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1. Introduction

By convention, let N and Q be the set of all positive integers and the set of all rational
numbers, respectively. Assume that V and W are real vector spaces, and Y is a real normed
space. A mapping A : V → W is said to be additive if it satisfies A(x + y) = A(x) + A(y)
for all x, y ∈ V. If A is an additive mapping, we can easily show that A(rx) = rA(x) for all
x ∈ V and all r ∈ Q.

A mapping An : Vn → W is called n-additive if it is additive in each of its variables. A
mapping An : Vn → W is said to be symmetric if An(x1, x2, . . . , xn) = An(y1, y2, . . . , yn),
whenever (y1, y2, . . . , yn) is a permutation of (x1, x2, . . . , xn). For every n-additive symmet-
ric mapping An : Vn → W, we set An(x) = An(x, x, . . . , x) for all x ∈ V. Then, we obtain
An(rx) = rn An(x) whenever x ∈ V and r ∈ Q. Such a mapping An(x) where An ̸≡ 0 is
called a monomial mapping of degree n, or an n-monomial mapping. Any mapping p : V → W
is said to be a generalized polynomial mapping of degree n, provided that there are a constant
mapping A0(x) = A0 ∈ W and i-monomial mappings Ai : Vi → W, i ∈ {1, 2, . . . , n}, such

that p(x) =
n
∑

i=0
Ai(x) for all x ∈ V, where An ̸≡ 0. For details on the terminologies and

definitions used above, one may refer to [1].
The purpose of this paper is to prove a theorem that solves the uniqueness problem

that arises when studying the (generalized) stability of some functional equations, whose
solutions are monomial mappings or generalized polynomial mappings of degree n.

The concept of stability of a functional equation occurs when we replace a functional
equation with an inequality that acts as a perturbation of the equation. In 1940 (refer to [2]),
the stability problem of the functional equation was raised by Ulam. This problem has
attracted the attention of many researchers. In 1941 (refer to [3]), the affirmative answer to
this question was given by Hyers. In 1950 (refer to [4]), Aoki generalized Hyers’ theorem
for additive mappings. Also, in [5], Hyers’ result was generalized by Th. M. Rassias
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for linear mappings by an unbounded Cauchy difference. Moreover, in 1994, a further
generalization of Th. M. Rassias’ theorem was obtained by Gǎvruţa (see [6]). After then,
the stability problem of various functional equations has been extensively investigated by
many mathematicians. For works of the stability problem of a functional equation whose
solution is a monomial mapping, one can refer to [7–12]. For recent works of the stability
problem of functional equations whose solutions are generalized polynomial mappings of
degree 4 or 5 or 6 or 7 or 8 or 9 or 10, one can refer to [13–23].

Our results in this paper can be applicable to generalized stability problems of func-
tional equations whose solutions are monomial or generalized polynomial mappings of
degree n. Our main theorem (Theorem 5 in Section 3) states the following:

For any fixed n ∈ N, let a, α1, α2, . . . , αn be nonzero real constants such that a > 1
and α1 < α2 < · · · < αn. For a given mapping f : V → Y, if there exist mappings
F1, F2, . . . , Fn : V → Y and a function ϕ : V \ {0} → [0, ∞) that satisfy∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤
∞

∑
i=0

1
aα1i ϕ

(
aix
)
< ∞ or∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤
∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
+

∞

∑
i=0

aαℓiϕ

(
1
ai x
)
< ∞ or∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤
∞

∑
i=0

aαniϕ

(
1
ai x
)
< ∞

for some integer 1 ≤ ℓ < n, where every Fk has the property

Fk(ax) = aαk Fk(x) (for all x ∈ V),

then the mappings F1, F2, . . . , Fn are uniquely determined.

The above main theorem of this paper is considered to be a further extension and
generalization of existing uniqueness theorems. For previous uniqueness theorems related
to the stability of functional equations, one can refer to [24,25].

2. Preliminaries

Throughout the paper, unless otherwise stated, we assume that V is a real vector space,
Y is a real Banach space, and f : V → Y is a given arbitrary mapping.

In the following theorem, let Φ be a function that satisfies similar conditions with Gǎvruţa
condition (refer to [6]). Then, we prove that, for any given mapping f , if there is a mapping F
(close to f ) with some additional properties, then the mapping F is uniquely determined.

Theorem 1. For any fixed integer n > 0, let a, α1, α2, . . . , αn be nonzero real constants, such that
a > 1 and α1 < α2 < · · · < αn, and let Φ : V \ {0} → [0, ∞) be a function satisfying one of the
following conditions:

lim
i→∞

1
aα1i Φ(aix) = 0 (for all x ∈ V \ {0}),

lim
i→∞

aα1iΦ
(

1
ai x
)
= lim

i→∞

1
aα2i Φ(aix) = 0 (for all x ∈ V \ {0}),

...
...

lim
i→∞

aαn−1iΦ
(

1
ai x
)
= lim

i→∞

1
aαni Φ(aix) = 0 (for all x ∈ V \ {0}),

lim
i→∞

aαniΦ
(

1
ai x
)
= 0 (for all x ∈ V \ {0}).

(1)
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For a given mapping f : V → Y, if there exist mappings F1, F2, . . . , Fn : V → Y such that∥∥∥∥∥ f (x)−
n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤ Φ(x) (2)

for all x ∈ V \ {0}, where every Fk satisfies

Fk(ax) = aαk Fk(x) (for all x ∈ V), (3)

then the mappings F1, F2, . . . , Fn are uniquely determined.

Proof. We will prove this theorem by applying mathematical induction. First, we will
prove our claim for n = 1. In this case, only the first and last conditions of (1) are valid. Let
Φ : V \ {0} → [0, ∞) be a function that satisfies one of the following conditions:

lim
i→∞

1
aα1i Φ

(
aix
)
= 0 (for all x ∈ V \ {0}),

lim
i→∞

aα1iΦ
(

1
ai x
)
= 0 (for all x ∈ V \ {0}),

(4)

and let f : V → Y be an arbitrarily given mapping. Assume that F1, F′
1 are mappings such

that ∥ f (x) − F1(x)∥ ≤ Φ(x), ∥ f (x) − F′
1(x)∥ ≤ Φ(x), F1(ax) = aα1 F1(x), and F′

1(ax) =
aα1 F′

1(x) for all x ∈ V.
If Φ satisfies the first condition in (4), then we have

∥∥F1(x)− F′
1(x)

∥∥ = lim
i→∞

∥∥∥∥ 1
aα1i F1

(
aix
)
− 1

aα1i F′
1
(
aix
)∥∥∥∥

≤ lim
i→∞

∥∥∥∥ 1
aα1i F1

(
aix
)
− 1

aα1i f
(
aix
)∥∥∥∥

+ lim
i→∞

∥∥∥∥ 1
aα1i f

(
aix
)
− 1

aα1i F′
1
(
aix
)∥∥∥∥

≤ 2 lim
i→∞

1
aα1i Φ

(
aix
)

= 0

for all x ∈ V \ {0}.
We now assume that Φ satisfies the second condition in (4). Then, we obtain

∥∥F1(x)− F′
1(x)

∥∥ = lim
i→∞

∥∥∥∥aα1iF1

(
1
ai x
)
− aα1iF′

1

(
1
ai x
)∥∥∥∥

≤ lim
i→∞

∥∥∥∥aα1iF1

(
1
ai x
)
− aα1i f

(
1
ai x
)∥∥∥∥

+ lim
i→∞

∥∥∥∥aα1i f
(

1
ai x
)
− aα1iF′

1

(
1
ai x
)∥∥∥∥

≤ 2 lim
i→∞

aα1iΦ
(

1
ai x
)

= 0

for all x ∈ V \ {0}. Since F1(0) = F′
1(0) = 0, it holds that F1(x) = F′

1(x) for all x ∈ V (for
both cases).

Assume that our assertion holds for n = m − 1, where m > 1 is some integer. Let
Φ : V \ {0} → [0, ∞) be a function satisfying one of conditions in (1) for n = m, and let
f : V → Y be an arbitrary mapping. Assume that f , F1, F2, . . . , Fm : V → Y are mappings
satisfying (2) and (3) for n = m.



Symmetry 2024, 16, 1298 4 of 15

Let g, G1, G2, . . . , Gm : V → Y be the mappings defined by g(x) := aαm f (x)− f (ax),
G1(x) := (aαm − aα1)F1(x), . . ., Gm−1(x) := (aαm − aαm−1)Fm−1(x), and let Ψ : V \ {0} →
[0, ∞) be the function defined by Ψ(x) := aαm Φ(x) + Φ(ax). Then, Ψ satisfies one of the
conditions in (1) for n = m. It is easy to show that G1, G2, . . . , Gm−1 satisfy

Gk(ax) = aαk Gk(x)

for all x ∈ V and k ∈ {1, 2, . . . , m − 1}, and∥∥∥∥∥g(x)−
m−1

∑
k=1

Gk(x)

∥∥∥∥∥ =

∥∥∥∥∥aαm f (x)− f (ax)−
(

aαm
m−1

∑
k=1

Fk(x)−
m−1

∑
k=1

Fk(ax)

)∥∥∥∥∥
=

∥∥∥∥∥aαm

(
f (x)−

m

∑
k=1

Fk(x)

)
−
(

f (ax)−
m

∑
k=1

Fk(ax)

)∥∥∥∥∥
≤ aαm

∥∥∥∥∥ f (x)−
m

∑
k=1

Fk(x)

∥∥∥∥∥+
∥∥∥∥∥ f (ax)−

m

∑
k=1

Fk(ax)

∥∥∥∥∥
≤ aαm Φ(x) + Φ(ax)

= Ψ(x)

for all x ∈ V \ {0}.
Since Ψ satisfies one of conditions in (1) for n = m and g, G1, . . . , Gm−1, Ψ satisfy (2)

and (3) for n = m − 1; by the induction assumption, G1, . . . , Gm−1 are uniquely determined.
This implies that if Φ satisfies one of conditions in (1) for n = m and f , and F1, F2, . . . , Fm,
Φ satisfy (2) and (3) for n = m, then F1, F2, . . . , Fm−1 are uniquely determined, because
Fk(x) = 1

aαm−aαk Gk(x) for each k ∈ {1, 2, . . . , m − 1}. In other words, if Φ satisfies one
of conditions in (1) for n = m and f , F1, F2, . . . , Fm, Φ satisfies (2) and (3) for n = m and
simultaneously, if f , F′

1, F′
2, . . . , F′

k, Φ satisfy (2) and (3) for n = m, then Fk = F′
k for every

k ∈ {1, 2, . . . , m − 1}. Moreover, we have

∥∥Fm(x)− F′
m(x)

∥∥ =

∥∥∥∥∥ f (x)−
m

∑
k=1

Fk(x)−
(

f (x)−
m

∑
k=1

F′
k(x)

)∥∥∥∥∥ ≤ 2Φ(x) (5)

for all x ∈ V \ {0}.
Now, we use (3) and (5) to prove that Fm = F′

m. If Φ : V \ {0} → [0, ∞) satisfies one of
the conditions other than the last one in (1) for n = m, namely the jth condition, then

∥∥Fm(x)− F′
m(x)

∥∥ = lim
i→∞

∥∥∥∥ 1
aαmi

(
Fm
(
aix
)
− F′

m
(
aix
))∥∥∥∥

≤ 2 lim
i→∞

1
aαmi Φ

(
aix
)

≤ 2 lim
i→∞

1

aαji
Φ
(
aix
)

= 0

for all x ∈ V \ {0} and for some j ∈ {1, 2, . . . , m}, since 1
aαmi ≤ 1

aαj i .

We now assume that Φ satisfies the last condition in (1) for n = m. It then follows
from (5) that
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∥∥Fm(x)− F′
m(x)

∥∥ = lim
i→∞

aαmi
∥∥∥∥Fm

(
1
ai x
)
− F′

m

(
1
ai x
)∥∥∥∥

≤ 2 lim
i→∞

aαmiΦ
(

1
ai x
)

= 0

for all x ∈ V \ {0}.
Finally, since Fm(0) = F′

m(0) = 0, it holds that Fm(x) = F′
m(x) for all x ∈ V. With the

inductive conclusion, we complete the proof of our assertion.

In the following two corollaries, we assume that V is a real vector space and Y is a real
normed space.

Corollary 1. Let a, α1, α2, . . . , αn be nonzero real constants, such that a > 1 and α1 < α2 <
· · · < αn, and let Φ : V \ {0} → [0, ∞) be a function that satisfies one of the conditions in (1).
For a given mapping f : V → Y, if there are mappings F, F1, F2, . . . , Fn : V → Y such that

∥ f (x)− F(x)∥ ≤ Φ(x) (for all x ∈ V \ {0}), (6)

where F(x) =
n
∑

k=1
Fk(x) and Fk(ax) = aαk Fk(x) for all x ∈ V, then the mappings F, F1, F2, . . . , Fn

are uniquely determined.

Corollary 2. Let a, p, α1, α2, . . . , αn, and p be nonzero real constants, such that a > 1, p ̸∈
{α1, α2, . . . , αn} and α1 < α2 < · · · < αn. For a given mapping f : V → Y, if there are mappings
F, F1, F2, . . . , Fn : V → Y and a constant K > 0 such that

∥ f (x)− F(x)∥ ≤ K∥x∥p (for all x ∈ V \ {0}), (7)

where F(x) =
n
∑

k=1
Fk(x) and Fk(ax) = aαk Fk(x) for all x ∈ V, then the mappings F, F1, F2, . . . , Fn

are uniquely determined.

Proof. If we put Φ(x) := K∥x∥p for all x ∈ V \ {0}, then Φ satisfies one of the conditions
of (1) and f , F1, F2, . . . , Fn satisfy conditions (2) and (3), given in Theorem 1. Therefore,
F1, F2, . . . , Fn are the unique mappings that satisfy conditions (3) and (7).

3. Main Theorem

In this section, we assume that V is a real vector space and Y is a real normed space.
In the following three lemmas, we will introduce special conditions that satisfy the

conditions of (1).

Lemma 1. Let a and α be nonzero real constants with a > 1. If a function ϕ : V \ {0} → [0, ∞)
satisfies the condition

Φ(x) :=
∞

∑
i=0

1
aαi ϕ

(
aix
)
< ∞

for all x ∈ V \ {0}, then the function Φ : V \ {0} → [0, ∞) satisfies

lim
m→∞

1
aαm Φ(amx) = 0

for all x ∈ V \ {0}.
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Proof. If ϕ satisfies Φ(x) =
∞
∑

i=0

1
aαi ϕ(aix) < ∞ for all x ∈ V \ {0}, then we have

lim
m→∞

1
aαm Φ(amx) = lim

m→∞

∞

∑
i=0

1
aα(m+i)

ϕ
(
am+ix

)
= lim

m→∞

∞

∑
i=m

1
aαi ϕ

(
aix
)
= 0

for all x ∈ V \ {0}.

In the following lemma, we introduce some special conditions that satisfy one of the
second to nth conditions of (1).

Lemma 2. For any fixed integer n > 0, let ℓ be an integer with 1 ≤ ℓ < n. Assume that a, αℓ, and
αℓ+1 are nonzero real constants, such that a > 1 and αℓ < αℓ+1. If a function ϕ : V \ {0} → [0, ∞)
satisfies the following conditions

Φℓ(x) :=
∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
< ∞ and Φ′

ℓ(x) :=
∞

∑
i=0

aαℓiϕ

(
1
ai x
)
< ∞

for all x ∈ V \ {0}, then the functions Φℓ, Φ′
ℓ : V \ {0} → [0, ∞) have the following properties:

lim
m→∞

1
aαℓ+1m Φℓ(amx) = lim

m→∞
aαℓmΦℓ

(
1

am x
)
= 0

and

lim
m→∞

1
aαℓ+1m Φ′

ℓ(amx) = lim
m→∞

aαℓmΦ′
ℓ

(
1

am x
)
= 0

for all x ∈ V \ {0}.

Proof. If ϕ satisfies Φℓ(x) =
∞
∑

i=0

1
aαℓ+1 i ϕ(aix) < ∞ and Φ′

ℓ(x) =
∞
∑

i=0
aαℓiϕ( 1

ai x) < ∞ for all

x ∈ V \ {0}, then we have

lim
m→∞

1
a2αℓ+1m Φ′

ℓ

(
a2mx

)
= lim

m→∞

1
a2αℓ+1m−2αℓm

∞

∑
i=−2m

aαℓ iϕ

(
1
ai x
)

= lim
m→∞

1
a2(αℓ+1−αℓ)m

2m

∑
i=1

1
aαℓ i ϕ

(
aix
)
+ lim

m→∞

1
a2(αℓ+1−αℓ)m

∞

∑
i=0

aαℓ iϕ

(
1
ai x
)

= lim
m→∞

1
a2(αℓ+1−αℓ)m

2m

∑
i=1

1
aαℓ i ϕ

(
aix
)
+ lim

m→∞

1
a2(αℓ+1−αℓ)m

Φ′
ℓ(x)

= lim
m→∞

1
a(αℓ+1−αℓ)m

m−1

∑
i=1

1
aαℓ i+(αℓ+1−αℓ)m

ϕ
(
aix
)

+ lim
m→∞

2m

∑
i=m

1
a2αℓ+1m−αℓ(2m−i)

ϕ
(
aix
)

= lim
m→∞

1
a(αℓ+1−αℓ)m

m−1

∑
i=1

1
aαℓ+1i+(αℓ+1−αℓ)(m−i)

ϕ
(
aix
)

+ lim
m→∞

2m

∑
i=m

1
aαℓ+1i+(αℓ+1−αℓ)(2m−i)

ϕ
(
aix
)

≤ lim
m→∞

1
a(αℓ+1−αℓ)m

m

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
+ lim

m→∞

2m

∑
i=m

1
aαℓ+1i ϕ

(
aix
)

= 0
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and

lim
m→∞

aαℓmΦ′
ℓ

(
1

am x
)
= lim

m→∞

∞

∑
i=0

aαℓ(i+m)ϕ

(
1

ai+m x
)

= lim
m→∞

∞

∑
i=m

aαℓiϕ

(
1
ai x
)
= 0.

Moreover, we also obtain

lim
m→∞

1
aαℓ+1m Φℓ(amx) = lim

m→∞

∞

∑
i=0

1
aαℓ+1(m+i)

ϕ
(
am+ix

)
= lim

m→∞

∞

∑
i=m

1
aαℓ+1i ϕ

(
aix
)

= 0

and

lim
m→∞

a2αℓmΦℓ

(
1

a2m x
)

= lim
m→∞

1
a2αℓ+1m−2αℓm

−1

∑
i=−2m

1
aαℓ+1i ϕ

(
aix
)

+ lim
m→∞

1
a2αℓ+1m−2αℓm

∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)

= lim
m→∞

1
a2αℓ+1m−2αℓm

2m

∑
i=1

aαℓ+1iϕ

(
1
ai x
)
+ lim

m→∞

1
a2αℓ+1m−2αℓm Φℓ(x)

= lim
m→∞

1
aαℓ+1m−αℓm

m−1

∑
i=1

a(αℓ+1−αℓ)i

a(αℓ+1−αℓ)m
aαℓiϕ

(
1
ai x
)

+ lim
m→∞

2m

∑
i=m

a(αℓ+1−αℓ)i

a2(αℓ+1−αℓ)m
aαℓiϕ

(
1
ai x
)

≤ lim
m→∞

1
aαℓ+1m−αℓm

∞

∑
i=1

aαℓiϕ

(
1
ai x
)
+ lim

m→∞

2m

∑
i=m

aαℓiϕ

(
1
ai x
)

= 0

for all x ∈ V \ {0}.
Since lim

m→∞
1

a2αℓ+1m Φ′
ℓ(a2mx) = 0 and lim

m→∞
a2αℓmΦℓ(

1
a2m x) = 0 for all x ∈ V \ {0}, we

have

lim
m→∞

1
aαℓ+1(2m+1)

Φ′
ℓ

(
a2m+1x

)
=

1
aαℓ+1

lim
m→∞

1
a2αℓ+1m Φ′

ℓ

(
a2max

)
= 0

and

lim
m→∞

aαℓ(2m+1)Φℓ

(
1

a2m+1 x
)
= aαℓ lim

m→∞
a2αℓmΦℓ

(
1

a2m
1
a

x
)
= 0

for all x ∈ V \ {0}. From the above two equalities, we conclude that

lim
m→∞

1
aαℓ+1m Φ′

ℓ(amx) = 0 and lim
m→∞

aαℓmΦℓ

(
1

am x
)
= 0

for all x ∈ V \ {0}.
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In the following lemma, we will introduce a special condition that satisfies the last
condition of (1).

Lemma 3. Let a and α be nonzero real constants with a > 1. If a function ϕ : V \ {0} → [0, ∞)
satisfies the following condition

Φ(x) :=
∞

∑
i=0

aαiϕ

(
1
ai x
)
< ∞

for all x ∈ V \ {0}, then the function Φ : V \ {0} → [0, ∞) satisfies

lim
m→∞

aαmΦ
(

1
am x

)
= 0

for all x ∈ V \ {0}.

Proof. If ϕ satisfies Φ(x) =
∞
∑

i=0
aαiϕ( 1

ai x) < ∞ for all x ∈ V \ {0}, then we have

lim
m→∞

aαmΦ
(

1
am x

)
= lim

m→∞

∞

∑
i=0

aαm+αiϕ

(
1

am+i x
)

= lim
m→∞

∞

∑
i=m

aαiϕ

(
1
ai x
)

= 0

for all x ∈ V \ {0}.

In the following theorem, we present practical ways to use Theorem 1 together with
the three lemmas mentioned above. First, we combine Theorem 1 and Lemma 1 to prove
the following theorem.

Theorem 2. Assume that V is a real vector space and Y is a real normed space. For every fixed
n ∈ N, let a, α1, α2, . . . , αn be nonzero real constants, such that a > 1 and α1 < α2 < · · · < αn.
Assume that a function ϕ : V \ {0} → [0, ∞) satisfies the following condition

Φ(x) :=
∞

∑
i=0

1
aα1i ϕ

(
aix
)
< ∞

for all x ∈ V \ {0}. For any given mapping f : V → Y, if there exist mappings F1, F2, . . .,
Fn : V → Y satisfying the inequality∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤ Φ(x) (8)

for all x ∈ V \ {0}, where each Fi satisfies (3) for all x ∈ V, then the mappings F1, F2, . . . , Fn are
uniquely determined.

Proof. Since ϕ satisfies Φ(x) =
∞
∑

i=0

1
aα1 i ϕ(aix) < ∞ for all x ∈ V \ {0}, it follows from

Lemma 1 that

lim
m→∞

1
aα1m Φ(amx) = 0

for all x ∈ V \ {0}. In view of Theorem 1 with the first condition of (1), we conclude that
F1, F2, . . . , Fn are the unique mappings satisfying (3) and (8).
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Corollary 3. Let V, Y, n, a, α1, α2, . . . , αn, f , ϕ, and Φ be given under the same conditions as in
Theorem 2. Assume that a mapping F : V → Y satisfies the following inequality

∥ f (x)− F(x)∥ ≤ Φ(x) (9)

for all x ∈ V \ {0}. If F : V → Y can be expressed as F(x) =
n
∑

k=1
Fk(x) and every Fk has the

property (3), then F is the unique mapping that satisfies (9).

Assume that V is a real vector space and Y is a real normed space. Now, we combine
Theorem 1 and Lemma 2 to prove the following theorem.

Theorem 3. For every fixed integer n > 0, let ℓ be an integer with 1 ≤ ℓ < n. Assume that
a, α1, α2, . . . , αn are nonzero real constants such that a > 1 and α1 < α2 < · · · < αn, and also
suppose f : V → Y is an arbitrary mapping. Assume moreover that a function ϕ : V \ {0} →
[0, ∞) satisfies the conditions

Φℓ(x) :=
∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
< ∞ and Φ′

ℓ(x) :=
∞

∑
i=0

aαℓiϕ

(
1
ai x
)
< ∞

for all x ∈ V \ {0}. If mappings F1, F2, . . . , Fn : V → Y satisfy the inequality∥∥∥∥∥ f (x)−
n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤ Φℓ(x) + Φ′
ℓ(x) (10)

for all x ∈ V \ {0}, where each Fk satisfies (3) for all x ∈ V, then the mappings F1, F2, . . . , Fn are
uniquely determined.

Proof. If ϕ satisfies the conditions

Φℓ(x) =
∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
< ∞ and Φ′

ℓ(x) =
∞

∑
i=0

aαℓiϕ

(
1
ai x
)
< ∞

for all x ∈ V \ {0}, it then follows from Lemma 2 that

lim
m→∞

1
aαℓ+1m Φℓ(amx) = lim

m→∞
aαℓmΦℓ

(
1

am x
)
= 0,

lim
m→∞

1
aαℓ+1m Φ′

ℓ(amx) = lim
m→∞

aαℓmΦ′
ℓ

(
1

am x
)
= 0

for all x ∈ V \ {0}. Now, we apply Theorem 1 with Φℓ(x) + Φ′
ℓ(x) in place of Φ(x) to

conclude that F1, F2, . . . , Fn are the unique mappings which satisfy both (3) and (10).

Corollary 4. Let V, Y, n, a, α1, α2, . . . , αn, f , ϕ, Φ, and Φ′ be given under the same conditions as
in Theorem 3. If there is a mapping F : V → Y that satisfies the following inequality

∥ f (x)− F(x)∥ ≤ Φℓ(x) + Φ′
ℓ(x) (for all x ∈ V \ {0}), (11)

where F(x) =
n
∑

k=1
Fk(x) and every Fk has the property (3), then the mappings F, F1, F2, . . . , Fn are

uniquely determined.

As we often did before, we set V to be a real vector space and Y to be a real normed
space. Finally, we combine Theorem 1 and Lemma 3 to prove the following theorem.
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Theorem 4. For any fixed n ∈ N, let a, α1, α2, . . . , αn be nonzero real constants such that
a > 1 and α1 < α2 < · · · < αn. Assume that a function ϕ : V \ {0} → [0, ∞) satisfies the
following condition

Φ(x) :=
∞

∑
i=0

aαniϕ

(
1
ai x
)
< ∞

for all x ∈ V \ {0}. For a given mapping f : V → Y, if mappings F1, F2, . . . , Fn : V → Y satisfy
the inequality ∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤ Φ(x) (for all x ∈ V \ {0}), (12)

where every Fk satisfies (3) for all x ∈ V, then the mappings F1, F2, . . . , Fn are uniquely determined.

Proof. If ϕ satisfies the condition, Φ(x) =
∞
∑

i=0
aαniϕ( 1

ai x) < ∞, then we may use Lemma 3

to show that

lim
m→∞

aαnmΦ
(

1
am x

)
= 0

for all x ∈ V \ {0}. Finally, we use Theorem 1 with the last condition of (1) to conclude that
F1, F2, . . . , Fn are the unique mappings satisfying (3) and (12).

Corollary 5. Let V, Y, n, a, α1, α2, . . . , αn, f , ϕ, and Φ be given under the same conditions as in
Theorem 4. If there exists a mapping F : V → Y that satisfies the inequality

∥ f (x)− F(x)∥ ≤ Φ(x) (for all x ∈ V \ {0}), (13)

where F(x) =
n
∑

k=1
Fk(x) and every Fk has property (3), then the mapping F is uniquely determined.

The following main theorem results from Theorems 2–4.

Theorem 5 (Main Theorem). Assume that V is a real vector space and Y is a real normed space.
For any fixed n ∈ N, let a, α1, α2, . . . , αn be nonzero real constants, such that a > 1 and α1 < α2 <
· · · < αn. For a given mapping f : V → Y, if there exist mappings F1, F2, . . . , Fn : V → Y and a
function ϕ : V \ {0} → [0, ∞) that satisfy∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤
∞

∑
i=0

1
aα1i ϕ

(
aix
)
< ∞ or (14)∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤
∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
+

∞

∑
i=0

aαℓiϕ

(
1
ai x
)
< ∞ or (15)∥∥∥∥∥ f (x)−

n

∑
k=1

Fk(x)

∥∥∥∥∥ ≤
∞

∑
i=0

aαniϕ

(
1
ai x
)
< ∞ (16)

for all x ∈ V \ {0} and for some ℓ ∈ {1, 2, . . . , n − 1}, where every Fk has property (3), then the
mappings F1, F2, . . . , Fn are uniquely determined.

Now, we introduce a corollary that further improves the applicability of the above
main theorem.



Symmetry 2024, 16, 1298 11 of 15

Corollary 6. Assume that V is a real vector space and Y is a real normed space. For any fixed n ∈ N,
let a, α1, α2, . . . , αn be nonzero real constants, such that a > 1 and α1 < α2 < · · · < αn. For a given
mapping f : V → Y, if there exist a mapping F : V → Y and a function ϕ : V \ {0} → [0, ∞)
that satisfy

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
aα1i ϕ

(
aix
)
< ∞ or (17)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
aαℓ+1i ϕ

(
aix
)
+

∞

∑
i=0

aαℓiϕ

(
1
ai x
)
< ∞ or (18)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

aαniϕ

(
1
ai x
)
< ∞ (19)

for all x ∈ V \ {0} and for some ℓ ∈ {1, 2, . . . , n − 1}, where F(x) =
n
∑

k=1
Fk(x) and every Fk has

the property (3), then the mapping F is uniquely determined.

4. Examples

Assume that V is a real vector space and Y is a real normed space.

Example 1. Let f : V → Y be an arbitrary mapping and F : V → Y an additive-quadratic-cubic-
quartic (AQCQ′) mapping. If there exists a function ϕ : V \ {0} → [0, ∞) that satisfies

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
2i ϕ
(
2ix
)
< ∞ or (20)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
22i ϕ

(
2ix
)
+

∞

∑
i=0

2iϕ

(
1
2i x
)
< ∞ or (21)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
23i ϕ

(
2ix
)
+

∞

∑
i=0

22iϕ

(
1
2i x
)
< ∞ or (22)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
24i ϕ

(
2ix
)
+

∞

∑
i=0

23iϕ

(
1
2i x
)
< ∞ or (23)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

24iϕ

(
1
2i x
)
< ∞ (24)

for all x ∈ V \ {0}, then the mapping F is uniquely determined.

Proof. If we set a = 2, α1 = 1, α2 = 2, α3 = 3, α4 = 4, F1 an additive mapping, F2 a
quadratic mapping, F3 a cubic mapping, and F4 a quartic mapping, then F = F1 + F2 + F3 +
F4 with F1(2x) = 2F1(x), F2(2x) = 22F2(x), F3(2x) = 23F3(x), and F4(2x) = 24F4(x). It
then follows from Corollary 6 that F is the only additive-quadratic-cubic-quartic mapping
that satisfies either (20), (21), (22), (23), or (24).

For a given mapping f : V → Y, we use the abbreviations D1 f , D2 f , D3 f : V2 → Y
defined by

D1 f (x, y) := f (x + 2y) + f (x − 2y)− 4
(

f (x + y) + f (x − y)
)

− f (4y) + 4 f (3y)− 6 f (2y) + 4 f (y) + 6 f (x),

D2 f (x, y) := f (x + 2y)− 4 f (x + y) + 6 f (x)− 4 f (x − y)

+ f (x − 2y)− f (2y)− f (−2y) + 4 f (y) + 4 f (−y),

D3 f (x, y) := f (x + ay) + f (x − ay)− a2 f (x + y)− a2 f (x − y)

+ 2(a2 − 1) f (x)− a4 − a2

12
[ f (2y) + f (−2y)− 4 f (y)− 4 f (−y)],

D4 f (x, y) := f (x + 5y)− 5 f (x + 4y)− 10 f (x + 3y) + 10 f (x + 2y)

+ 5 f (x + y)− f (x)
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for all x, y ∈ V, where a ̸∈ {−1, 0, 1} is a fixed integer. In [26], M. E. Gordji et al. showed
that if f satisfies the functional equation D1 f = 0, then f is an AQCQ′ mapping. And
in [27], J. R. Lee et al. showed that if f satisfies the functional equation D2 f = 0, then f is
an AQCQ′ mapping, while in [28], K. Ravi et al. showed that if f satisfies D3 f = 0, then f
is an AQCQ′ mapping. Also, in [29], D. Z. Djoković et al. showed that if f satisfies D4 f = 0,
then f is a generalized polynomial mapping of degree 4 (Theorem 3 in [29]). Moreover,
in [20], Y. H. Lee et al. obtained stability results of D4 f = 0.

Using Example 1, we can improve the stability results obtained separately by Gordji
et al., Lee et al., Ravi, and Y. H. Lee et al. all at once, as shown in the following example.

Example 2. For each ℓ ∈ {0, 1, 2, 3, 4} and any given function φ : V2 → [0, ∞), we define the
conditions φℓ by

∞

∑
i=0

1
2i φ(2ix, 2iy) < ∞ (for ℓ = 0),

∞

∑
i=0

1
4i φ(2ix, 2iy) + 2i φ

(
1
2i x,

1
2i x
)
< ∞ (for ℓ = 1),

∞

∑
i=0

1
8i φ(2ix, 2iy) + 4i φ

(
1
2i x,

1
2i x
)
< ∞ (for ℓ = 2), (φℓ)

∞

∑
i=0

1
16i φ(2ix, 2iy) + 8i φ

(
1
2i x,

1
2i x
)
< ∞ (for ℓ = 3),

∞

∑
i=0

16i φ

(
1
2i x,

1
2i x
)
< ∞ (for ℓ = 4)

for all x, y ∈ V. For a fixed ℓ ∈ {0, 1, 2, 3, 4} and m ∈ {1, 2, 3, 4}, if a function φ : V2 →
[0, ∞) satisfies the conditions of (φℓ) and a mapping f : V → Y satisfies f (0) = 0 and the
following inequality

∥Dm f (x, y)∥ ≤ φ(x, y)

for all x, y ∈ V, then there exists a unique mapping F : V → Y such that DmF(x, y) = 0 for all
x, y ∈ V and

∥ f (x)− F(x)∥ ≤ 1
6

∞

∑
i=0

1
2i+1 ρ(2ix) +

1
12

∞

∑
i=0

1
4i+1 ψ(2ix) (for ℓ = 0),

∥ f (x)− F(x)∥ ≤ 1
6

∞

∑
i=0

2iρ

(
1

2i+1 x
)

+
1
6

∞

∑
i=0

1
8i+1 ρ(2ix) +

1
12

∞

∑
i=0

1
4i+1 ψ(2ix) (for ℓ = 1),

∥ f (x)− F(x)∥ ≤ 1
6

∞

∑
i=0

2iρ

(
1

2i+1 x
)
+

1
12

∞

∑
i=0

4iψ

(
1

2i+1 x
)

+
1
6

∞

∑
i=0

1
8i+1 ρ(2ix) +

1
12

∞

∑
i=0

1
16i+1 ψ(2ix) (for ℓ = 2),

∥ f (x)− F(x)∥ ≤ 1
6

∞

∑
i=1

8iρ

(
1

2i+1 x
)
+

1
12

∞

∑
i=0

4iψ

(
1

2i+1 x
)

+
1

12

∞

∑
i=0

1
16i+1 ψ(2ix) (for ℓ = 3),

∥ f (x)− F(x)∥ ≤ 1
6

∞

∑
i=1

8iρ

(
1

2i+1 x
)
+

1
12

∞

∑
i=1

16iψ

(
1

2i+1 x
)

(for ℓ = 4)
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for all x ∈ V, where

ρ(x) = 5φe(0, x) + 4φe(x, x),

ψ(x) = 5φe(0, x) + 4φe(x, x) + 46φe(0, 0) (for m = 1),

ρ(x) = φe(2x, x) + 4φe(x, x),

ψ(x) = φe(2x, x) + 4φe(x, x) +
5
2

φe(0, 0) (for m = 2),

ρ(x) =
1

a4 − a2

(
2φe((1 − a)x, x) + 2φe((1 + a)x, x)

+ φe((1 + 2a)x, x) + φe((1 − 2a)x, x)

+ φe(x, 3x) + 2a2 φe(2x, x)

+ (4a2 − 3)φe(x, x) + a2 φe(2x, 2x)

+ 2a2 φe(x, 2x)
)
,

ψ(x) =
6

a4 − a2

(
2φe(ax, x) + 2a2 φe(x, x)

+ 2(a2 − 1)φe(0, x) + φe(0, 2x) + 12φe(0, 0)
)

(for m = 3),

ρ(x) = φe(−x, x) + 5φe(−2x, x),

ψ(x) = φe(−x, x) + 5φe(−2x, x) (for m = 4)

for all x ∈ V.

Using Example 2, we have Hyers–Ulam–Rassias stability of the functional equations
Dm f = 0.

Example 3. Let θ ≥ 0 and let p be a positive real number with p ̸∈ {1, 2, 3, 4}. Let f : X → Y be
a mapping satisfying f (0) = 0 and

∥Dm f (x, y)∥ ≤ θ
(
∥x∥p + ∥y∥p)

for all x, y. Then, there exists a unique mapping F : X → Y such that DmF(x, y) = 0 for all
x, y and

∥ f (x)− F(x)∥ ≤
(

αm

6(2 − 2p)
+

βm

12(4 − 2p)

)
θ∥x∥p (for 0 < p < 1),

∥ f (x)− F(x)∥ ≤
(

αm

6(2p − 2)
+

βm

12(4 − 2p)
+

αm

6(8 − 2p)

)
θ∥x∥p (for 1 < p < 2),

∥ f (x)− F(x)∥ ≤
(

αm

6(2p − 2)
+

βm

12(2p − 4)
+

αm

6(8 − 2p)
+

βm

12(16 − 2p)

)
θ∥x∥p (for 2 < p < 3),

∥ f (x)− F(x)∥ ≤
(

βm

12(2p − 4)
+

4αm

3 · 2p(2p − 8)
+

βm

12(16 − 2p)

)
θ∥x∥p (for 3 < p < 4),

∥ f (x)− F(x)∥ ≤
(

4αm

3 · 2p(2p − 8)
+

4βm

3 · 2p(2p − 16)

)
θ∥x∥p (for p > 4)
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for all x ∈ X, where

α1 = 13, β1 = 13,

α2 = 9 + 2p, β2 = 9 + 2p,

α3 =
1

a4 − a2

(
2|a − 1|p + 2|a + 1|p + |2a − 1|p + |2a + 1|p + 3p + 6a22p + 12a2 + 1

)
,

β3 =
6

a4 − a2

(
2ap + 6a2 + 2p),

α4 = 7 + 5 · 2p, β4 = 7 + 5 · 2p.

Example 4. Let f : V → Y be an arbitrary mapping, r a fixed positive rational number with r ̸= 1,
and F : V → Y a generalized polynomial mapping of degree n with f (0) = F(0). If there exists a
function ϕ : V \ {0} → [0, ∞) that satisfies

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
ri ϕ
(
rix
)
< ∞ or (25)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

1
r(ℓ+1)i

ϕ
(
rix
)
+

∞

∑
i=0

rℓiϕ

(
1
ri x
)
< ∞ or (26)

∥ f (x)− F(x)∥ ≤
∞

∑
i=0

rniϕ

(
1
ri x
)
< ∞ (27)

for all x ∈ V \ {0} and for some ℓ ∈ {1, 2, . . . , n − 1}, then F is a uniquely determined generalized
polynomial mapping of degree n.

Proof. Let f̃ , F′ : V → Y be the mappings defined by f̃ (x) = f (x)− f (0) and F′(x) =
F(x)− F(0). Then, f (x)− F(x) = f̃ (x)− F′(x) and we can apply Corollary 6 to f̃ and F′.
So, we can obtain unique F′ that satisfies either (17), (18), or (19). It means that we can have
unique F that satisfies either (25), (26), or (27).

5. Conclusions

Considering Hyers–Ulam stability of functional equations, it is generally difficult to
prove the uniqueness of the stability function with conditions similar to Gǎvruţa condition.
The uniqueness theorems of this paper obtained through direct calculation can be applied
to various functional equations. As an application of Theorem 5 and Corollary 6, we
considered Examples 2 and 3 to obtain generalized stability of the functional equation
Dm f = 0, and here, we have the uniqueness of the stability mapping F.

For future research, we can apply Theorem 5 and Corollary 6 to the functional equa-
tions in [13–17,19–23] obtained Hyers–Ulam–Rassias stability and we can obtain the unique-
ness of the stability mapping F with conditions similar to Gǎvruţa condition.
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