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Abstract: Inferences on the location parameter λ in location-scale families can be carried out using
Studentized statistics, i.e., considering estimators λ̃ of λ and δ̃ of the nuisance scale parameter
δ, in a statistic T = g(λ̃, δ̃) with a sampling distribution that does not depend on (λ, δ). If both
estimators are independent, then T is an externally Studentized statistic; otherwise, it is an internally
Studentized statistic. For the Gaussian and for the exponential location-scale families, there are
externally Studentized statistics with sampling distributions that are easy to obtain: in the Gaussian
case, Student’s classic t statistic, since the sample mean λ̃ = X and the sample standard deviation
δ̃ = S are independent; in the exponential case, the sample minimum λ̃ = X1:n and the sample
range δ̃ = Xn:n − X1:n, where the latter is a dispersion estimator, which are independent due to
the independence of spacings. However, obtaining the exact distribution of Student’s statistic in
non-Gaussian populations is hard, but the consequences of assuming symmetry for the parent
distribution to obtain approximations allow us to determine if Student’s statistic is conservative or
liberal. Moreover, examples of external and internal Studentizations in the asymmetric exponential
population are given, and an ANalysis Of Spacings (ANOSp) similar to an ANOVA in Gaussian
populations is also presented.

Keywords: studentized statistics; symmetric distributions; exponential family; location parameter;
scale parameter

1. Introduction

Let X = (X1, . . . , Xn) be a random sample from a population X ∼ Gaussian(µ, σ). If
the location parameter µ and the scale parameter σ are unknown, the unbiased estima-
tors µ̃ = X = 1

n ∑n
k=1 Xk ∼ Gaussian

(
µ, σ√

n

)
and σ̃2 = S2 = 1

n−1 ∑n
k=1(Xk − X)2, with

(n−1) S2

σ2 ∼ χ2
n−1, can be used to estimate these parameters.

The distribution of the estimator X depends on the nuisance parameter σ, which is
a problem for making inferences on the location parameter µ. Student’s [1] pathbreaking
paper has shown that the statistic

tn−1 =
√

n
X − µ

S
(1)
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has a distribution that does not depend on the nuisance scale parameter, since its probability
density function is

ftn−1(t) =
1

B
(

1
2 , n−1

2

) 1
√

n − 1
(

1 + t2

n−1

)n/2 IR(t) , (2)

where B(p, q) =
∫ 1

0 xp−1(1 − x)q−1dx, p, q > 0, is Euler’s Beta function. The probability
density function defined in (2) is for a random variable with Student’s distribution with
n − 1 degrees of freedom. Basically, the “Studentization” defined in (1), as opposed to the

common standardization X−µ

σ/
√

n , uses the estimators of the parameter of interest (location)

and of the nuisance parameter, so that the sampling distribution of tn−1 = g(X, S) does not
depend on the location parameter µ or on the nuisance parameter σ, thus being a pivot
statistic that can be used for inferences on µ.

However, Student’s exceptional result depends heavily on the fact that in the location-
scale Gaussian family, X and S2 are independent random variables, which is an exclusive
property of the Gaussian family. This characterization of the Gaussian distribution ap-
peared in Geary’s work [2], and has been proved, independently, by Darmois [3] and by
Skitovich [4]. Additionally, in the context of the Koopman–Darmois–Pitman k-parameter
exponential family [5–7], the Gaussian family is the only one with support R and with a pair
of sufficient statistics for (µ, σ), namely

(
∑n

k=1 Xk, ∑n
k=1 X2

k
)
, which captures all available

information in the sample to estimate these two parameters.
When working with samples from non-Gaussian location-scale families, the de-

pendence structure between the sample mean Xn = 1
n ∑n

k=1 Xk and the sum of squares
SSn = ∑n

k=1(Xk − Xn)2 = (n − 1)S2
n is hard to discern, except for the special case n = 2

(note that an index n is now being used to emphasize the size of the random sample). For
n > 2, the computation of the probability density function of Student’s statistic

Tn−1 =
√

n(n − 1)
Xn − λ√

SSn
(3)

is a more difficult problem to handle. In Section 2, the joint probability density function of
(Xn, SSn) is investigated in a general context, i.e., not restricted to the Gaussian family. Its
explicit expression for n = 2 is given in Subsection 2.1, and examples for the probability
density function of T1, i.e., for n = 2 in (3), for several symmetric parent distributions are
given in Subsection 2.2. For n ≥ 3, a recurrence formula for the joint probability density
function of (Xn, SSn) is obtained in Subsection 2.3, and a detailed study of the recurrence
formula for the Gaussian case is seen in Subsection 2.4.

An interesting alternative for Studentization was proposed in Logan et al.’s work [8],

where a self-normalized statistic W∗
n−1 = ∑n

k=1 Xk

(∑n
k=1 |Xk |α)

1/α was considered, especially when

X has heavier tails than the Gaussian law, and it is in the domain of attraction of a stable
law for sums with index α ∈ (0, 2). Peña et al.’s [9] monograph on self-normalized pro-
cesses is a thorough overview, with Chapter 15 dealing with the classical t-statistic and
Studentized statistics.

Another interesting fact is that Efron [10] showed that Tn−1
d
= tn−1 when a rotational

symmetry of the unit vector U = X
∥X∥ =

(
X1
∥X∥ , . . . , Xn

∥X∥

)
over the surface of the unit sphere

in the Euclidean n-space En is assumed. However, Efron [10] pointed out the following:

Unfortunately the usual sampling procedures almost never yield rotational sym-
metry for the normalized vector U except in the case X ∼ Gaussian(0, σ2).

Efron also stated that “A very special “lucky” case is given in Section 9, namely In-
verted normal error for n = 2. It is possible to construct examples where Tn is t-distributed
with n degrees of freedom, without U having rotational symmetry”. Efron’s [10] pioneering
work also investigated the consequences, in what regards Student’s statistic, by assuming



Symmetry 2024, 16, 1297 3 of 23

weaker orthant symmetry, i.e., when the random vector U = (U1, . . . , Un) has the same
distribution as Uδ = (δ1U1, . . . , δnUn) for every choice of δi = ±1, i = 1, 2, . . . , n.

This led us to observe, in Subsection 2.4, that the joint probability density function of
(Xn, SSn), in the exceptional rotational symmetry of the Gaussian case, is proportional to
the product of n Gaussian(0, σ) probability density functions, computed at some special
points that form a symmetric arithmetic progression with a null sum and a sum of squares
equal to one.

In Section 3, we shall investigate the simplifications that result from an additional
symmetry assumption, namely when the joint probability density function of (Xn, SSn)
is proportional to the product of n probability density functions of X, as in the Gaussian
case. The approximation obtained from the smoothness hypothesis 1 (Subsection 3.2) is
further investigated in Subsection 3.3 for the worst case possible, i.e., uniform distribution
(see Hendriks et al. [11]), by comparing the approximate expression for T2 with the exact
distribution given by Perlo [12] for a Uniform(−1, 1) parent.

Aside from the Gaussian family, the exponential location-scale family is also a remark-
able member of the Koopman–Darmois–Pitman exponential family. It is the only member
of this family with support in a half-line [λ, ∞) and with a pair of sufficient statistics to
estimate (λ, δ), namely (X1:n, Xn − X1:n), where Xk:n, k = 1, . . . , n, denotes the k-th order
statistic of the random sample (X1, . . . , Xn).

Moreover, the spacings Xk:n − Xk−1:n ∼ Exponential
(
0, 1

n+1−k
)
, k = 1, . . . , n, are inde-

pendent, with the convention X0:n = λ. This property characterizes the exponential distri-
bution, and it is a consequence of Pexider’s [13] functional equation f (x + y) = ϕ1(x) ϕ2(y),
which is an extension of Cauchy’s functional equation, with the solution f (x) = k1 ek2x.

Using the independence of the spacings of the exponential model, we shall also
obtain in Section 4 the probability density function of some externally and internally
Studentized statistics, according to David’s [14] definition, for inferences on the exponential
location parameter. The independence of spacings is further used to compare the location
parameters of two exponential populations in Subsection 4.4, and also to establish an
ANalysis Of Spacings (ANOSp), similar to a one-way ANOVA in Gaussian populations,
which is presented in Subsection 4.5. A Satterthwaite [15] approximation for the case of
unequal dispersions is given in Subsection 4.6.

Finally, Section 5 summarizes the main findings regarding approximate solutions for
non-Gaussian symmetric populations and for a very asymmetric exponential population,
either for exact solutions resulting from the independence of spacings or for approximate
solutions for inferences on the comparison of k ≥ 2 location parameters without assuming
equal dispersions.

2. Joint Probability Density Function of (Xn, SSn) and Probability Density Function
of Tn−1

Let X = (X1, . . . , Xn) be a random sample of size n from a population X. If
X ∼ Gaussian(µ, σ), then from the independence of Xn and SSn, the joint probability
density function of (Xn − µ, SSn) is

f(Xn−µ,SSn)
(w, s) = fXn−µ(w) fSSn(s)

=
1√

2π (σ/
√

n)
e−

1
2 ( w

σ/
√

n )
2 s

n−1
2 −1 e−

s
2σ2

(2σ2)
n−1

2 Γ( n−1
2 )

IR×R+(w, s) ,
(4)

where Γ(α) =
∫ ∞

0 xα−1e−xdx, α > 0, is Euler’s Gamma function.

2.1. Joint Probability Density Function of (X2, SS2)

The independence of Xn and SSn does not hold for a non-Gaussian population X.
However, for samples of size n = 2, it is easy to obtain the probability density function of
Student’s statistic T1.
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Since

X2 =
X1 + X2

2
and SS2 =

(X1 − X2)
2

2
,

it follows that if X1 ≥ X2, then

X1 = X2 +

√
SS2

2
and X2 = X2 −

√
SS2

2
,

with a similar result also holding true if X1 < X2, namely X1 = X2 −
√

SS2
2 and

X2 = X2 +
√

SS2
2 . Therefore, if we denote fX the probability density function of X, as

the absolute value for the Jacobian determinant of both transformations is |J| = 1√
2SS2

, then

the joint probability density function of (X2, SS2) is

f(X2,SS2)
(w, s) = fX1

(
w +

√
s
2

)
fX2

(
w −

√
s
2

) 1√
2s

+ fX1

(
w −

√
s
2

)
fX2

(
w +

√
s
2

) 1√
2s

=

√
2
s

fX

(
w +

√
s
2

)
fX

(
w −

√
s
2

)
=

√
2
s

fX

(
w + 1√

2

√
s
)

fX

(
w − 1√

2

√
s
)
IS (s, w) ,

(5)

where the support

S =


R×R+ , if the support of X is R
R+ × (0, 2w2) , if the support of X is R+

[a, b]× (0, 2 min
{
(w − a)2, (b − w)2}) , if the support of X is [a,b]

. (6)

Note that if in (5), X ∼ Gaussian(0, σ), then

f(X2,SS2)
(w, s) =

√
2
s

e−
s+2w2

2σ2

2πσ2 =
e−

1
2

(
w

σ/
√

2

)2

√
2π(σ/

√
2)

s
1
2−1e−

s
2σ2

(2σ2)
1
2 Γ( 1

2 )
IR×R+(w, s) ,

i.e., the same expression as the one given by (4) for n = 2 because Γ
( 1

2
)
=

√
π.

As for the coefficients of
√

s in the arguments of the functions in (5), they satisfy
the conditions

1√
2
+

(
− 1√

2

)
= 0 and

(
1√
2

)2
+

(
− 1√

2

)2
= 1 .

2.2. Probability Density Function of Student’s Statistic T1

To obtain the probability density function of Student’s statistic T1, let

T1 =

√
2 X2√
SS2

and U =
√

SS2 ,

from which the inverse transformation is X2 = UT1√
2

and SS2 = U2, with |J| =
√

2U2.
Hence, the joint probability density function of (T1, U) is

f(T1,U)(t, u) = 2u fX

(
u(t + 1)√

2

)
fX

(
u(t − 1)√

2

)
,

and therefore, if X has support R, the probability density function of T1 is given by

fT1(t) = 2
∫ ∞

0
u fX

(
u(t + 1)√

2

)
fX

(
u(t − 1)√

2

)
du . (7)
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Some simple examples for symmetric parent distributions are the following:

• If X ∼ Gaussian(0, 1),

fT1(t) =
1

π(1 + t2)
IR(t) ,

i.e., T1 ∼ Cauchy(0, 1) (note that a standard Cauchy random variable is Student
t-distributed with one degree of freedom).

• If X ∼ Uniform(−1, 1),

fT1(t) =
1

2(1 + |t|)2 IR(t) .

• If X ∼ Beta(2, 2;−1, 1),

fT1(t) =
3
8

1 + 4|t|+ t2

(1 + |t|)4 IR(t) .

• If X ∼ Laplace(0, 1),

fT1(t) =
{

1/4 |t| ≤ 1
1/(4t2) |t| > 1

.

• If X ∼ Cauchy(0, 1),

fT1(t) =
1

2π2t
ln
(

t + 1
t − 1

)2
IR−{−1,1}(t) .

(Note that a random variable X has a symmetric distribution around a parameter
θ ∈ R if its cumulative distribution function FX satisfies FX(θ − x) = FX(θ + x), x ∈ R. In
particular, if X is an absolutely continuous random variable, its distribution is symmetric
around θ if fX(θ − x) = fX(θ + x), x ∈ R.)

The graphics in Figure 1 show that the probability density function of T1 with a non-
Gaussian parent can be quite different from that of t1, i.e., with a Gaussian parent. Note that
with a Uniform(−1, 1) parent and a Beta(2, 2;−1, 1) parent, the corresponding densities
of T1 are unimodal and have heavier tails than those of t1 (see Figure 2). In the case of a
Cauchy parent, which is known for having very heavy tails, T1 has an antimodal probability
density function. The observation that heavier tails of the underlying parent distribution
result in less heavy tails for the distribution of Student’s T-statistic, and vice-versa, was
proved by van Zwet [16,17]. This indicates that the tail weight of the distribution is very
important to determine the conservative or liberal behavior of Student’s statistic.

Figure 1. Probability density function of T1 with symmetric parent distributions.

2.3. Joint Probability Density Function of (Xn, SSn)

Let X = (X1, . . . , Xn+1), n ≥ 2, be a random sample from the parent distribution
X. From (Xn, SSn) and Xn+1 being independent, the joint probability density function of
(Xn, SSn, Xn+1) is
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f(Xn ,SSn ,Xn+1)
(w, s, x) = f(Xn ,SSn)

(w, s) fXn+1(x) = f(Xn ,SSn)
(w, s) fX(x) .

On the other hand, as

Xn+1 =
n

n + 1
Xn +

Xn+1

n + 1
and SSn+1 = SSn +

n
n + 1

(Xn − Xn+1)
2 ,

using the auxiliary random variable Y = Xn − Xn+1, the inverse transformation is

Xn = Xn+1 +
Y

n + 1
, SSn = SSn+1 −

n
n + 1

Y2 and Xn+1 = Xn+1 −
n

n + 1
Y ,

with |J| = 1. Hence, the joint probability density function of (Xn+1, SSn+1, Y) is

f(Xn+1,SSn+1,Y)(w, s, y) = f(Xn ,SSn)

(
w +

y
n + 1

, s − ny2

n + 1

)
fX

(
w − ny

n + 1

)
,

and therefore, the joint probability density function of (Xn+1, SSn+1) is given by

f(Xn+1,SSn+1)
(w, s) =

∫ √
n+1

n s

−
√

n+1
n s

f(Xn ,SSn)

(
w +

y
n + 1

, s − ny2

n + 1

)
fX

(
w − ny

n + 1

)
dy . (8)

Figure 2. Right tail of the probability density function of T1 for the symmetric parent distributions in
Figure 1.

We emphasize that in integral (8), it is assumed that X has support R, which we shall
continue to assume for what follows, but if this is not the case, then the integration limits
should be defined according to its support (see (6)).

In making the replacement v = y√
n+1

n s
in (8), it follows that

f(Xn+1,SSn+1)
(w, s) =

∫ 1

−1

√
n+1

n s f(Xn ,SSn)

(
w + v

√
s

n(n+1) , s(1 − v2)
)

fX

(
w − v

√
ns

n+1

)
dv. (9)

For example, if n + 1 = 3, then in using Formulas (9) and (5),

f(X3,SS3)
(w, s) =

∫ 1

−1

√
3
2

s f(X2,SS2)

(
w + v

√
s
6 , s(1 − v2)

)
fX

(
w − v

√
2
3 s
)

dv

=
√

3
∫ 1

−1

1√
1 − v2

fX

(
w +

(
v +

√
3(1 − v2)

)√ s
6

)
× fX

(
w +

(
v −

√
3(1 − v2)

)√ s
6

)
fX

(
w − 2v

√
s
6

)
dv

=
√

3
∫ 1

−1

1√
1 − v2

fX

(
w +

v+
√

3(1−v2)√
6

√
s
)

× fX

(
w +

v−
√

3(1−v2)√
6

√
s
)

fX

(
w − 2v√

6

√
s
)

dv .

(10)
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Notice that the coefficients of
√

s in the arguments of the functions in the last integrand
in (10) satisfy the following two conditions:

v +
√

3(1 − v2)√
6

+
v −

√
3(1 − v2)√

6
− 2v√

6
= 0

and (
v +

√
3(1 − v2)√

6

)2

+

(
v −

√
3(1 − v2)√

6

)2

+

(
− 2v√

6

)2
= 1 .

2.4. The Gaussian Case

In applying (10), in particular, to the case X ∼ Gaussian(0, σ), for w ∈ R and s > 0,

f(X3,SS3)
(w, s) =

√
3
∫ 1

−1

1√
1 − v2

e−
s+3w2

2σ2

2
√

2 π3/2σ3
dv

=
√

3
e−

s+3w2

2σ2

2
√

2 π3/2σ3

∫ 1

−1

1√
1 − v2

dv

=
1√

2π σ√
3

e−
3w2

2σ2 IR(w)
e−

s
2σ2

2σ2 IR+ (s)

≈ fX

(
w +

√
s
2

)
fX(w) fX

(
w −

√
s
2

)
,

(11)

where
{

1√
2

, 0,− 1√
2

}
is a set of equidistant points such that their sum is 0 and the sum of

their squares is 1.
As for the joint probability density function of (X4, SS4), using the recurrence

Formula (9), we obtain

f(X4,SS4)
(w, s) =

√
4s
3

∫ 1

−1
f(X3,SS3)

(
w +

√
s

12 v, (1 − v2)s
)

fX

(
w −

√
3s
4 v
)

dv , (12)

and in view of what was established in (11), the joint probability density function (12) can be
approximated using the product of fX computed at the points w + αi,4

√
s, i = 1, 2, 3, 4, i.e.,

f(X4,SS4)
(w, s) ≈ K

√
s

4

∏
i=1

fX
(
w + αi,4

√
s
)

, (13)

with K as a norming constant, provided that ∑4
i=1 αi,4 = 0 and ∑4

i=1 α2
i,4 = 1.

In determining the points w + αi,4
√

s, since the set A = {α1,4, α2,4, α3,4, α3,4} is sym-
metric, for its elements to fulfill the first condition, they must satisfy a1,4 = −a4,4 and
a2,4 = −a3,4. As the points are also equidistant, i.e., αi,4 − αi−1,4 = r, i = 2, 3, 4, they form
an arithmetic progression with common distance r, and thus, A =

{ 3r
2 , r

2 ,− r
2 ,− 3r

2
}

. In
order to satisfy the second condition, we must also have r2 = 1

5 , and hence,

A = {α1,4, α2,4, α3,4, α3,4} =

{
3√
20

,
1√
20

,− 1√
20

,− 3√
20

}
.

Therefore, from (13), and for w ∈ R and s > 0, we obtain

f(X4,SS4)
(w, s) ≈ e−

4w2

2σ2
√

s e−
s

2σ2 ∝ fX4
(w) fSS4(s). (14)

More generally, we have the following:

• If n = 2k + 1, then

{α1,n, . . . , αn,n} =

{
n − 1

2
r,
(

n − 1
2

− 1
)

r, . . . , r, 0,−r, . . . ,−
(

n − 1
2

− 1
)

r,−n − 1
2

r
}

,
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and from 2
n−1

2
n+1

2 n
6 r2 = 1, we obtain r2 = 12

n(n2−1) .

• If n = 2k, then

{α1,n, . . . , αn,n} =

{
2n − 1

2
r,

2n − 3
2

r, . . . ,
r
2

,− r
2

, . . . ,−2n − 3
2

r,−2n − 1
2

r
}

,

and from 2 ∑n/2
k=0

(
2k−1

2

)2
r2 = 1, we obtain r2 = 12

n(n2−1) .

It follows that α1,n =
√

3(n−1)
n(n+1) , and since αi,n =

(
n−1

2 − i + 1
)

r, i = 1, . . . , n, we have

αi,n = (n + 1 − 2i)

√
3

n(n2 − 1)
, i = 1, . . . , n .

In particular, αi,n−1 = (n − 2i)
√

3
(n−1)n(n−2) , and hence,

√
n − 2
n + 1

αi,n−1 = (n − 2i)

√
3

n(n2 − 1)
.

Therefore,

αi,n −
√

n − 2
n + 1

αi,n−1 =

√
3

n(n2 − 1)

(
=

r
2

)
.

For example, for n = 2 and n = 3 we obtained the values

n = 2 : α1,2 =
1√
2

, α2,2 = − 1√
2

;

n = 3 : α1,3 =
1√
2

, α2,3 = 0 , α3,3 = − 1√
2

.

As a recurrence formula,

αi,n =

√
3

n(n2 − 1)
+

√
n − 2
n + 1

αi,n−1, i = 1, . . . , n − 1, αn,n = −

√
3(n − 1)
n(n + 1)

. (15)

By expressing the multiplier
√

n−2
n+1 as

√
n−2
n+1 =

√
1 − ξ2

n, we obtain ξn =
√

3
n+1 .

3. Symmetry and Studentization
3.1. Symmetric Random Variables

There are useful results that enable the identification or characterization of symmetric
random variables, such as the following:

(i) If X and Y are independent random variables, then W = XY has a characteristic
function φW(t) = E

(
eitXY) = ∫ ∞

−∞ E
(
eitXy)dFY(y) =

∫ ∞
−∞ φX(ty)dFY(y).

(ii) If X ∼ Bernoulli
( 1

2
)
, then B = 2X − 1 has a probability mass function P(B = −1) =

P(B = 1) = 1
2 , and its characteristic function is φB(t) = E

(
eitB) = 1

2 e−it + 1
2 eit = cos t.

(iii) If X and B (B as defined in (ii)) are independent, the characteristic function of W = BX
is φW(t) =

∫ ∞
−∞ cos(tx)dFX(x).

(iv) A random variable is symmetric if and only if its characteristic function is
φX(t) =

∫ ∞
−∞ cos(tx)dFX(x).

From the above, a random variable X is symmetric if and only if X d
= XB, with X

and B being independent. Therefore, if X and Y are independent random variables and
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X is symmetric, then XY is also symmetric. In particular, if X is symmetric, then Xn is
symmetric, which leads to Tn−1 being symmetric as well.

3.2. An Approximate Joint Probability Density Function of (Xn, SSn) with a Symmetric
Parent Distribution

Using the Gaussian case as a guideline, for n = 3, we assume that fX is a continuous
and smooth probability density function of a symmetric random variable X, in the sense
that there is a value ξ3( fX) ∈ (−1, 1) such that, from the mean value theorem, the integral
in (10) can be computed as

f(X3,SS3)
(w, s) =

1√
1 − ξ2

3

fX

(
w +

ξ3+
√

3(1−ξ2
3)√

6

√
s
)

× fX

(
w − ξ3+

√
3(1−ξ2

3)√
6

√
s
)

fX

(
w − 2ξ3√

6

√
s
)

=
1√

1 − ξ2
3

3

∏
i=1

fX
(
w + αi,3(ξ3)

√
s
)
,

(16)

where α1,3(ξ3) =
ξ3+

√
3(1−ξ2

3)√
6

, α2,3(ξ3) =
−ξ3−

√
3(1−ξ2

3)√
6

, and α2,3(ξ3) = − 3 ξ3√
6

, so that

∑3
i=1 αi,3(ξ3) = 0 and ∑3

i=1 α2
i,3(ξ3) = 1.

More generally, we investigate the consequences of a smoothness hypothesis, which is
based on the Gaussian case.

Smoothness Hypothesis 1. Let X1, X2, . . . be independent replicas of a random variable X,
with a smooth probability density function fX that allows the integral mean value theorem
to be used. Therefore, for ν = 2, . . . , n, there are values ξν( fX) ∈ (−1, 1) and αi,ν(ξν) of
the form

αi,ν =
ξν√

ν(ν − 1)
+ αi,ν−1

√
1 − ξ2

ν , i = 1, . . . , ν − 1, and αν,ν = −ξν

√
ν − 1

ν
,

satisfying the conditions ∑ν
i=1 αi,ν(ξν) = 0 and ∑ν

i=1 α2
i,ν(ξν) = 1 such that the approximation

f(Xν ,SSν)
(w, s) ≈ K s(ν−3)/2

ν

∏
i=1

fX(w + αi,ν
√

s) IS (w, s) , (17)

where K is a norming constant, is valid.

Then, the integral mean value theorem also holds for f(Xn+1,SSn+1)
, i.e., there are values

ξn+1( fX) ∈ (−1, 1) and αi,n+1(ξn+1) such that the approximation

f(Xn+1,SSn+1)
(w, s) ≈ K s(n+1−3)/2

n+1

∏
i=1

fX(w + αi,n+1(ξn+1)
√

s) IS (w, s) (18)

is also valid, with (Xn+1, SSn+1) having support S defined in (6), and αi,n+1 = ξn+1√
n(n+1)

+

αi,n

√
1 − ξ2

n+1, i = 1, . . . , n, and αn+1,n+1 = −ξn+1

√
n

n+1 .
If we further assume that X is a symmetric random variable, which implies that the points

α1,n, . . . , αn,n form an arithmetic progression with common distance rn = − 2
√

3√
n(n2−1)

and

αi,n = −αn+1−i,n, i = 1, . . . , n, then ξn =
√

3
n+1 and

αi,n = (n + 1 − 2i)

√
3

n(n2 − 1)
, i = 1, . . . , n. (19)
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Equation (19) is easily obtained. In fact, if n = 2k + 1, then α1,n = k|rn|. Moreover, the
abcissas of the positive points αi,n are |r|, 2|r|, . . . , k|r|, and since ∑k

j=1(jr)2 = 1
2 , this implies

that |r| = 2
√

3
n(n2−1) . For n = 2k, the results are similar, with the abcissas of the positive

αi,n now being |r|
2 , 3|r|

2 , . . . , (k − 1
2 )|r|.

3.3. An Approximate Expression for the Probability Density Function of Tn−1 with a Smooth
Symmetric Parent

Considering the transformation

Tn−1 =

√
n(n−1) Xn√

SSn
and U =

√
SSn ,

from which Xn = UTn−1√
n(n−1)

and SSn = U2, with |J| = 2U2√
n(n−1)

, we obtain

f(Tn−1,U)(t, u) =
2u2√

n(n − 1)
f(Xn ,SSn)

(
ut√

n(n−1)
, u2
)

,

and therefore, for t ∈ R, and X with support R,

fTn−1(t) =
2√

n(n − 1)

∫ ∞

0
u2 f(Xn ,SSn)

(
ut√

n(n−1)
, u2
)

du .

Using approximation (18), and denoting αi,n(ξn) = αi,n, it follows that

fTn−1(t) ≈ K
∫ ∞

0
un−1

n

∏
i=1

fX

((
t√

n(n−1)
+ αi,n

)
u
)

du . (20)

For example, if X ∼ Gaussian(0, 1), then

ftn−1 (t) ≈ K
∫ ∞

0
un−1

n

∏
i=1

exp

−1
2

[(
t√

n(n − 1)
+ αi,n

)
u

]2
du =

= K
∫ ∞

0
un−1 exp

[
−u2

2

(
t2

n − 1
+ 1
)]

du = K
1(

1 + t2

n−1

)n/2 ,

as expected.

If X ∼ Laplace(0, 1), where fX(x) = 1
2 e−|x|, then

fTn−1(t) ≈ K
∫ ∞

0
un−1

n

∏
i=1

exp

[
−
∣∣∣∣∣
(

t√
n(n − 1)

+ αi,n

)
u

∣∣∣∣∣
]

du =

= K
∫ ∞

0
un−1 exp

(
−u

n

∑
i=1

∣∣∣∣∣ t√
n(n − 1)

+ αi,n

∣∣∣∣∣
)

du ,

and therefore,

fTn−1(t) ≈ K

(
n

∑
i=1

∣∣∣∣∣ t√
n(n − 1)

+ αi,n

∣∣∣∣∣
)−n

IR(t) .

In particular, if n = 3,

fT2(t) ≈ K
(∣∣∣∣ t√

6
+

1√
2

∣∣∣∣+ |t|√
6
+

∣∣∣∣ t√
6
− 1√

2

∣∣∣∣)−3

IR(t) . (21)
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Computing the norming constant so that the right-hand side of (21) is transformed
into a probability density function, we obtain

fT2(t) ≈
9
√

6
19

(∣∣∣∣ t√
6
+

1√
2

∣∣∣∣+ |t|√
6
+

∣∣∣∣ t√
6
− 1√

2

∣∣∣∣)−3

IR(t) .

In Figure 3, the approximate probability density function of T2 with a Laplace(0, 1)
parent is represented.

Figure 3. Approximate probability density function of T2 with a Laplace(0, 1) parent.

For the non-Gaussian parent case, to assess how well approximation (20) works, we shall
compare the exact probability density function of T2 with a Uniform(−1, 1) parent, given by
Perlo [12], namely

fT2(t) =


√

3
(

1− 9t2

4−t2

)
2(4−t2)

√
1−t2 +

3
√

3(t2+2)
(4−t2)5/2 arctanh

(√
1−t2

4−t2

)
, |t| ≤ 1

2

9
(

1
|t|+1)+

3|t|
t2−4

)
4(|t|+1)(4−t2)

+ 3
√

3(t2+2)
(t2−4)5/2 arctan

( √
t2−4√

3(t+2)

)
, |t| > 1

2

, (22)

with the approximation using (20).
As we are now dealing with a parent distribution with a limited support, the integration

limits for (20) must be defined according to (6). In this case, the condition

−
√

6 < ut <
√

6 ∧ 0 < u2 < 2 min

{(
ut√

6
+ 1
)2

,
(

1− ut√
6

)2
}

must be satisfied, or equivalently,

−
√

6 < ut <
√

6 ∧ 0 < u < min
{√

2
(

ut√
6
+ 1
)

,
√

2
(

1− ut√
6

)}
.

Hence, in denoting a = min
{√

2
(

ut√
6
+ 1
)

,
√

2
(

1− ut√
6

)}
, it follows that

fT2(t) ≈ K
∫ a

0
u2
(

1
2

)3
du ∝

∫ a

0
u2du =

2
√

6
(
√

3+ |t|)3
IR(t) . (23)

Computing the norming constant K so that the function in the right-hand side of (23)
becomes a probability density function, we obtain

fT2(t) ≈
3

(
√

3+ |t|)3
IR(t) . (24)

In Figure 4, the exact and approximate probability density functions of T2 with a
Uniform(−1, 1) parent, defined in (22) and (24), respectively, are plotted together. As can be
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observed, the approximation is not good in the central region of the distributions, but it is quite
good in the tails of the distributions, which is where it actually matters because inferences are
made using the tails of the distributions.

Observe that Hendriks et al. [11] analyzed why the Uniform parent is the least favorable
one, as far as approximations are concerned, for the probability density function of Tn−1.

(a) (b)

Figure 4. Probability density function of T2 with a Uniform(−1, 1) parent: (a) Exact and approximate
densities. (b) Zoom in of right tails.

4. Externally Studentized Statistics Using Spacings of an Exponential Parent
4.1. External Studentization Using the Maximum Likelihood Scale Estimator

Let X = (X1, . . . , Xn) be a random sample of size n from X ∼ Exponential(λ, δ), λ ∈ R,
δ > 0, i.e., with probability density function

fX(x) =
1
δ

e−
x−λ

δ I(λ,∞)(x) .

The maximum likelihood estimators λ̂ = X1:n ∼ Exponential
(

λ, δ
n

)
and δ̂ = Xn −

X1:n = 1
n ∑n

k=1(Xk:n − X1:n) = 1
n ∑n

k=2(n + 1 − k)(Xk:n − Xk−1:n) ∼ Gamma
(

n − 1, δ
n

)
are

independent due to the independence of the spacings Xk:n −Xk−1:n ∼ Exponential
(

0, δ
n+1−k

)
,

k = 1, . . . , n, with the usual convention X0:n = λ.
Therefore, the externally Studentized statistic

T∗
n−1 =

X1:n − λ

Xn − X1:n
, (25)

where T∗
n−1

d
= Z1:n

Zn−Z1:n
, with (Z1, . . . , Zn)being a random sample from Z = X−λ

δ ∼ Exponential(0, 1),
has probability density function

fT∗
n−1

(t) =
∫ ∞

−∞
fZ1:n(tx) fZn−Z1:n

(x)|x|dx

=
∫ ∞

0
ne−ntx nn−1xn−2e−nx

Γ(n− 1)
x dx

=
nn

Γ(n− 1)

∫ ∞

0
xn−1e−n(t+1)xdx

=
n− 1
(1+ t)n I(0,∞)(t) ,

and hence, T∗
n−1 ∼ Pareto(n− 1, 0).

4.2. External Studentization Using the Sample Range as a Dispersion Estimator

Another externally Studentized statistic that can be used to make inferences on the location
parameter λ is

τn−1 =
X1:n − λ

Xn:n − X1:n
. (26)
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In noticing that τn−1
d
= Z1:n

Zn:n−Z1:n
and considering that Zn:n − Z1:n

d
= Zn−1:n−1, the joint

probability density function of (Z1:n, Zn:n − Z1:n) is

f(Z1:n,Zn:n−Z1:n)
(x, y) = fZ1:n(x) fZn:n−Z1:n(y) = ne−nx(n− 1)

(
1− e−y)n−2e−yIR+×R+(x, y) .

Using the transformation S = Z1:n and τn−1, with |J| = S
τ2

n−1
, the joint probability density

function of (S, τn−1) is defined as

f(S,τn−1)
(s, t) = n(n− 1)e−nse−s/t(1− e−s/t)n−2 s

t2 IR+×R+(s, t) .

Therefore, for t > 0,

fτn−1(t) =
1
t

∫ ∞

0
ns e−ns

[
(n− 1)e−s/t(1− e−s/t)n−2 1

t

]
ds

= −1
t

∫ ∞

0
n(1− ns)e−ns(1− e−s/t)n−1ds

= −1
t

∫ ∞

0
n e−ns(1− e−s/t)n−1ds+

1
t

∫ ∞

0
n2s e−ns(1− e−s/t)n−1ds.

By making the replacement u = 1− e−s/t in the integrals, we obtain

fτn−1(t) = −n
∫ 1

0
(1− u)nt−1un−1du− n2t

∫ 1

0
ln(1− u)(1− u)nt−1un−1du

= −n
[

B(n, nt)+ nt
∂B(n, nt)

∂(nt)

]
.

Since
∂B(n, nt)

∂(nt)
= B(n, nt)[ψ(nt)−ψ(n+ nt)],

where ψ(z) = d
dz ln z = Γ′(z)

Γ(z) is the digamma function, it follows that

fτn−1(t) = nB(n, nt){nt[ψ(n+ nt)−ψ(nt)]− 1} I(0,∞)(t) . (27)

Using the recurrence formula for the digamma function,

ψ(n+ z) =
n

∑
k=1

1
n− k+ z

+ψ(z) , n ∈ N ,

(cf. Abramowitz and Stegun [18]), the probability density function of τn−1, given in (27), can be
further simplified to

fτn−1(t) = nB(n, nt)
n−1

∑
k=1

nt
n− k+ nt

I(0,∞)(t) .

In Table A1, in Appendix A, critical values of τn−1 are displayed. The critical values were
obtained using Mathematica v12. In Figure 5, the probability density function of τn−1 is plotted
for some values of n.

For large values of n, an approximation can be used to obtain critical values of the statistic

τn−1. In recalling that Zn:n − Z1:n
d
= Zn−1:n−1, the limit distribution of the sequence of maxima

(Zn−1:n−1 − ln(n− 1))n≥2 is a standard Gumbel distribution, and therefore,

Zn:n − Z1:n − ln(n− 1) d−−−→
n→∞

V ∼ Gumbel(0, 1) .

Moreover, as lim
n→∞

ln n
ln(n−1) = 1, in using the fact that Zn−1:n−1

ln n
P−→ 1 and n Z1:n

d
= Z, it follows

from Slutsky’s theorem [19] that

n ln n τn−1
d−−−→

n→∞
Z ∼ Exponential(0, 1) .
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Figure 5. Probability density function of τn−1.

4.3. Internal Studentization Using Sums of Spacings

As the minimum X1:n and/or the maximum Xn:n can be outliers, according to Hampel’s [20]
breakdown point concept, the statistic τn−1, defined in (26), can be unreliable. For an overview of
robustness issues, see Rochetti [21], and in what concerns the duality of perspectives for extreme
values/outliers, see Bhattacharya et al. [22]. For these reasons, it is more conservative to use
instead the internally Studentized statistic

τn−1;i,k =
Xn − λ

Xk:n − Xi:n
, (28)

with 1 < i < k < n.
The sample mean Xn is a sufficient and complete estimator of λ, and the distribution of

τn−1;i,k does not depend on the nuisance scale parameter δ. Hence, from Basu’s [23] theorem, we
conclude that Xn and τn−1;i,k are independent.

Noticing also that τn−1;i,k
d
= Zn

Zk:n−Zi:n
, from the equality

Zk:n − Zi:n =
Zn

τn−1;i,k
,

we must have fZk:n−Zi:n = f Zn
τn−1;i,k

. Hence, from Zn ∼ Gamma
(
n, 1

n
)

and Zk:n − Zi:n
d
= Zk−i:n−i,

we have for x > 0,

Γ(n+ 1− i)
Γ(k− i)Γ(n+ 1− k)

e−x(n+1−k)(1− e−x)k−i−1
=
∫ ∞

0
fZn

(xt) fτn−1;i.k(t) t dt ,

i.e.,

Γ(n+ 1− i)
Γ(k− i)Γ(n+ 1− k)

e−x(n+1−k)(1− e−x)k−i−1
=
∫ ∞

0

n(nxt)n−1e−nxt

Γ(n)
fτn−1;i.k(t) t dt .

Thus, denoting L( f ; x) the Laplace transform of function f at x, we obtain

L(tn fτn−1;i,k(t); x) =
Γ(n)Γ(n+ 1− i)

nΓ(k− i)Γ(n+ 1− k)
e−x(n+1−k)/n(1− e−x/n)k−i−1

xn−1 ,

and in denoting L−1(g; t) the inverse Laplace transform of function g at t, it follows that

fτn−1;i,k(t) =
Γ(n)Γ(n+ 1− i)

nΓ(k− i)Γ(n+ 1− k)
t−nL−1

(
e−x(n+1−k)/n(1− e−x/n)k−i−1

xn−1 ; t

)
. (29)
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For example, if n = 2, i = 1 and k = 2,

fτ1;1,2(t) =
1

2t2L
−1

(
e−x/2

x
; t

)
=

1
2t2 I( 1

2 ,∞)(t) ,

i.e., τ1;1,2 ∼ Pareto(1, 1
2).

The most interesting scenario for (29) is when the integers n, i, and k satisfy the condition
n+ 1− k = k− i− 1, which occurs in the following cases:

• n = 3j− 1, i = j− 1 and k = 2j;
• n = 3j, i = j and k = 2j+ 1;
• n = 3j+ 1, i = j+ 1 and k = 2j+ 2.

If this happens, then

fτn−1;i,k(t) =
Γ(n)Γ(2j+ 1)
nΓ(j)Γ(j+ 1)

1
tn L−1

 1
xk−2

(
e−x/n(1− e−x/n)

x

)j

; t

.

Since

L−1
(

1
xk−2 ; t

)
=

tk−3

Γ(k− 2)
and L−1

(
e−x/n(1− e−x/n)

x
; t

)
= I( 1

n , 2
n )
(t) ,

from the fact that the inverse Laplace transform of a product is the convolution of the inverse
Laplace transforms of the factors, we obtain, for example, for n = 3, i = 1, and k = 3,

fτ2;1,3(t) =


0 , t < 1

3
4(t− 1

3 )

3t3 , 1
3 ≤ t < 2

3
4

9t3 , t ≥ 2
3

,

and for n = 4, i = 2, and k = 4,

fτ3;2,4(t) =


0 , t < 1

4
3(4t−1)2

32t4 , 1
4 ≤ t < 1

2
3(8t−3)

32t4 , t ≥ 1
2

.

In Table A2, in Appendix A, critical values of τn−1;i,k are supplied for integers n, i, and k
satisfying n+1− k = k− i−1. The critical values of τn−1;i,k were also obtained with Mathematica
v12. The probability density functions of τ2;1,3 and τ3;2,4 are shown in Figure 6.

Figure 6. Probability density functions of τ2;1,3 and τ3;2,4.
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4.4. Comparing the Locations of Two Exponential Populations with Equal Dispersions

For two exponential populations X ∼ Exponential(λ1, δ1) and Y ∼ Exponential(λ2, δ2),
it may be of interest to make inferences on λ1 − λ2. For this purpose, Theorem 1 can
be helpful.

Theorem 1. Let X1 and X2 be two independent random variables such that X1 ∼ Exponential(λ1, δ1)
and X2 ∼ Exponential(λ2, δ2). Then, X1 − X2 has an asymmetric Laplace distribution with probability
density function

fX1−X2(x) =


1

δ1+δ2
e

x−(λ1−λ2)
δ2 , x ≤ λ1 − λ2

1
δ1+δ2

e−
x−(λ1−λ2)

δ1 , x > λ1 − λ2

.

Proof. Let Y = (X1 − λ1)− (X2 − λ2). Since X1 − λ1 ∼ Exponential(0, δ1) and X2 − λ2 ∼
Exponential(0, δ2), for y ≤ 0,

fY(y) =
∫ ∞

−y
fX1−λ1(y+ x) fX2−λ2(x)dx =

1
δ1δ2

∫ ∞

−y
e−

y+x
δ1 e−

x
δ2 dx =

1
δ1 + δ2

e
y
δ2 ,

and for y > 0,

fY(y) =
∫ ∞

0
fX1−λ1(y+ x) fX2−λ2(x)dx =

1
δ1δ2

∫ ∞

0
e−

y+x
δ1 e−

x
δ2 dx =

1
δ1 + δ2

e−
y
δ1 .

Hence, from X1 − X2
d
= Y +(λ1 − λ2), it follows that

fX1−X2(x) = fY(x− (λ1 − λ2)) =


1

δ1+δ2
e

x−(λ1−λ2)
δ2 , x ≤ λ1 − λ2

1
δ1+δ2

e−
x−(λ1−λ2)

δ1 , x > λ1 − λ2

.

If in Theorem 1 it is considered that δ1 = δ2 = δ, the symmetric Laplace distribution with
location parameter λ1 − λ2 ∈ R, and scale parameter δ > 0 is obtained. For more details on
asymmetric Laplace random variables, see Brilhante and Kotz [24].

When dealing with two populations with equal dispersions, inferences on the difference
between the locations of the two populations can be carried out using an externally Studentized
statistic as described below.

Let X = (X1, . . . , Xn1) and Y = (Y1, . . . , Yn2) be two independent random samples
with parent distributions X ∼ Exponential(λ1, δ) and Y ∼ Exponential(λ2, δ), respectively.
Considering that

X1:n1 − λ1

δ
∼ Exponential

(
0, 1

n1

)
and

Y1:n2 − λ2

δ
∼ Exponential

(
0, 1

n2

)
,

from Theorem 1,

U =
X1:n1 −Y1:n2 − (λ1 − λ2)

δ

has probability density function

fU(x) =


n1n2

N en2x , x ≤ 0

n1n2
N e−n1x , x > 0

,

with N = n1 + n2.
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On the other hand, as

n1
(
Xn1 − X1:n1

)
=

n1

∑
k=2

(n1 + 1− k)
(
Xk:n1 − Xk−1:n1

)
∼ Gamma(n1 − 1, δ) ,

and, similarly, n2
(
Yn2 −Y1:n2

)
∼ Gamma(n2 − 1, δ), we have

V =
δ̂

δ
=

[
n1
(
Xn1 − X1:n1

)
+ n2

(
Yn2 −Y1:n2

)]
/N

δ
∼ Gamma

(
N − 2, 1

N
)

.

The independence of spacings in exponential populations ensures that U and V are indepen-
dent, and therefore, the externally Studentized statistic Wn1−1,n2−1 =

U
V , i.e.,

Wn1−1,n2−1 =
X1:n1 −Y1:n2 − (λ1 − λ2)[

n1(Xn1 − X1:n1)+ n2(Yn2 −Y1:n2)
]
/N

,

can be used to make inferences on λ1 − λ2.
As for the probability density function of Wn1−1,n2−1, for w ≤ 0,

fWn1−1,n2−1(w) =
∫ ∞

−∞
fU(wx) fV(x)|x|dx

=
n1n2NN−3

Γ(N − 2)

∫ ∞

0
xN−2e−(N−n2w)xdx

=
n1n2(N − 2)

N2
(
1− n2

N w
)N−1 ,

and for w > 0,

fWn1−1,n2−1(w) =
∫ ∞

−∞
fU(wx) fV(x)|x|dx

=
n1n2NN−3

Γ(N − 2)

∫ ∞

0
xN−2e−(N+n1w)xdx

=
n1n2(N − 2)

N2
(
1+ n1

N w
)N−1 .

Therefore,

fWn1−1,n2−1(w) =


n1n2(N−2)

N2(1− n2
N w)

N−1 , w ≤ 0

n1n2(N−2)

N2(1+ n1
N w)

N−1 , w > 0
. (30)

From (30), P(W ≤ 0) = n1
N and P(W > 0) = n2

N = 1− n1
N . Notice that n1

N is the proportion
of observations in the combined sample that comes from the population X.

The critical value Wn1−1,n2−1;α, 0 < α < 1, of Wn1−1,n2−1 is

Wn1−1,n2−1;α =


N
n2

[
1−

( n1
Nα

) 1
N−2

]
, 0 < α ≤ n1

N

N
n1

[(
n2

N(1−α)

) 1
N−2 − 1

]
, n1

N < α < 1
.

If a balanced design is considered instead, i.e., n1 = n2 = n in (30), denoting, for simplicity,
Wn−1,n−1 = Wn−1, then

fWn−1(w) =
n− 1

2
(

1+ |w|
2

)2n−1 IR(w). (31)
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The (1− α)-th critical value of Wn−1 is Wn−1;1−α = 2
(

1
(2α)1/2(n−1) − 1

)
, α < 0.5. (The

distribution of Wn−1 is symmetric around zero.)
In Figure 7, the probability density function of Wn1,n2 is plotted for some values of n1 and n2.
Observe that if the two populations have unequal dispersions, i.e., δ1 ≠ δ2, the distribution

of Wn1−1,n2−1 depends on the nuisance scale parameters δ1 and δ2, and so, it cannot be used to
make inferences on λ1 − λ2, unless a Satterthwaite [15] approximation is considered (for more
details, see Section 4.6).

4.5. Analysis of Spacings (ANOSp) for Testing Homogeneity of k > 2 Locations of Exponential Populations
with Equal Dispersions

Let X1 =
(
X11, . . . , X1n1

)
, . . . , Xk =

(
Xk1, . . . , Xknk

)
be k > 2 independent random samples,

with Xij ∼ Exponential(λi, δi), i = 1, . . . , k, j = 1, . . . , ni. For what follows, we shall use the no-

tations Xi for the sample mean and X(i)
j:ni

for the j-th ascending order statistic, j = 1, . . . , ni, of

the i-th random sample, i = 1, . . . , k. We shall also use the notations X = 1
N ∑k

i=1 ∑ni
j=1 Xij

and X1:N = min 1≤i≤k
1≤j≤ni

Xij = min
1≤i≤k

X(i)
1:ni

, with N = n1 + · · ·+ nk denoting the size of the

combined samples.

Figure 7. Probability density function of Wn1−1,n2−1.

The maximum likelihood estimators of the location and scale parameters of the individual
populations are

λ̂i = X(i)
1:ni

∼ Exponential
(
λi,

δi
ni

)
and δ̂i = Xi − X(i)

1:ni
∼ Gamma

(
ni − 1, δi

ni

)
,

i = 1, . . . , k. Our interest lies in testing the homogeneity of locations of the populations, i.e., testing

H0 : λ1 = · · · = λk (= λ) vs. HA : λi ≠ λj , for some i, j ∈ {1, , . . . , k} , i ≠ j .

For the time being, we shall assume that the populations have equal dispersions, i.e.,
δ1 = . . . = δk = δ.

In this setting, a parallelism with a one-way ANOVA scheme can be made, since the Total
Sum of Spacings (TSSp) can be split into a Between Sum of Spacings (BSSp) and a Within Sum
of Spacings (WSSp) as follows:
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TSSp =
k

∑
i=1

ni

∑
j=1

(
Xij − X1:N

)

=
k

∑
i=1

ni

∑
j=1

[(
Xij − X(i)

1:ni

)
+
(

X(i)
1:ni

− X1:N

)]

=
k

∑
i=1

ni

(
X(i)

1:ni
− X1:N

)
+

k

∑
i=1

ni

∑
j=1

(
Xij − X(i)

1:ni

)
= BSSp+WSSp .

In noticing that

WSSp =
k

∑
i=1

ni

∑
j=2

(
X(i)

j:ni
− X(i)

1:ni

)
=

k

∑
i=1

ni

∑
j=2

(ni + 1− j)
(

X(i)
j:ni

− X(i)
j−1:ni

)
∼ Gamma(N − k, δ) ,

the statistic WSSp
N−k is an unbiased estimator of δ, regardless of the validity of H0.

On the other hand, under H0, the random variables Yi = niX
(i)
1:ni

∼ Exponential(λ, δ),
i = 1, . . . , k, are independent. Thus, from

BSSp =
k

∑
i=1

ni

(
X(i)

1:n − X1:N

)
=

k

∑
i=1

niX
(i)
1:ni

− NX1:N

and NX1:N
d
= kY1:k, with Y1:k = min{Y1, . . . , Yk}, it follows that

BSSp d
=

k

∑
i=1

Yi − kY1:k = k
(
Yk −Y1:k

)
∼ Gamma(k − 1, δ) .

Thus, under H0, the statistic BSSp
k−1 is an unbiased estimator of δ.

From the above, and under H0, the F-statistic

F =
MBSSp
MWSSp

=

BSSp
k−1

WSSp
N−k

=

BSSp/(2δ)
2(k−1)

WSSp/(2δ)
2(N−k)

∼ F2(k−1),2(N−k) (32)

can detect gross departures from the null hypothesis. Notice that the independence of spacings
in exponential populations guarantees the independence of BSSp and WSSp.

An ANOSp table, similar to a one-way ANOVA table, can be shown in this context (see
Table 1).

Table 1. ANOSp table.

Sum of Spacings df Mean of Sum
of Spacings F-Statistic

BSSp =
k
∑

i=1
ni

(
X(i)

1:ni
− X1:N

)
2(k − 1) MBSSp =

BSSp
2(k−1) F =

MBSSp
MWSSp =

BSSp
k−1

WSSp
N−k

WSSp =
k
∑

i=1

ni

∑
j=1

(
Xij − X(i)

1:ni

)
2(N − k) MWSSp =

WSSp
2(N−k)

4.6. Analysis of Spacings (ANOSp) for Testing Homogeneity of k > 2 Locations of Exponential
Populations with Unequal Dispersions

If the exponential populations have unequal dispersions, the statistic defined in (32) is
useless, because its distribution depends now on the nuisance scale parameters of the individ-
ual populations. However, a Satterthwaite approximation can be considered to eliminate its
distribution’s dependence on those nuisance parameters.
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Satterthwaite [15] showed that if Y1, . . . , Yn are independent random variables such
that Yi ∼ χ2

νi
, i = 1, . . . , n, the linear combination ∑n

i=1 aiYi, with ai ∈ R, i = 1, . . . , n, can be
approximated using Y

ν , where Y ∼ χ2
v, i.e., ∑n

i=1 aiYi ≈ Y
ν , where the degree of freedom ν is

estimated using the estimator

ν̃ =
(∑n

i=1 aiYi)
2

∑n
i=1

a2
i

νi
Y2

i

. (33)

Since under H0, the distribution of MBSSp does not depend on λ, we shall assume,
without loss of generality, that λ = 0. We shall also assume that from X1:N = min

1≤i≤k
X(i)

1:ni
, in

particular, X1:N = X(1)
1:n1

, and therefore,

MBSSp =
1

k − 1

k

∑
i=1

ni

(
X(i)

1:ni
− X1:N

)
=

1
k − 1

k

∑
i=1

ni

(
X(i)

1:ni
− X(1)

1:n1

)
=

n1 − N
k − 1

X(1)
1:n1

+
k

∑
i=2

ni
k − 1

X(i)
1:ni

=
n1 − N
k − 1

λ̂1 +
k

∑
i=2

ni
k − 1

λ̂i ,

which can be expressed as

MBSSp =
δ1(n1 − N)

2n1(k − 1)
Y1 +

k

∑
i=2

δi
2(k − 1)

Yi ≈
U
ν1

,

with Yi =
2ni
δi

λ̂i ∼ χ2
2, i = 1, . . . , k, and U ∼ χ2

ν1
. In using a1 = δ1(n1−N)

2n1(k−1) and ai =
δi

2(k−1) ,
i = 2, . . . , k, in Formula (33), the parameter ν1 is estimated by

ν̃1 =
2
(

∑k
i=1 ni λ̂i − N λ̂1

)
(n1 − N)2 λ̂2

1 + ∑k
i=2 n2

i λ̂2
i

. (34)

On the other hand, noticing that

MWSSp =
1

N − k

k

∑
i=1

ni

∑
j=1

(
Xij − X(i)

1:ni

)

=
1

N − k

k

∑
i=1

ni

(
Xi − X(i)

1:ni

)
=

k

∑
i=1

ni
N − k

δ̂i ,

with δ̂i ∼ Gamma(ni − 1, δi), i = 1, . . . , k, and then considering Yi = 2
δi

δ̂i ∼ χ2
2(ni−1),

i = 1, . . . , k, we have

MWSSp =
k

∑
i=1

niδi
2(N − K)

Yi ≈
V
ν2

,

with V ∼ χ2
ν2

. In using ai = niδi
2(N−K) , i = 1, . . . , n, in Formula (33), the parameter ν2 is

estimated by

ν̃2 =
2
(

∑k
i=1 ni δ̂i

)2

∑k
i=1

n2
i

ni−1 δ̂2
i

. (35)
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Consequently, under H0, U and V are independent, and therefore,

F =
MBSSp
MWSSp

≈ U/ν1

V/ν2
∼ Fν1,ν2 ,

where the degrees of freedom ν1 and ν2 of the F-statistic are estimated using (34)
and (35), respectively.

5. Conclusions

The exact distribution of externally Studentized statistics in Gaussian samples and in
exponential samples are readily obtained. The members of the location-scale exponential
family with a pair of sufficient statistics for the parameters are as follows:

1. X ∼ Gaussian(µ, σ), when the support is the real line;
2. Y ∼ Exponential(λ, δ), when the support is the half-line (λ, ∞) (or the reverted

exponential when the support is (−∞, λ), in which case the pair of sufficient statistics
is
(
Yn:n, ∑n

k=1 Yk
)
, and the maximum likelihood estimators of the parameters are

λ̂ = Yn:n and δ̂ = Yn:n − Yn);
3. W ∼ Uniform(λ, λ + δ) when the support is a segment, in which case the pair

of sufficient statistics is(W1:n, Wn:n) and the maximum likelihood estimators of the
parameters are λ̂ = W1:n and δ̂ = Wn:n − W1:n.

While for Gaussian samples and for exponential samples, the probability density
functions of externally Studentized statistics are easily obtained, in the case of uniform
samples, this is not possible. However, as uniform random variables are symmetric by
default, the approximation under the smoothness hypothesis 1 holds, although it is known
from Hendriks [11] that this is the worst framework to consider. Alternatively, as uniform
samples can be logarithmically transformed into exponential data, inferences on the location
parameter(s) can be dealt with using the results of Section 4.

On the other hand, it is, in general, impossible to obtain exact results for internally Stu-
dentized statistics. As Hotelling [25], Efron [10], and Lehman [26] have shown, symmetry
for the parent distribution is a useful property for Studentizations. The investigation of
the approximation resulting from the smoothness hypothesis (17) for symmetric parents,
inspired by the Gaussian case, shows that even in the worst Uniform(−1, 1) case, which
was identified by Hendriks et al. [11] as such, the approximation in the tails is quite good,
and therefore, it is usable for inferences on the location parameter.

With regard to asymmetric exponential parent distributions, from the independence of
spacings, exact results either for one sample inferences on the location parameter or for the
comparison of k ≥ 2 location parameters assuming equal dispersions are straightforward.
An approximate solution for the unequal dispersions case, inspired by Satterthwaite’s [15]
treatment for comparing means in heteroscedastic Gaussian parents, has been presented.
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Appendix A. Tables with Critical Values

Table A1. Critical values of τn−1 = X1:n−λ
Xn:n−X1:n

.

n 0.001 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995 0.999

2 0.000501 0.002513 0.005051 0.012821 0.026316 0.055556 4.5 9.5 19.5 49.5 99.5 499.5
3 0.000222 0.001115 0.002240 0.005666 0.011562 0.024110 1 1.614763 2.486079 4.216991 6.168750 14.408050
4 0.000136 0.000684 0.001373 0.003470 0.007068 0.014677 0.5 0.75 1.067030 1.618460 2.164490 4.047390
5 0.000096 0.000482 0.000966 0.002441 0.004966 0.010291 0.319126 0.462948 0.635782 0.917745 1.179750 1.999380

6 0.000073 0.000366 0.000735 0.001855 0.003771 0.007805 0.228990 0.325932 0.438821 0.616237 0.775077 1.244660
7 0.000058 0.000292 0.000587 0.001481 0.003010 0.006224 0.176015 0.247467 0.328973 0.453985 0.563222 0.874548
8 0.000048 0.000242 0.000485 0.001224 0.002487 0.005140 0.141563 0.197318 0.259996 0.354495 0.435671 0.661185
9 0.000041 0.000205 0.000411 0.001038 0.002108 0.004354 0.117566 0.162821 0.213143 0.288052 0.351592 0.524816
10 0.000035 0.000177 0.000356 0.000897 0.001822 0.003762 0.1 0.137805 0.179488 0.240930 0.292540 0.431222

11 0.000031 0.000156 0.000312 0.000788 0.001599 0.003301 0.086647 0.118930 0.154283 0.205986 0.249079 0.363559
12 0.000028 0.000138 0.000278 0.000700 0.001422 0.002934 0.076193 0.104239 0.134782 0.179165 0.215923 0.312669
13 0.000025 0.000124 0.000249 0.000629 0.001277 0.002634 0.067811 0.092518 0.119300 0.158009 0.189898 0.273188
14 0.000022 0.000112 0.002292 0.000570 0.001157 0.002386 0.060958 0.082974 0.106745 0.140945 0.168995 0.241782
15 0.000021 0.000103 0.000206 0.000520 0.001056 0.002177 0.055261 0.075069 0.096381 0.126926 0.151881 0.216280

16 0.000019 0.000094 0.000189 0.000478 0.000970 0.001999 0.050459 0.068426 0.087699 0.115228 0.137644 0.195213
17 0.000017 0.000087 0.000175 0.000441 0.000896 0.001847 0.046363 0.062774 0.080332 0.105336 0.125636 0.177552
18 0.000016 0.000081 0.000162 0.0004010 0.000831 0.001714 0.042832 0.057913 0.074011 0.096874 0.115388 0.162561
19 0.000015 0.000076 0.000151 0.000382 0.000775 0.001597 0.039761 0.053694 0.068535 0.089564 0.106553 0.149697
20 0.000014 0.000071 0.000142 0.000357 0.000725 0.001495 0.037067 0.05000 0.063751 0.083191 0.098865 0.138550

21 0.000013 0.000066 0.000133 0.000336 0.000681 0.001404 0.034687 0.046743 0.059538 0.077593 0.092122 0.128812
22 0.000012 0.000063 0.000125 0.000316 0.000642 0.001322 0.032571 0.043851 0.055804 0.072641 0.086166 0.120238
23 0.000012 0.000059 0.000118 0.000299 0.000606 0.001249 0.030679 0.041268 0.052474 0.068232 0.080871 0.112640
24 0.000011 0.000056 0.000112 0.000283 0.000574 0.001183 0.028978 0.038950 0.049488 0.064285 0.076137 0.105864
25 0.000011 0.000053 0.000107 0.000269 0.000545 0.001123 0.027441 0.036857 0.046796 0.060733 0.071880 0.099790

30 0.000008 0.000042 0.000085 0.000213 0.000433 0.000891 0.021568 0.028883 0.036567 0.047281 0.055805 0.076986
50 0.000004 0.000022 0.000045 0.000113 0.000230 0.000472 0.011186 0.014887 0.018732 0.024031 0.028200 0.038399

Table A2. Critical values of τn−1;i,k =
Xn−λ

Xk:n−Xi:n
.

n i k 0.001 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995 0.999

3 1 3 0.340957 0.350877 0.358697 0.375292 0.395936 0.429336 1.49071 2.10819 2.98142 4.71405 6.66667 14.9071
4 2 4 0.271553 0.289258 0.301567 0.325555 0.353308 0.395822 1.79672 2.60383 3.74135 5.99467 8.53244 19.2387
5 1 4 0.451275 0.481872 0.501286 0.536241 0.573179 0.624337 1.79163 2.31281 2.96466 4.08859 5.19617 9.00251

6 2 5 0.404304 0.439866 0.461814 0.500623 0.541023 0.597081 1.93635 2.52828 3.26727 4.54005 5.79359 10.0999
7 3 6 0.373282 0.412145 0.435759 0.477117 0.520069 0.580165 2.03545 2.67576 3.47458 4.84979 6.20392 10.855
8 2 6 0.495362 0.540184 0.566193 0.610203 0.654555 0.715025 1.93923 2.40243 2.94501 3.81446 4.6136 7.09137
9 3 7 0.469472 0.516524 0.543743 0.589912 0.636674 0.700813 2.00248 2.49299 3.0672 3.98691 4.83202 7.4518
10 4 8 0.449604 0.498404 0.526618 0.574574 0.623311 0.690388 2.05194 2.56382 3.1628 4.12196 5.00318 7.73456

11 3 8 0.540956 0.591963 0.620843 0.669181 0.717526 0.782997 1.96377 2.36465 2.81547 3.50589 4.11369 5.88409
12 4 9 0.523183 0.575748 0.605564 0.655587 0.70575 0.773818 1.99983 2.41515 2.88203 3.59686 4.22604 6.05843
13 5 10 0.508582 0.562481 0.593100 0.644558 0.696248 0.766474 2.02986 2.4572 2.93749 3.67270 4.31974 6.20397
14 4 10 0.580715 0.63532 0.665943 0.716882 0.767472 0.835382 1.95716 2.30928 2.6942 3.26553 3.75377 5.11685
15 5 11 0.567344 0.623225 0.654616 0.706903 0.758895 0.828738 1.98074 2.34184 2.73646 3.32208 3.82248 5.21933

16 6 12 0.555921 0.612927 0.644989 0.698448 0.751649 0.823149 2.00113 2.36998 2.7730 3.37101 3.88193 5.30806
17 5 12 0.61511 0.672086 0.703832 0.756351 0.808153 0.877114 1.94147 2.25603 2.59269 3.08098 3.48921 4.59421
18 6 13 0.604516 0.662577 0.694965 0.748586 0.801505 0.871973 1.95825 2.27896 2.62214 3.11981 3.53583 4.66184
19 7 14 0.595226 0.654259 0.687218 0.741813 0.795718 0.86751 1.97312 2.29927 2.64823 3.15422 3.57717 4.72183
20 6 14 0.645159 0.703758 0.736231 0.789683 0.842074 0.911308 1.92354 2.2086 2.50871 2.93625 3.28769 4.21667

21 7 15 0.636466 0.696005 0.729022 0.783394 0.836703 0.907156 1.93617 2.22574 2.53055 2.96473 3.32158 4.26483
22 8 16 0.628699 0.689089 0.722597 0.777795 0.831926 0.903471 1.94757 2.24118 2.555023 2.9904 3.35216 4.3083
23 7 16 0.671706 0.731426 0.764359 0.81832 0.870914 0.939971 1.90572 2.16709 2.43863 2.81995 3.12915 3.93126
24 8 17 0.664389 0.724931 0.758334 0.813078 0.866443 0.936514 1.91563 2.18046 2.45556 2.84183 3.15503 3.96745
25 9 18 0.657759 0.719053 0.752883 0.80834 0.862405 0.933397 1.92469 2.19266 2.47102 2.86182 3.17867 4.00052

30 10 21 0.711262 0.772902 0.806614 0.861427 0.914346 0.98310 1.87984 2.10779 2.33984 2.65864 2.91187 3.55044
50 16 34 — 0.885094 0.917836 0.970073 1.01943 1.082080 1.79297 1.95205 2.10773 2.31277 2.46933 2.84359



Symmetry 2024, 16, 1297 23 of 23

References
1. Student. The probable error of a mean. Biometrika 1908, 6, 1–25. [CrossRef]
2. Geary, R.C. Distribution of Student’s ratio for nonnormal samples. Suppl. J. R. Stat. Soc. 1936, 3, 178–184. [CrossRef]
3. Darmois, G. Analyse générale des liaisons stochastiques: Étude particuière de l’analyse factorielle lineéaire. Rev. L’Institut Int.

Stat./Rev. Int. Stat. Inst. 1953, 21, 2–8. [CrossRef]
4. Skitovich, V.P. Linear forms of independent random variables and the normal distribution law. Izv. Akad. Nauk SSSR Ser. Mat.

1954, 18, 185–200. (English Translation Sel. Transl. Math. Stat. Probab. 1962, 2, 211–218).
5. Koopman, B.O. On distributions admitting a sufficient statistic. Trans. Am. Math. Soc. 1936, 39, 399–409. [CrossRef]
6. Darmois, G. Sur les lois de probabilités à estimation exhaustive. Comptes Rendus L’Académie Des Sci. Paris 1935, 200, 1265–1266.
7. Pitman, E. Sufficient statistics and intrinsic accuracy. Math. Proc. Camb. Philos. Soc. 1936, 32, 567–579. [CrossRef]
8. Logan, B.F.; Mallows, C.L.; Rice, S.O.; Shepp, L.A. Limit distributions of self-normalized sums. Ann. Probab. 1973, 1, 788–809.

[CrossRef]
9. Peña, V.H.D.L.; Lai, T.L.; Shao, Q.M. Self-Normalized Processes. Limit Theory and Statistical Applications; Springer: Berlin/Heidelberg,

Germany, 2009.
10. Efron, B. Student’s t-test under symmetry conditions. J. Am. Stat. Assoc. 1969, 64, 1278–1302. [CrossRef]
11. Hendriks, H.W.M.; Ijzerman-Boon, P.C.; Klaassen, C.A.J. Student’s t-statistic under unimodal densities. Austrian J. Stat. 2006,

35, 131–141. [CrossRef]
12. Perlo, V. On the distribution of Student’s ratio for samples of three drawn from the rectangular distribution. Biometrika 1933,

25, 203–204. [CrossRef]
13. Pexider, J.V. Notiz über Funkcionaltheoreme. Monatsh. Math. Phys. 1903, 14, 293–301. [CrossRef]
14. David, H.A. Order Statistics; Wiley: New York, NY, USA, 1981.
15. Satterthwaite, F.E. An approximate distribution of estimates of variance components. Biom. Bull. 1946, 2, 110–114. [CrossRef]
16. van Zwet, W. Convex Transformations of Random Variables, 7th ed.; Mathematical Centre: Amsterdam, The Netherlands, 1964.
17. van Zwet, W. Convex transformations: A new approach to skewness and kurtosis. Statist. Neerl. 1964, 18, 433–441. [CrossRef]
18. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 8th ed.; Dover:

New York, NY, USA, 1972.
19. Slutsky, E. Über stochastische Asymptoten und Grenzwerte. Metron 1964, 5, 3–89. [CrossRef]
20. Hampel, F.R. Contributions to the Theory of Robust Estimation. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1986.
21. Ronchetti, E. The main contributions of robust statistics to statistical science and a new challenge. Metron 2021, 79, 127–135.

[CrossRef]
22. Bhattacharya, S.; Kamper, F.; Beirlant, J. Outlier detection based on extreme value theory and applications. Scand. J. Stat. 2024,

50, 1466–1502. [CrossRef]
23. Basu, D. On statistics independent of a complete sufficient statistic. Sankhyā Indian J. Stat. 1955, 15, 377–380. [CrossRef]
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