 2000 iterations
(about 40% of the total) by setting parameters to ε0 = 0.6 and des = 0.001. Consequently, εk
becomes very small (εk < 0.078) after 2000 iterations.

4.2. Parameter Setting of RLPSO

The configurations of global reward, local reward, and penalty are crucial in deter-
mining the performance of the RLPSO algorithm. This section outlines an experimental
approach for configuring these parameters.

We evaluated the performance of five sets of parameter configurations across bench-
mark functions. Table 4 presents these parameter sets and compares their performance
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across 16 benchmark functions. Table 4 also includes the mean and standard deviation of
the optimal solutions, with the best results among the five algorithms highlighted in bold.

Table 3. Comparisons of values extracted by the PSO, CLPSO, ELPSO, and RLPSO algorithms in
30 trials.

Function PSO CLPSO ELPSO RLPSO Random RLPSO t-Test s
Value

f 1
Mean 6.75 × 10−96 4.46 × 10−14 4.8 × 10−93 0 0

1Std 3.5 × 10−100 1.73 × 10−14 1.26 × 10−93 0 0

f 2
Mean 5.53 × 10−16 3.79 × 10−12 1.41 × 10−12 0 0

1Std 1.72 × 10−20 2.19 × 10−12 2.51 × 10−12 0 0

f 3
Mean 6.98 × 10−9 4.68 × 10−3 8.45 × 10−12 3.77 × 10−209 4.71 × 10−185

1Std 1.25 × 10−10 3.83 × 10−3 6.58 × 10−12 2.02 × 10−208 1.93 × 10−184

f 4
Mean 1.52 × 10−6 2.6 2.71 × 10−7 1.91 × 10−214 2.2 × 10−207

1Std 1.84 × 10−7 2.4 2.81 × 10−7 7.2 × 10−214 7.15 × 10−207

f 5
Mean 1.01 × 101 2.1 × 101 9.82 6.67 × 10−30 1.17 × 10−29

1Std 1.66 2.98 1.66 1.49 × 10−29 1.37 × 10−29

f 6
Mean 0 0 0 0 0

0Std 0 0 0 0 0

f 7
Mean 7.49 × 10−3 5.78 × 10−3 3.9 × 10−3 1.97 × 10−3 2.4 × 10−3

1Std 9.4 × 10−4 2.34 × 10−3 1.42 × 10−3 8.1 × 10−4 1.09 × 10−3

f 8
Mean −8.44 × 103 −9.54 × 103 −1.22 × 104 −1.25 × 104 −1.25 × 104

1Std 5.68 × 102 2.15 × 102 3.29 × 102 9.01 × 101 8.5 × 101

f 9
Mean 4.69 × 101 4.85 × 10−10 0 0 0

0Std 1.59 × 101 3.63 × 10−10 0 0 0

f 10
Mean 1.21 0 0 1.47 × 10−14 1.8 × 10−14

1Std 8.6 × 10−1 0 0 4.1 × 10−15 5.2 × 10−15

f 11
Mean 2.88 × 10−2 3.14 × 10−10 0 1.82 × 10−2 2.62 × 10−2

1Std 3.18 × 10−2 4.64 × 10−10 0 2.36 × 10−2 3.01 × 10−2

f 12
Mean 3.52 1.12 × 10−11 3.02 × 10−17 0 0

1Std 5.2 × 10−1 1.12 × 10−10 1.35 × 10−18 0 0

f 13
Mean 8.46 × 101 1.07 × 10−11 2.88 × 10−17 0 3.66 × 10−4

1Std 2.35 × 10−1 1.7 × 10−27 2.06 × 10−22 0 1.97 × 10−3

f 14
Mean −1.0316285 −1.0316285 −1.0316285 −1.0316285 −1.0316285

0Std 0 0 0 0 4.44 × 10−16

f 15
Mean 0.398903 0.398903 0.398874 0.397887 0.397887

1Std 0 0 0 0 0

f 16
Mean 3.00 3.00 3.00 3.00 3.00

0Std 0 0 0 0 1.22 × 10−15

Note: a t-test s value of 1 indicates statistically significant differences in performances between the RLPSO
algorithm and the PSO, CLPSO, and ELPSO algorithms at a 95% confidence level, while a t-test s value of 0
suggests no statistically significant differences. The best results among the five algorithms highlighted in bold.

The results indicate that the RLPSO algorithm performs best when Global
Reward = 10, Local Reward = 2 and Penalty = −1. In this scenario, the RLPSO algo-
rithm outperforms others in 13 benchmark functions, expect for f 3, f 10, and f 11. When
Global Reward = 10 and Penalty = −1, if gbest is updated, the particle receives Global Re-
ward and follows the same learning strategy at least 10 times. Similarly, if pbest is updated,
the particle receives Local Reward and follows the same learning strategy at least two times.
If gbest and pbest remain unchanged for an extended period, the particle adjusts its learning
strategy and begins to learn from other particles’ pbests. The RLPSO algorithm balances
convergence speed and particle diversity through reward and penalty. Therefore, setting
Global Reward = 10, Local Reward = 2, and Penalty = −1 achieves a desirable balance
between convergence speed and particle diversity. Additionally, we set α = 0.1 and γ = 0.95
following the conventional Q-learning parameter settings of many cases.
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Table 4. Comparisons of 5 groups of parameter settings.

Function
Global Reward = 10

Local Reward = 5
Penalty = −1

Global Reward = 10
Local Reward = 5

Penalty = −2

Global Reward = 10
Local Reward = 2

Penalty = −1

Global Reward = 10
Local Reward = 2

Penalty = −2

Global Reward = 10
Local Reward = 1

Penalty = −2

f 1
Mean 0 0 0 0 0

Std 0 0 0 0 0

f 2
Mean 0 0 0 0 0

Std 0 0 0 0 0

f 3
Mean 8.62 × 10−197 4.3 × 10−218 3.77 × 10−209 2.6 × 10−201 1.15 × 10−194

Std 4.64 × 10−196 2.31 × 10−217 2.02 × 10−208 1.4 × 10−200 5.52 × 10−194

f 4
Mean 1.3 × 10−204 2.99 × 10−209 1.91 × 10−214 3.39 × 10−210 5.13 × 10−206

Std 6.99 × 10−204 8.97 × 10−209 7.2 × 10−214 1.82 × 10−209 2.53 × 10−205

f 5
Mean 1.53 × 10−29 2.25 × 10−29 6.67 × 10−30 1.05 × 10−29 1.01 × 10−29

Std 2.28 × 10−29 7.23 × 10−29 1.49 × 10−29 2.09 × 10−29 1.57 × 10−29

f 6
Mean 0 0 0 0 0

Std 0 0 0 0 0

f 7
Mean 2.47 × 10−3 2.21 × 10−3 1.97 × 10−3 2.43 × 10−3 2.51 × 10−3

Std 9.26 × 10−4 1.43 × 10−3 8.1 × 10−4 1.06 × 10−3 9.22 × 10−4

f 8
Mean −1.25 × 104 −1.25 × 104 −1.25 × 104 −1.25 × 104 −1.25 × 104

Std 6.23 × 101 7.95 × 101 9.01 × 101 6.23 × 101 6.23 × 101

f 9
Mean 0 0 0 3.32 × 10−2 0

Std 0 0 0 1.79 × 10−1 0

f 10
Mean 1.44 × 10−14 1.43 × 10−14 1.47 × 10−14 1.41 × 10−14 1.38 × 10−14

Std 3.99 × 10−15 2.95 × 10−15 4.1 × 10−15 2.76 × 10−15 3.86 × 10−15

f 11
Mean 2.12 × 10−2 1.81 × 10−2 1.82 × 10−2 1.52 × 10−2 2.29 × 10−2

Std 2.4 × 10−2 2.08 × 10−2 2.36 × 10−2 1.91 × 10−2 2.56 × 10−2

f 12
Mean 0 0 0 0 0

Std 0 0 0 0 0

f 13
Mean 0 0 0 0 0

Std 0 0 0 0 0

f 14
Mean −1.0316285 −1.0316285 −1.0316285 −1.0316285 −1.0316285

Std 0 9.57 × 10−16 0 0 9.62 × 10−15

f 15
Mean 0.397887 0.397887 0.397887 0.397887 0.397887

Std 0 3.19 × 10−16 0 0 4.66 × 10−14

f 16
Mean 3.00 3.00 3.00 3.00 3.00

Std 0 0 0 0 0

Note: the best results among the five algorithms highlighted in bold.

4.3. Experimental Results and Analysis

In this section, we compare the RLPSO algorithm and the Random RLPSO algorithm
with classical PSO, CLPSO, and ELPSO algorithms. Table 3 presents a comparison of
the above five algorithms in 16 benchmark functions. The table displays the mean and
standard deviation of the optimal solutions for the PSO, CLPSO, ELPSO, Random RLPSO,
and RLPSO algorithms, with the best results among the five algorithms highlighted in bold.

The results of the t-test are presented in the last column of Table 3. At a 95% confidence
level, when s = 1, this indicates that the performance differences between the RLPSO algo-
rithm and the PSO, CLPSO, and ELPSO algorithms are statistically significant. Conversely,
when s = 0, it suggests no statistically significant differences. Among the comparisons for
the 16 benchmark functions in Table 3, 12 exhibited statistically significant disparities.

As shown in Table 3, the RLPSO algorithm demonstrates superior performance in
solving unimodal function problems (f 1–f 5, f 7) compared to all other algorithms. When
tackling multimodal function problems (f 8–f 16), RLPSO outperforms in seven cases (f 8,
f 9, f 12– f 16). Overall, the RLPSO algorithm emerges as the best solution in 14 out of
16 function problems.

Despite the RLPSO algorithm’s average best solution value being lower than that of the
CLPSO and ELPSO algorithms in the multimodal function problem f 11, RLPSO successfully
identifies 12 global optimal solutions of f 11 across 30 runs. To provide a comprehensive
assessment of the RLPSO algorithm, Figure 7 illustrates the frequency with which RLPSO
finds the global optimum in 30 runs across 16 benchmark functions.
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Figure 7 shows that when the RLPSO algorithm is applied to each benchmark function
problem 30 times, it successfully identifies 12 global minima for 16 benchmark function
problems. In the case of the remaining 4 benchmark function problems (f 3– f 4, f 7, f 10)
where the global minimum is not found, the gbests discovered by the RLPSO algorithm are
very close to the global optimum. For instance, the average value of the optimal solution
for f 3 is 3.77 × 10−209, which is close to 0, the global optimal solution of f 3. Similarly, the
average value of the optimal solution for f 4 is 1.91 × 10−214, also close to 0, the global
optimal solution of f 4. The same applies to f 7 and f 10. Based on the above analysis, we can
conclude that the RLPSO algorithm has the capability to identify the global optimum when
run multiple times within a certain error range.

Furthermore, it is evident that various PSO algorithms exhibit different performances
across different benchmark functions. At times, they may successfully locate the global
optimum, while in other instances, they may become trapped in local optima or converge
too slowly. The experimental results confirm that the RLPSO algorithm manages to obtain
nearly all global optima within a certain margin of error. Consequently, the RLPSO algo-
rithm demonstrates greater stability compared to other PSO algorithms when addressing
diverse problem sets.

To further validate the performance of the RLPSO algorithm, we selected 13 test
functions from the CEC2017 benchmark set as the benchmark functions and compared the
RLPSO algorithm with four PSO algorithms and two evolutionary algorithms on the test
set. To evaluate the RLPSO algorithm’s performance, we compared it with other algorithms
using identical test parameters. All algorithms were configured with the same settings: a
population size of 50, a maximum iteration count of 1000, a particle dimension of 30, and
each algorithm was executed 50 times [24]. The selected test functions are listed in Table 5,
algorithm parameters are provided in Table 6, and the computational results are presented
in Table 7.

The data from Table 7 clearly indicate that the RLPSO algorithm outperforms the
other six algorithms (CLPSO, HPSO, THSPSO, TCSPSO, BOA, and OSA algorithms) in the
testing of the 13 benchmark functions of CEC2017, achieving the minimum value on 11 of
these benchmarks. This demonstrates the superior performance of the RLPSO algorithm,
suggesting its capability to find solutions closer to the global optimum in most scenarios.
These results imply that the RLPSO algorithm could be an effective and reliable choice for
addressing complex optimization problems.

4.4. Particle Swarm Diversity Analysis

We conducted Principal Component Analysis (PCA) on functions f 17 to f 29 over
1000 iterations, tracking the positions of 50 particles at the 200th, 400th, 600th, and 800th
iterations. To evaluate particle diversity during the iterative process, we utilized PCA
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to reduce the 30-dimensional particle position data to 3 dimensions. This analysis of the
principal components offered valuable insights into particle behavior and enhanced swarm
optimization. The findings are illustrated in Figures 8–20.

Table 5. CEC2017 benchmark functions.

NO. Function D Range fopt

f 17 Shifted and Rotated Zakharov 30 [−100,100] 300
f 18 Shifted and Rotated Rastrigin 30 [−100,100] 500
f 19 Shifted and Rotated Lunacek Bi-Rastrigin 30 [−100,100] 700
f 20 Shifted and Rotated Non-Continuous Rastrigin 30 [−100,100] 800
f 21 Shifted and Rotated Schwefel 30 [−100,100] 1000
f 22 Hybrid Function 2 (N = 3) 30 [−100,100] 1200
f 23 Hybrid Function 4 (N = 4) 30 [−100,100] 1400
f 24 Hybrid Function 5 (N = 4) 30 [−100,100] 1500
f 25 Hybrid Function 6 (N = 4) 30 [−100,100] 1600
f 26 Composition Function 1 (N = 3) 30 [−100,100] 2100
f 27 Composition Function 2 (N = 3) 30 [−100,100] 2200
f 28 Composition Function 5 (N = 5) 30 [−100,100] 2500
f 29 Composition Function 6 (N = 5) 30 [−100,100] 2600

Table 6. Some variants of PSO and other compared evolutionary algorithms.

Algorithm Years Parameter Information

CLPSO [13] 2006 ω = 0.9~0.4, c = 1.49445, m = 7.
HPSO [29] 2014 ω = 0.9~0.4, c1 = c2 = 2, c3 = randn [0,1].

THSPSO [30] 2019 c1 = c2 = c3 = 2, ω = 0.9
TCSPSO [24] 2019 ω = 0.9~0.4, c1 = c2 = 2

BOA [31] 2018 Sensormodality c = 0~1, Powerexponent: 0.1~0.3,
Switchprobability: p = 0~8

OSA [32] 2018 β = 1.9~0
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Table 7. Comparisons of values extracted by the CLPSO, HPSO, THSPSO, TCSPSO, BOA, and OSA
algorithms in 50 trials.

Function CLPSO HPSO THSPSO TCSPSO BOA OSA RLPSO t-Test s
Value

f 17
Mean 9.17 × 104 4.57 × 104 8.07 × 104 2.2 × 104 8.23 × 104 9.16 × 104 3.13 × 102

1Std 1.46 × 104 1.75 × 104 4.45 × 103 4.72 × 103 7.23 × 103 2.79 × 103 1.75 × 101

f 18
Mean 6.57 × 102 6.12 × 102 8.99 × 102 6.02 × 102 8.99 × 102 9.38 × 102 5 × 102

1Std 1.05 × 101 5.04 × 101 3.8 × 101 2.54 × 101 2.59 × 101 2.35 × 101 7.36× 10−4

f 19
Mean 9.53 × 102 8.58 × 102 1.38 × 103 8.51 × 102 1.36 × 103 1.47 × 103 9.06 × 102

1Std 1.64 × 101 4.07 × 101 5.56 × 101 3.98 × 101 4.04 × 101 4.32 × 101 5.96 × 101

f 20
Mean 9.6 × 102 9.01 × 102 1.13 × 103 8.91 × 102 1.13 × 103 1.15 × 103 8.09 × 102

1Std 1.26 × 101 5.11 × 101 2.93 × 101 2.53 × 101 1.95 × 101 2.43 × 101 5.18

f 21
Mean 6.26 × 103 8.05 × 103 8.75 × 103 4.85 × 103 8.84 × 103 9.04 × 103 1.31 × 103

1Std 2.88 × 102 5.99 × 102 5.95 × 102 9.05 × 102 3.11 × 102 4.36 × 102 3.14 × 102

f 22
Mean 1.16 × 107 8.87 × 105 1.07 × 1010 3.18 × 106 1.27 × 1010 1.44 × 1010 4.18 × 103

1Std 3.54 × 106 9.07 × 105 2.88 × 109 4.1 × 106 3.34 × 109 2.16 × 109 3.03 × 103

f 23
Mean 6.13 × 104 6.8 × 104 1.56 × 106 6.6 × 104 1.22 × 107 2.14 × 107 3.83 × 103

1Std 4.41 × 104 5.24 × 104 9.77 × 105 1.02 × 105 2.09 × 107 2.03 × 107 2.16 × 103

f 24
Mean 3.72 × 104 1.03 × 104 1.48 × 108 9.3 × 103 6.83 × 108 8.28 × 108 1.63 × 103

1Std 1.84 × 104 1 × 104 1.52 × 108 8.85 × 103 4.37 × 108 3.43 × 108 1.88 × 102

f 25
Mean 2.47 × 103 2.65 × 103 5.04 × 103 2.67 × 103 7.3 × 103 6.17 × 103 1.84 × 103

1Std 1.6 × 102 3.51 × 102 6.82 × 102 3.1 × 102 1.39 × 103 9.21 × 102 2.92 × 102

f 26
Mean 2.44 × 103 2.41 × 103 2.71 × 103 2.41 × 103 2.65 × 103 2.76 × 103 2.24 × 103

1Std 3.7 × 101 5.12 × 101 5.49 × 101 2.77 × 101 1.23 × 102 4.56 × 101 2.71 × 101

f 27
Mean 2.94 × 103 7.04 × 103 8.2 × 103 2.74 × 103 5.44 × 103 1.01 × 104 2.44 × 103

1Std 1.07 × 103 3.2 × 103 1.29 × 103 1.36 × 103 1.08 × 103 6.9 × 102 9.51 × 101

f 28
Mean 2.93 × 103 2.89 × 103 4.43 × 103 2.94 × 103 5.64 × 103 4.71 × 103 3.32 × 103

1Std 9.74 1.45 3.71 × 102 2.57 × 101 5.27 × 102 3.61 × 102 2.65 × 101

f 29
Mean 4.81 × 103 4.99 × 103 1.01 × 104 4.7 × 103 1.14 × 104 1.14 × 104 3.14 × 103

1Std 4.67 × 102 5.5 × 102 6.96 × 102 1.19 × 103 9.03 × 102 8.81 × 102 8.63

Note: a t-test s value of 1 indicates statistically significant differences in performances between the RLPSO
algorithm and any other algorithm at a 95% confidence level, while a t-test s value of 0 suggests no statistically
significant differences.
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N and d represent the number of particles and dimensions, respectively, j
ix  repre-

sents the j’th dimension of the i’th particle, while the median ( jx ) is the median of dimen-
sion j in the whole swarm, jdiv is the diversity in each dimension, the diversity of whole 
population (div) is calculated by averaging all jdiv . 

Furthermore, with the help of diversity measurement, we can calculate the percent-
age of exploration and exploitation during each iteration using the following equations: 
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divmax is defined as the maximum diversity value achieved throughout the optimiza-
tion process. The exploration% connects the diversity in each iteration to this maximum 

Figure 19. PCA was applied to the positions of 50 particles in f 28 of Composition Function 5 (N = 5).
Note: The colored dots are the positions of the particles.
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From Figures 8–20, it is evident that the algorithm continues to improve beyond
600 function iterations and does not reach convergence. For certain functions (f 17, f 18, f 25,
f 26, f 28, f 29), convergence is not achieved even after 800 function evaluations. Furthermore,
the comparisons across different runs highlight the algorithm’s stability for these functions.

To further analyze swarm diversity, a diversity measurement [33] is considered and
defined as follows:

divj =
1
N

N

∑
i=1

∣∣∣median(xj)− xj
i

∣∣∣ (9)

div =
1
d

d

∑
j=1

divj (10)

N and d represent the number of particles and dimensions, respectively, xj
i represents

the j’th dimension of the i’th particle, while the median (xj) is the median of dimension j in
the whole swarm, divj is the diversity in each dimension, the diversity of whole population
(div) is calculated by averaging all divj.

Furthermore, with the help of diversity measurement, we can calculate the percentage
of exploration and exploitation during each iteration using the following equations:

exploration% = (
div

divmax
)× 100% (11)

exploitation% = 1 − exploration% (12)

divmax is defined as the maximum diversity value achieved throughout the optimiza-
tion process. The exploration% connects the diversity in each iteration to this maximum
diversity. It is inversely related to the exploitation level and is calculated as the comple-
mentary percentage to exploitation%.

We conducted research on the percentage of exploration and exploitation in
1000 iterations for f 17– f 29. The results are shown in Figure 21.

From Figure 21, we can observe that the exploitation% of the algorithm starts to increase
around the 400th iteration. For f 20 and f 23, when the number of iterations reaches 800, the
exploitation% nearly approaches 100%. This observation is consistent with what is shown
in Figures 11 and 14, where the particles are in a clustered state. The data in Figure 21
indicate that as the number of iterations increases, the algorithm’s performance gradually
improves and eventually stabilizes. This suggests that in the later stages of the algorithm’s
execution, the clustering of particles significantly enhances the exploitation rate, reaching
nearly full exploitation.

Moreover, the analysis of the percentages of exploration and exploitation reveals
that the algorithm predominantly explores in the early stages, with exploration% reaching
nearly 100%. In the later stages, the algorithm shifts towards exploiting the accumulated
information to accelerate convergence. This behavior is consistent across different problems,
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highlighting the algorithm’s stability and its ability to effectively balance exploration and
exploitation in various scenarios.

4.5. Engineering Problem

In this section, the RLPSO algorithm was applied to solve the three-bar truss prob-
lem [33], and the maximum iteration and population size are 1000 and 30, respectively. The
mathematical formulations are as follows:

→
x = (x1, x2) (13)

Objective function:
Min. f (x) = L ∗ (x2 + 2

√
2x1) (14)

These are subject to the following:

h1(x) =
x2

2x2x1 +
√

2x2
1

P − δ ≤ 0, (15)

h2(x) =
x2 +

√
2x1

2x2x1 +
√

2x2
1

P − δ ≤ 0, (16)

h3(x) =
1

x1 +
√

2x2
P − δ ≤ 0, (17)

where 0 ≤ x1, x2 ≤ 1, and P = 2, L = 100, and δ = 2.
This engineering problem is solved by using our proposed RLPSO algorithm and

compared with the methods mentioned in reference [33]. The results of the comparison are
shown in Table 8.

As shown in Table 8, RLPSO performs well in solving the engineering problem.
However, the complexity of the boundary conditions in this engineering problem often
leads to particles not satisfying the constraints after updating, resulting in ineffective
learning. Additionally, due to the problem’s low dimensionality, particles lose a significant
amount of their inherent information after updating, resulting in substantial changes
in particle positions and the loss of valuable data. Consequently, addressing practical
engineering problems with complex constraint conditions will be a major focus of our
future research.

Table 8. Comparison performance of RLPSO with other algorithms for three-bar truss problem.

Algorithm Optimal Weight

RLPSO 209.173475679612
m-DMFO 174.2761613819025

MFO 263.895979682
DEDS 263.8958434
MBA 263.8958522
Tsa 263.68

PSO-DE 263.8958433
CS 263.9716
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5. Conclusions

This study explores the application of strategic learning in optimization by proposing
a Reinforcement Learning-based Particle Swarm Optimization (RLPSO) algorithm aimed
at improving the performance and convergence speed of traditional PSO algorithms. The
research on the RLPSO algorithm involves knowledge from multiple theoretical domains,
including Particle Swarm Optimization, Reinforcement Learning, Q-learning, multi-modal
optimization, and adaptive algorithms. This study is based on a deep understanding of
these theories and their effective integration.
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Under the same testing parameter settings, performance comparisons were conducted
between the RLPSO algorithm and the PSO, CLPSO, and ELPSO algorithms on the testing
of 16 benchmark functions from CEC2005. The results revealed that, compared to other
algorithms, the RLPSO algorithm exhibited the fastest convergence speed. It also found
the global optimum in 14 out of the 16 benchmark functions, showing significant statistical
differences. In the testing of 13 benchmark functions from CEC2017, performance compar-
isons were made between the RLPSO algorithm and six other algorithms (CLPSO, HPSO,
THSPSO, TCSPSO, BOA, and OSA). The results demonstrated that the RLPSO algorithm
found the global optimum in 11 out of the 13 benchmark functions, with statistically signif-
icant differences. This indicates that the RLPSO algorithm exhibits excellent performance
across multiple benchmark function problems, which finds the global optimum in almost
all the cases. The introduced Q-learning mechanism in reinforcement learning plays a
crucial role in enhancing algorithm performance.

This algorithm selects particles to update their velocities based on an online updated
Q-table. At the beginning of each iteration, particles randomly choose particles to learn
from with a certain probability, exploring the solution space as much as possible to update
the Q-table. This process filters out particles worth learning from and stores the information
in the Q-table. As iterations proceed, particles determine which particles they want to learn
from based on the Q-table and store the learning results in the Q-table to guide the next
step of learning. The algorithm continuously adjusts the learning targets and updates the
learning strategy online to accelerate convergence speed at the right time, thus striking
a good balance between convergence speed and diversity. In this paper, comparisons
with random algorithms that do not incorporate Q-table learning reveal that the RLPSO
algorithm converges faster. This indicates the crucial role of the Q-learning mechanism
introduced in reinforcement learning in enhancing algorithm performance.

By combining Q-learning with particle swarm optimization, we achieve effective
learning and experience sharing among particles, accelerating the algorithm’s convergence
speed, and obtaining better fitness values at the appropriate times. This demonstrates
the effectiveness of strategic learning compared to random learning, providing strong
support for further research and the application of reinforcement learning in optimization
algorithms. Compared with traditional PSO algorithms and other improved versions,
the RLPSO algorithm exhibits strong adaptability, fast convergence speed, strong global
search capability, ease of implementation and application, and demonstrates more stable
and efficient performance, making it more applicable and versatile when facing different
types of optimization problems. The RLPSO algorithm has a wide range of applications,
such as in engineering design, data mining, and artificial intelligence. By improving the
performance and robustness of optimization algorithms, the RLPSO algorithm provides
effective solutions for solving practical problems.

Additionally, in terms of performance on the CEC2005 and CEC2017 test functions,
the RLPSO algorithm performs excellently in handling both multi-modal and single-modal
problems, and is particularly outstanding in solving multi-modal problems, indicating its
applicability in solving complex problems and further validating the superiority of the
RLPSO algorithm over other PSO algorithms in solving practical problems. The diver-
sity graphs also reveal that the algorithm maintains the diversity of the particle swarm
throughout the computation, and balances the exploration and utilization of the algorithm.
Through the engineering problem verification, it shows that the algorithm has a certain
practical application value. This suggests that the RLPSO algorithm has broad potential in
practical applications, especially in engineering optimization and data mining fields.

Despite the significant achievements of the RLPSO algorithm in optimization problems,
there are limitations that need to be considered. The reinforcement learning parameters in
the RLPSO algorithm need appropriate adjustments, including on learning rate, rewards,
and penalties. The choice of these parameters may significantly affect the algorithm’s per-
formance and convergence speed, but determining the optimal parameter settings typically
requires a large number of experiments and experiences. The updating and maintenance
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of the Q-table in the RLPSO algorithm increase the computational cost, especially when
dealing with high-dimensional problems or large-scale optimization tasks. Therefore, prac-
tical applications may face limitations in computational resources. Although the RLPSO
algorithm demonstrates many advantages in optimization problems, further research and
improvements are still needed to overcome its limitations and enhance the algorithm’s
performance and applicability.

Future research can focus on optimizing the parameter settings of Q-learning in the
RLPSO algorithm to further enhance the algorithm’s performance and robustness. Ad-
ditionally, ideas from other novel PSO algorithms can be borrowed, such as the Particle
Swarm Optimization algorithm with priority-based sorting [34] and the DOADAPO al-
gorithm [35], to extend Q-learning into the multi-objective optimization domain, thereby
exploring a wider problem space. These research directions will contribute to a deeper
understanding of the working principles of the RLPSO algorithm and further promote the
application and development of reinforcement learning-based optimization algorithms in
practical problems.

In summary, as a reinforcement learning-based optimization algorithm, the RLPSO
algorithm not only has significant theoretical significance but also has broad prospects in
practical applications. We believe that through further research and exploration, the RLPSO
algorithm will play a more important role in the field of optimization and provide effective
solutions for practical problems.
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