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Abstract: This study presents a bi-objective optimization model for the Green Vehicle-Routing
Problem in cold chain logistics, with a focus on symmetric distance matrices, aiming to minimize
total costs, including carbon emissions, while maximizing customer satisfaction. To address this
complex challenge, we developed a Stage-Specific Multi-Objective Five-Element Cycle Optimization
algorithm (MOFECO-SS), which dynamically adjusts optimization strategies across different stages
of the process, thereby enhancing overall efficiency. Extensive comparative analyses with existing
algorithms demonstrate that MOFECO-SS consistently outperforms in solving the multi-objective
optimization model, particularly in reducing total costs and carbon emissions while maintaining
high levels of customer satisfaction. The symmetric nature of the distance matrix further aids in
achieving balanced and optimized route planning. The results highlight that MOFECO-SS offers
decision-makers flexible route planning options that balance cost efficiency with environmental
sustainability, ultimately improving the effectiveness of cold chain logistics operations.

Keywords: vehicle routing problem; cold chain logistics; customer satisfaction; carbon emission;
multi-objective five-element cycle optimization; exploration and exploitation

1. Introduction

In recent years, as consumer demand for fresh, high-quality food has increased and
attention to pharmaceutical safety has grown, the global cold chain logistics (CCL) in-
dustry has rapidly developed, becoming a key component of logistics and supply chain
management [1,2]. However, the need for precise temperature control in cold chain logistics
has led to higher energy consumption and carbon emissions, exacerbating environmental
concerns and regulatory pressures [3]. Against this backdrop, the importance of green
logistics has rapidly risen, giving rise to the Green Vehicle-Routing Problem (GVRP), which
aims to minimize environmental impact while optimizing traditional logistics goals such
as cost efficiency and customer satisfaction.

The GVRP has been extensively studied from two perspectives: model development
and algorithmic solutions. Traditionally, GVRP models focus on minimizing total costs,
which are particularly relevant in cold chain logistics due to the inclusion of additional
factors such as goods damage costs and refrigeration costs. However, many studies have
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simplified these models by neglecting certain key costs. For example, Zhang and Chen [4]
did not consider goods damage costs, Osvald and Stirn [5] included goods damage costs but
ignored refrigeration costs, and Wang et al. [6] only considered goods damage costs during
unloading. To address these limitations, more comprehensive models have been proposed,
such as the one by Wang et al. [7], which accounts for time penalty costs, refrigeration costs,
cargo damage costs, fixed costs, and transportation costs within a time window-constrained
optimization model.

As environmental protection becomes increasingly important, carbon emissions in
cold chain logistics have gained significant attention [8]. Cold chain logistics systems
consume more energy than their non-cold chain counterparts due to the need for refrig-
eration and temperature control, leading to higher carbon emissions from transportation,
refrigeration equipment, and storage facilities [9]. This has prompted scholars to develop
green logistics models that incorporate carbon emissions into the objective function, aiming
to reduce the carbon footprint of logistics operations [10]. Recent studies have introduced
low-carbon cold chain logistics models that minimize both distribution costs and car-
bon emissions [11–14], while other work has investigated the mechanisms behind carbon
emissions for refrigerated trucks under different transportation conditions [15].

Customer satisfaction is also an increasingly important factor in cold chain logis-
tics, particularly for businesses that depend on repeat customers and positive customer
feedback [16]. Maintaining high customer satisfaction is critical to ensuring product quality,
particularly for temperature-sensitive goods such as food and pharmaceuticals. Previous
studies have explored the integration of customer satisfaction into logistics optimization
models [17,18], but often overlook carbon emissions, failing to provide a holistic solution
to the Green Vehicle-Routing Problem.

Despite the advancements in the field, there remains a lack of comprehensive models
that simultaneously consider total costs, carbon emissions, and customer satisfaction.
To address this gap, this paper proposes a bi-objective Green Vehicle-Routing Problem
(BIGVRP) model. The model aims to minimize total costs, including carbon emissions,
while maximizing customer satisfaction. By considering both operational efficiency and
environmental sustainability, the model offers a more comprehensive framework for solving
real-world logistics problems compared with traditional single-objective models, which
typically focus only on minimizing costs.

In terms of algorithms used to solve GVRP models, both exact algorithms and heuris-
tic methods have been applied. Exact algorithms, such as Lagrangian relaxation meth-
ods and integer programming, can achieve high accuracy in small-scale problems but
are computationally expensive and impractical for large-scale logistics networks [19,20].
Decomposition-based algorithms have been shown to be highly sensitive to parameter
settings, further limiting their practical application [15].

Heuristic algorithms, such as genetic algorithms [21], ant colony algorithms [22], particle
swarm optimization (PSO), tabu search (TS) [23], artificial fish swarm algorithms [24], and the
Clarke and Wright saving algorithm [25], have been favored for their ability to provide near-
optimal solutions in large and complex scenarios. These algorithms can produce solutions in a
reasonable amount of time, making them more practical for real-world logistics applications.

Building on this foundation, this study introduces the Stage-Specific Multi-Objective
Five-Element Cycle Optimization (MOFECO-SS) algorithm, a significant innovation de-
signed to tackle the BIGVRP. Unlike traditional algorithms, MOFECO-SS adopts a Stage-
Specific approach, applying different evolutionary strategies at each stage of the optimiza-
tion process to dynamically balance exploration and exploitation. This approach enables the
algorithm to adapt to the changing demands of the problem as the optimization progresses,
improving both convergence and solution diversity. MOFECO-SS is capable of generating
high-quality Pareto front solutions that provide decision-makers with multiple delivery
route options to balance environmental impact and operational goals.

Furthermore, the application of the Ideal Point Method to select a compromise solution
from the Pareto front represents an additional contribution of this work. The Ideal Point
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Method allows logistics managers to choose solutions that best align with their strategic
priorities while accounting for trade-offs between conflicting objectives such as cost and
customer satisfaction.

The remaining parts of the paper are organized as follows: Section 2 introduces the
BIGVRP model proposed in this paper; Section 3 elucidates the principles and implementa-
tion process of the MOFECO-SS algorithm utilized herein in this study; Section 4 presents
the experimental results and analysis; and Section 5 discusses the conclusions of the paper
and suggests directions for future work.

2. Modeling Green Vehicle-Routing Problem
2.1. Problem Description

This paper targets the optimization problem within the BIGVRP, focusing on designing
optimal routes for refrigerated trucks. The scenario involves all trucks originating from
a distribution center, sequentially serving customer points, and then returning to the
distribution center. Each customer point is assigned to a single truck, but each truck may
serve multiple customer points. The central challenge is to decide which customer points
each truck should serve and in what order, aiming to minimize total costs while maximizing
customer satisfaction. Therefore, the primary goal is to establish efficient driving routes
that start and end at the distribution center, striking a balance between cost-efficiency and
meeting customer expectations. Figure 1 illustrates the scenario involving a distribution
center and several customer points within a CCL network.

Distribution center

Customer point

Figure 1. Distribution map of customer points and distribution center.

2.2. Problem Assumption

When studying GVRP models, it is common to make certain assumptions to simplify
the complexity of the problem and focus on key variables. These assumptions are commonly
applied in logistics optimization and have been adopted in a wide range of studies, such
as [11,13,26], to create a tractable model that still closely represents real-world scenarios,
providing a basis for comparison and validation of our results.

The model in this paper is developed for a real-world case involving the use of a
company’s own transport fleet for goods delivery. The following assumptions are made,
which are crucial for building the model and conducting effective analysis:

• Uniform type of refrigerated trucks: It is assumed that all refrigerated trucks are of
the same model, with identical load capacity and refrigeration performance. This
assumption simplifies variability issues related to truck performance, a common
practice in logistics optimization studies [13,26].

• Constant external and refrigeration temperatures: It is assumed that the external
environmental temperature and the internal refrigeration temperature remain constant
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throughout the entire delivery process. This assumption helps avoid the need for
complex temperature control strategies and is consistent with previous studies such
as [11].

• Clear roads: It is assumed that all roads are passable, and there are no traffic restrictions
or road closures. Although this assumption simplifies traffic considerations, it allows us
to focus on the core optimization of routing, a practice validated in earlier works [11,26].

The goal of these assumptions is to highlight the effectiveness of the proposed
MOFECO-SS algorithm in addressing the core optimization challenge while minimiz-
ing the impact of unrelated variables. Similar simplifications have been shown to be
effective in several studies. However, as discussed in related literature, future research can
relax these assumptions to incorporate more complex and dynamic real-world factors, such
as real-time traffic conditions, variable vehicle loads, and asymmetric distance matrices,
making the model even more applicable to real-world scenarios.

2.3. Mathematical Model

BIGVRP proposed in this paper includes two objective functions, i.e., total costs and
customer satisfaction.

2.3.1. Total Costs

The total cost refers to all the expenses incurred during the process of delivering
goods to customer points, encompassing various handling fees throughout the entire
transportation process. The calculation of total cost involves multiple stages and activities,
each with its own unique characteristics and calculation methods. The total cost proposed
in this paper consists of the following six types of costs:

• Fixed costs
The fixed costs (C f ) refer to the expenses that remain constant regardless of the volume
or frequency of deliveries. These costs typically involve the initial investment and
ongoing operational expenses related to maintaining the necessary infrastructure
and equipment for chilled or frozen product transportation. Such as the cost of
hiring a driver, the cost of buying or leasing the refrigerated truck, the cost of tolls in
the transportation process, the regular maintenance fee that may be needed for the
refrigerated vehicle, and so on. In this paper, it is simplified to the fixed cost of each
refrigerated truck, which is known and proportional to the number of refrigerated
trucks needed in the transportation process. Therefore, the C f can be expressed by the
following formula:

C f = c f K (1)

where the following is true:

– c f represents the fixed cost of each refrigerated truck.
– K is the number of refrigerated trucks.

• Transportation costs
Transportation costs (Ct) refer to the expenses incurred during the transportation of
goods from the distribution center to customer points and back. While in real-world
scenarios, transportation costs are influenced by various factors such as fuel consump-
tion, vehicle load, road conditions, and traffic, in this paper, they are simplified to be
only positively related to the transportation distance. This assumption is commonly
used in logistics optimization models to reduce computational complexity and focus
on the core routing problem, as demonstrated in studies such as [11,26]. The sim-
plification allows us to validate the algorithm efficiently, while future research will
incorporate more complex cost structures that account for dynamic traffic conditions
and vehicle load.
In this paper, the transportation distance for each refrigerated truck refers to the total
distance it travels from the distribution center, completes all deliveries to assigned
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customer points and returns to the distribution center. The transportation cost (Ct) is
calculated using the following equation:

Ct = ct

K

∑
k=1

(
d0,xk

1
+

Nk−1

∑
i=1

dxk
i ,xk

i+1
+ dxk

Nk
,0

)
(2)

where the following is true:

– ct is the transportation costs per unit distance.
– Nk is the number of customer points that the kth refrigerated truck is responsible

for distribution.
– xk

i is the ith customer point served by the kth refrigerated truck, (i = 1, 2, 3, · · · , Nk),
– dxk

i ,xk
i+1

denotes the distance from the ith customer point to the (i + 1)th customer
point of the kth refrigerated truck. This distance is assumed to be symmetric, i.e.,
dxk

i ,xk
i+1

= dxk
i+1,xk

i
.

– d0,xk
1

is the distance of the kth refrigerated truck from the distribution center (0) to
the first customer point it serves.

While the current model simplifies transportation costs to be directly proportional
to distance, future work will expand this to include real-time traffic conditions, fuel
consumption, and load-dependent costs, making the model more reflective of real-
world transportation scenarios. This will further enhance the applicability of the
model in dynamic and complex logistics environments.

• Cargo damage costs
The costs of cargo damage (Cd) refers to the expenses incurred due to the loss or
deterioration of the cargo during the transportation process. This is a significant
cost component in GVRP, as it directly impacts the profitability and efficiency of the
distribution operation.
Cargo damage can occur for various reasons in CCL. One primary cause is temperature
fluctuations, which can lead to product spoilage or degradation. If the temperature
within the refrigerated truck or storage facility is not maintained at the required level,
the quality of the chilled or frozen products can be compromised. When the cargo is
distributed, temperature fluctuations will be caused during transportation and during
unloading.
Therefore, the cargo damage costs in the CCL mainly come from two parts: one is the
cargo damage in the transportation process (Cd1), and the other is the cargo damage
during the unloading process (Cd2 ).
They are expressed as follows:

Cd = Cd1 + Cd2 (3)

Cd1 primarily depends on the time required to transport the cargo from the distribution
center to the customer locations, as shown in the following equation:

Cd1 = cd

K

∑
k=1

Nk

∑
i=1

qxk
i

1− e
−ε1

(
t
xk

i
−t0

) (4)

where the following is true:

– cd is the unit price of cargo.
– qxk

i
is the demand of the customer point xk

i .

– ε1 is the damage coefficient of cargo during transportation.
– txk

i
indicates the time at which the kth refrigerated truck reaches the customer

location xk
i .

– t0 represents the time at which the refrigerated trucks depart from the distribution center.



Symmetry 2024, 16, 1305 6 of 39

In fact, there are two parts of cargo damage in the unloading process. One part is
the cargo damage that needs to be unloaded to the customer points in the unloading
process. Since the cargo damage of this part is relatively small and it’s too complicated
to calculate, we take an approximation and ignore it. The other part is the remaining
cargo quantity on the truck after the unloading process because the door of the
refrigerated truck is always open, which causes damage to the cargo in the truck. In
conclusion, the Cd2 are calculated by the following formula:

Cd2 = cd

K

∑
k=1

Nk−1

∑
i=1

Qxk
i ,xk

i+1

(
1− e

−ε2ts
xk

i

)
(5)

where the following is true:

– Qxk
i ,xk

i+1
is the load of the kth refrigerated truck in the process of driving from the

customer point xk
i to the customer point xk

i+1.
– ε2 is the damage coefficient of cargo during unloading.
– ts

xk
i

is the service time of the kth refrigerated truck at the customer point xk
i .

• Refrigeration costs
The refrigeration costs (Cr) refer to the expenses incurred in maintaining the required
low temperatures throughout the transportation process to ensure the freshness and
quality of the cargo. The Cr are mainly related to the time spent by all refrigerated
trucks in the entire transportation process, which includes transportation time and
unloading time and can be represented by the equation below:

Cr = cr1

K

∑
k=1

(
d0,xk

1

v0,xk
1

+
Nk−1

∑
i=1

dxk
i ,xk

i+1

vxk
i ,xk

i+1

)
+ cr2

K

∑
k=1

Nk

∑
i=1

ts
xk

i
(6)

where the following is true:

– cr1 is the cost of refrigeration equipment per unit time during transportation.
– cr2 is the cost of refrigeration equipment per unit time during unloading.
– v0,xk

1
is the speed of the kth refrigerated truck when it leaves the distribution center.

– vxk
i ,xk

i+1
is the speed of the kth refrigerated truck in the process of driving from the

customer point xk
i to the customer point xk

i+1.
– N represents the total number of customer points.

• Time penalty costs
The time penalty costs (Cp) refer to the additional expenses incurred when the re-
frigerated trucks arrive at the customer points earlier or later than the expected time
windows. These costs arise due to the inconvenience and potential loss caused by
deviations from the expected delivery schedule.
When refrigerated trucks arrive earlier than the expected time window, it may cause
inconvenience to the recipient, as they may not be ready to receive the cargo. Con-
versely, late arrivals can lead to delays in the retail operations, causing potential sales
losses. As a result, Cp is composed of costs incurred in advance and costs incurred
due to delays. This can be represented by the following formula:

Cp = cp1

K

∑
k=1

Nk

∑
i=1

max
(

ETxk
i
− txk

i
, 0
)
+ cp2

K

∑
k=1

Nk

∑
i=1

max
(

txk
i
− LTxk

i
, 0
)

(7)

where the following is true:

– cp1 is punishment cost per time due to the early arrival.
– cp2 is punishment cost per time due to the late arrival.

–
[

ETxk
i
, LTxk

i

]
is the expected time window for customer point xk

i .
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• The carbon emissions costs
In BIGVRP, carbon emission costs (Ce) are mainly related to total carbon emission,
carbon quota, and carbon unit price:

Ce = ce(EM−Qc) (8)

where the following is true:

– ce is the carbon cost unit price.
– EM represents the total carbon emissions.
– Qc is carbon emissions quotas.

In a similar manner, carbon emissions account for both those generated during trans-
portation (EMt) and those produced during the unloading process (EMr), as repre-
sented by the equation below:

EM = EMt + EMr (9)

Carbon emissions during transportation EMt are mainly related to fuel consumption
(Fc), as shown in the following equation:

EMt = ηFc (10)

where η is the coefficient values of the carbon emissions.
According to reference [9], Fc is related to the travel distance and load of the trucks,
and Fc per unit distance is calculated as follows:

ρ(X) = ρ0 +
ρ∗ − ρ0

Q
X (11)

where the following is true:

– X is the load.
– Q is the rated load of the refrigerated truck.
– ρ0 is the fuel consumption per unit distance when the truck is unloaded.
– ρ∗ is the fuel consumption per unit distance when the truck is fully loaded.

Therefore, the EMt consists of three parts, like the cargo damage costs, as shown in
the following equation:

EMt = η
K

∑
k=1

{(
ρ0 +

ρ∗ − ρ0

Q
Q0,xk

1

)
d0,xk

1
+

Nk−1

∑
i=1

[(
ρ0 +

ρ∗ − ρ0

Q
Qxk

i ,xk
i+1

)
dxk

i ,xk
i+1

]
+ρ0dxk

Nk
,0

}
(12)

where:

– Qxk
i ,xk

i+1
denotes the load carried by the kth refrigerated truck as it moves from

customer location xk
i to customer location xk

i+1.
– Q0,xk

1
is the load of the kth refrigerated truck when it leaves the distribution center.

The carbon emissions (EMr) during the refrigeration process are related to the amount
of cargo and their refrigeration time, similar to the refrigeration costs, and are calcu-
lated using the following formula:

EMr = µ

[
K

∑
k=1

(
Q0,xk

1

d0,xk
1

v0,xk
1

+
Nk−1

∑
i=1

Qxk
i ,xk

i+1

dxk
i ,xk

i+1

vxk
i ,xk

i+1

)
+

K

∑
k=1

Nk−1

∑
i=1

ts
xk

i
Qxk

i ,xk
i+1

]
(13)

where µ is carbon emissions from cooling per unit weight of cargo per unit time.

While the current model focuses on minimizing carbon emissions based on distance
traveled, it does not take into account the impact of real-time traffic conditions, which can alter
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fuel consumption and carbon emissions. Future work could incorporate real-time traffic data
and dynamic route adjustments to more accurately reflect emissions in practical applications.

2.3.2. Customer Satisfaction

In the BIGVRP proposed in this paper, customer satisfaction is mainly related to the
timeliness of delivery. The relationship between customer satisfaction and delivery time is
shown in Figure 2.

Delivery time

C
u

st
o

m
er

 s
at

is
fa

ct
io

n

k

ix
EET k

i
x

ET k

i
x

LT k

i
x

LTT

1

0

( )k
i
x

S t

k

i
x
t

Figure 2. Relationship between customer satisfaction and delivery time.

In Figure 2, customer satisfaction S(txk
i
) at a specific customer point xk

i in the cold

chain logistics is related to the delivery time txk
i
.
[

EETxk
i
, LLTxk

i

]
is the acceptable time

window for customer point xk
i , and

[
ETxk

i
, LTxk

i

]
is the expected time window. According

to the range of txk
i
, the value of S(txk

i
) is divided into the following four situations:

• Before EETxk
i

and after LLTxk
i
:

The satisfaction score is 0. This indicates complete dissatisfaction as the delivery time
is either too early or too late, far outside the acceptable time window for the customer.

• Between EETxk
i

and ETxk
i
:

Satisfaction increases linearly from 0 to 1 as the delivery time approaches the expected
time from the earliest time. This reflects increasing satisfaction as the delivery time
nears the most desired point.

• Between ETxk
i

and LTxk
i
:

Satisfaction remains at its maximum of 1, indicating that delivery within this time
frame meets the customer’s expectations perfectly.

• Between LTxk
i

and LLTxk
i
:

Satisfaction decreases linearly from 1 back down to 0, indicating diminishing satisfaction
as delivery becomes progressively later than the customer’s latest expected time.

Certainly, the customer satisfaction function at each customer point can be represented
mathematically in Equation (14). To compute the overall customer satisfaction for the
entire delivery process, we take the weighted average of the satisfaction scores for all
customer points, with the weights being the demand at each customer point, as shown in
Equation (15).

S
(

txk
i

)
=



txk
i
− EETxk

i

ETxk
i
− EETxk

i

, if EETxk
i
≤ txk

i
< ETxk

i

1, if ETxk
i
≤ txk

i
≤ LTxk

i

LLTxk
i
− txk

i

LLTxk
i
− LTxk

i

, if LTxk
i
< txk

i
≤ LLTxk

i

0. other

(14)
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Stotal =

K
∑

k=1

Nk
∑

i=1
S
(

txk
i

)
qxk

i

K
∑

k=1

Nk
∑

i=1
qxk

i

(15)

To facilitate unified processing and convert the problem of maximizing customer
satisfaction into a minimization problem, we introduce the concept of average customer
dissatisfaction, calculated as follows:

f2 = 1− Stotal (16)

Equation (16) represents the objective function for minimizing customer dissatisfaction.

2.3.3. Bi-Objective Green Vehicle-Routing Problem Model

The BIGVRP in CCL proposed in this study includes two objective functions, namely
minimizing total costs and minimizing customer dissatisfaction.

• Minimizing total costs:

min f1 = C f + Ct + Cd + Cr + Cp + Ce (17)

• Minimizing customer dissatisfaction:

min f2 = 1−

K
∑

k=1

Nk
∑

i=1
S
(

txk
i

)
qxk

i

K
∑

k=1

Nk
∑

i=1
qxk

i

(18)

With these two objective functions, the BIGVRP model can simultaneously consider
both costs and customer satisfaction, thereby optimizing the routes of BIGVRP in CCL.
Equation (16) expresses customer dissatisfaction in a minimization form, making the
handling of the optimization problem more consistent and convenient.

Subject to the following:
Q0,xk

1
< Q (19)

Q0,xk
1
=

Nk

∑
i=1

qxk
i

(20)

Qxk
Nk

,0 = 0 (21)

K⋃
k=1

{xk
1, · · · , xk

Nk
} = X, X = {x1, x2, · · · , xN} (22)

K

∑
k=1

Nk = N (23)

xk
i ̸= xk′

j , k ̸= k′ (24)

where xk
i ∈ {xk

1, · · · , xk
Nk
}, ∀k ∈ {1, 2, · · · , K}, xk′

j ∈ {xk′
1 , · · · , xk′

Nk′
}, ∀k′ ∈ {1, 2, · · · , K}.

Equation (17) is to minimize the total cost of the whole transportation process, making
the logistics operation as cost-effective as possible while maintaining the required service
quality. Equation (18) is aimed at minimizing the average dissatisfaction among customers
(ACDS), thereby enhancing customer satisfaction by ensuring deliveries meet both timing
and condition expectations set by the customers. The formula inverts the measure of
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satisfaction to frame it as a minimization problem, allowing for its integration into a
multi-objective optimization framework.

In Equation (18), customer satisfaction is weighted by the quantity of goods they order,
meaning customers with larger orders have a greater impact on the overall satisfaction
score. This assumption is grounded in typical logistics operations, where larger orders often
represent higher revenue or operational efficiency and thus receive higher priority in routing
decisions. Conversely, customers with smaller orders may receive lower priority, which can
affect their delivery timing or conditions and thus reduce their satisfaction. As such, this
weighting system reflects the practical trade-offs faced in real-world distribution networks,
where resources must be allocated efficiently to serve high-demand customers while still
maintaining service levels for smaller-demand customers.

These two equations together are employed in a multi-objective optimization frame-
work, where trade-offs between costs and customer satisfaction are analyzed. This allows
for determining the best operational strategies that balance delivery efficiency and customer
satisfaction across the distribution network.

Equation (19) ensures that no refrigerated truck exceeds its rated capacity.
Equations (20) and (21) confirm that each truck begins and ends its journey at the distribu-
tion center after completing all assigned deliveries. Equations (22) through (24) stipulate
that each customer is serviced by exactly one refrigerated truck, with Equations (22) and (23)
ensuring that all customer locations are visited by a truck, and Equation (24) guaranteeing
that each customer is visited by only one truck.

The core challenge of the BIGVRP in CCL is to find a balance between reducing overall
costs and enhancing customer satisfaction. The optimal routes for minimizing costs may
not align with the optimal routes for maximizing customer satisfaction. For example, a
route that minimizes fuel consumption and toll costs may result in deliveries being made
outside the preferred time windows for some customers, leading to lower satisfaction.
Conversely, routes that maximize customer satisfaction by adhering strictly to preferred
delivery times may incur higher transportation and refrigeration costs.

This trade-off is a critical aspect of our model, as it requires balancing competing
objectives to find solutions that provide a satisfactory compromise between cost efficiency
and customer satisfaction. The proposed MOFECO-SS is designed to effectively navigate
this trade-off by dynamically adapting the optimization process through different stages,
enhancing the overall efficacy of the search for optimal solutions.

3. Implementation of Stage-Specific Multi-Objective Five-Element Cycle Optimization
Algorithm for BIGVRP
3.1. Five-Element Cycle Model

The five elements theory, a concept rooted in Chinese philosophy, is used to explain the
formation of all things in the world. This theory focuses on the interactions between metal,
wood, water, fire, and earth, which are governed by both generative and restrictive cycles. The
generative cycle can be compared with the relationship between a mother and her child, where
the child relies on the mother for nourishment and development. The order of generation
proceeds as follows: wood creates fire, fire forms earth, earth generates metal, metal produces
water, and water nourishes wood. In contrast, the restrictive cycle is similar to the relationship
between a grandparent and a grandchild, where the grandparent imposes discipline. The
sequence of restrictions is as follows: wood restricts earth, earth limits water, water controls
fire, fire restricts metal, and metal constrains wood. Achieving harmony between generation
and restriction is key to the balanced transformation of the five elements. Each element is
influenced by the other four in various ways. For instance, wood produces fire and is generated
by water, while it controls earth and is constrained by metal. This complex interaction ensures
that nature maintains a dynamic equilibrium (as discussed in Reference [27]).

As depicted in Figure 3, the blue arrows in the outer cycle represent the generative
process, while the red arrows in the inner cycle depict the restrictive process. The generative
interactions can be understood through the parent–child relationship, where parents assist
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in the growth of their children. On the other hand, restrictive interactions can be likened
to the relationship between grandparents and grandchildren, where the older generation
imposes limits on the younger one, creating a dynamic balance.

Metal

Wood

Water Fire

Earth

Generating Interaction

Restricting Interaction

Figure 3. The generating and restricting interaction among five elements.

The Five-element Cycle Model (FECM) is constructed based on the Five-element
theory [27], which extends the interactions of these five elements to a broader general case.
Consider a dynamic system with L elements. At time g, the force exerted on element xl(g)
(l = 1, 2, · · · , L) by other elements in the cycle is defined as Fl(g), and these forces depend
on the respective masses of the elements. The mass of each element is denoted by ml(g).
The FECM is formulated as follows: Fl(g) = ωgp ln

[
ml−1(g)

ml(g)

]
−ωrp ln

[
ml−2(g)

ml(g)

]
−ωga ln

[
mi(k)

mi+1(g)

]
−ωra ln

[
ml(g)

ml+2(g)

]
ml(g + 1) = ml(g) � 2

1+exp(−Fl(g))

(25)

where l = 1, 2, . . . , L, when l = 1, l − 1 is replaced by L, when l = 2, l − 2 is replaced by L,
when l = L, l + 1 is replaced by 1, when l = L− 1, l + 2 is replaced by 1, ωgp, ωrp, ωga and
ωra are weight coefficients, in general, ωgp = ωrp = ωga = ωra = 1.

3.2. Multi-Objective Five-Element Cycle Algorithm

The Five-element Cycle Optimization Algorithm (FECO) [27] was derived from the
FECM and developed as an iterative algorithm to solve optimization problems. In this
framework, each element symbolizes a potential solution. All elements are organized into
cycles, with each cycle consisting of a set number of elements. The value of the objective
function for each element is treated as its mass, represented by m. The relationship between
the mass m and the force F within the FECM is used to guide the update strategy for
solutions. The optimal solution is found through iterative processes.

Building on FECO, the Multi-objective Five-element Cycle Optimization algorithm
(MOFECO) was developed to handle Multi-objective Optimization Problems (MOPs) [28].
MOPs typically involve multiple objectives, and each element in MOFECO is subjected to
several influencing forces, which introduces new techniques for evaluating and adjusting
the elements.
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3.3. Expression of Solution and Objective Function in MOFECO-SS

When the MOFECO-SS is applied to BIGVRP, each distribution plan is modeled as a
solution within the algorithm, also referred to as an element in the FECM. We use xlr(g) to
denote the lth element in the rth cycle at time g.

xlr(g) = [x1,lr(g), x2,lr(g), · · · , xN,lr(g)] (26)

where l = 1, 2, · · · , L, r = 1, 2, · · · , R. The force exerted on each element is calculated using
the formula:

Flr,j(g) = ln

[
m(l−1)r,j(g)

mlr,j(g)

]
− ln

[
m(i−2)r,j(g)

mlr,j(g)

]
− ln

[
mlr,j(g)

m(l+1)r,j(g)

]
− ln

[
mlr,j(g)

m(l+2)r,j(g)

]
(27)

where j indicates the force corresponding to the jth objective function, with j = 1, 2 in this paper.
In MOFECO-SS, the value of each objective function is treated as the mass of each

element. However, according to Equation (18), the second objective function may be 0,
so we add a small value to each objective function to ensure that Equation (27) remains
meaningful. Therefore,

mlr,j(g) = f j(xrl(g)) + ε (28)

where ε is a small positive number; in this study, the value is set to 0.000001.
Based on the relationship among FECM, MOFECO-SS, and BIGVRP as shown in

Table 1, MOFECO-SS is designed to solve the BIGVRP.

Table 1. Relationship among FECM, MOFECO-SS, and BIGVRP.

FECM MOFECO-SS BIGVRP

Elements xl(g)(l = 1, 2, · · · , L) Elements x(g)
(l = 1, 2, · · · , L; r = 1, 2, · · · , R) Solution (Route)x

Mass of elements ml(g) Mass of elements mlr,j(g)
(l = 1, 2, · · · , L; r = 1, 2, · · · , R; j = 1, 2)

Objective functions (Total costs f1 and
average dissatisfaction among customer f2)

Force exerted on elements Fl(g) Force exerted on elements Flr,j(g) Variables estimating the quality
of solutions

3.4. Sorting Mechanism

The sorting mechanism plays a decisive role, particularly in the selection and updating
of solutions. This mechanism involves ranking individuals to determine which will partici-
pate in the next phase of updates. Not only does this help the algorithm efficiently search
the solution space, but by applying different updating strategies based on the ranking
results, it further enhances the breadth and depth of the search. In MOFECO-SS, we have
implemented two sorting mechanisms to rank the elements.

3.4.1. Force-Based Sorting Mechanism

The first mechanism arranges the elements in each cycle according to the forces applied
to them, as illustrated in Figure 4, where red and blue distinguish the forces on each element
from two objective functions, respectively. This helps illustrate the ranking process for each
element based on both objectives. The process described in the diagram involves sorting
elements within a cycle (L = 5) in the algorithm. The specific steps are as follows:

• Initial sorting based on forces:
Initially, each element is ranked individually based on the forces associated with each
of its objective functions. This means that if an element is influenced by multiple
objectives, it will receive a separate ranking number for each objective.

• Summation of rankings for each objective:
Subsequently, the ranking numbers for each element across all objective functions are
aggregated to calculate a total. This step consolidates the individual rankings into
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a comprehensive score, reflecting the overall performance of the element across all
considered objectives.

• Final sorting based on accumulated scores:
The total sum of rankings is then used to sort the elements once again. This final
sorting based on the accumulated scores determines the final order of the elements
within the cycle. This method ensures that elements that perform well across multiple
objectives are given appropriate priority.

In Figure 4, taking element 5 as an example, each force acting on it is sorted individu-
ally, resulting in ranks of 1 and 3, respectively. Upon aggregating these ranks, element 5
attains the lowest cumulative rank within the cycle, thereby categorizing it as the element
with relatively the poorest performance.

Ranking corresponding to each 

objective function after sorting 

(ascending):

The sum of the rankings of 

all forces for each element:

The corresponding force of each element 

on every objective function

Sort(ascending)

Pre-sort  index of the element in the   th cycle:r

Post-sort  index of the element in the   th cycle:r

1f
F

2f
F

Figure 4. The arrangement of elements within each cycle.

This sorting method is crucial for the algorithm that needs to consider multiple
evaluation criteria simultaneously. It ensures that elements that perform well across a
broad range of objectives are recognized and appropriately prioritized, thereby optimizing
the overall performance of the algorithm.

Utilizing this methodology, the elements in each cycle are systematically arranged
according to their total scores. The element with the top ranking in each cycle, represented
as xbr(g), represents the most optimal solution within the rth cycle as determined by the
force-based sorting mechanism. This element exemplifies the highest efficacy in meeting
the algorithm’s objectives according to the calculated forces, establishing a benchmark for
subsequent iterations and refinements within the cycle.
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3.4.2. Fast Non-Dominated Sorting Mechanism

The second sorting mechanism implemented within this framework employs the well-
established fast non-dominated sorting approach, as delineated by [29]. This method is
strategically applied after each iteration cycle to rank the elements and to accurately identify
all non-dominated solutions present within the population. In line with this methodology,
the non-dominated solutions are represented by P∗, which signifies those solutions in
the current population that have not been outperformed in any of the objectives, thereby
reflecting the most efficient trade-offs among the considered criteria. Any solution within
the P∗ is denoted by xnd(g).

3.5. Encoding and Decoding

In addressing BIGVRP, encoding and decoding are crucial steps. They involve trans-
forming the actual delivery routes into a format that algorithms can process (encoding) and
converting algorithm outputs back into executable delivery routes (decoding). This process
allows algorithms to efficiently handle and optimize delivery routes.

The encoding method we use in this paper is permutation encoding. There are N
customer points, K trucks, and the distribution center is represented by 0. As shown in
Figure 5, assume that N = 10, K = 3.

( )

( )

( )

Route 1 {0,  10,  2,  8,  0};

Route 2 {0,  6,  4,  1,  0};

Route 3 {0,  5,  3,  9,  7,  0}.

=

=

=

Encoding:

Decoding:

Figure 5. Encoding and decoding.

Each customer point is assigned a unique identifier, and each delivery route of the
trucks is represented by a sequence of these identifiers along with the distribution center.
The order of the sequence indicates the order in which these customer points are visited.
For example, Route(1) = {0, 10, 2, 8, 0} indicates that truck 1 departs from the distribution
center, then serves customer point 10, and so forth, eventually returning to the distribution
center after completing deliveries. In Figure 5, red blocks indicate that customer point 6 is
served by truck 2, and customer point 5 is served by truck 3. The initial plan is determined
based on the constraints of the refrigerated truck’s rated load capacity Q. If truck 1 is also to
deliver to customer point 6, it would result in an overload, so customer point 6 is assigned
to truck 2 for service. This arrangement can lead to a problem where the demand from all
remaining customer points served by the last truck may exceed its rated load capacity. In
this case, to facilitate the elimination of infeasible solutions by the algorithm, a substantial
number Qp is added as a penalty term to the objective function. The pseudocode for
encoding and decoding is shown as Algorithm 1.
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Algorithm 1 Encoding and decoding

1: Qk = ∅, Route(k)=∅, k = 1, 2, · · · , K
2: Set k = 1
3: for i = 1→ N do
4: if k < K then
5: Qk = Qk + qxi

6: if Qk ≤ Q then
7: Route(k) = {Route(k) xi}
8: else
9: Qk = Qk − qxi

10: k← k + 1
11: Qk = Qk + qxi

12: Route(k) = {Route(k) xi}
13: end if
14: else
15: Route(k) = {Route(k) xi}
16: Qk = Qk + qxi

17: end if
18: end for
19: if Qk > Q then
20: Qp = 100, 000, 000 ∗ (Qk −Q)
21: end if

3.6. Crossover and Mutation

In MOFECO-SS, crossover and mutation are two pivotal genetic operators used to
generate new populations, explore the solution space, and enhance diversity within the
population. These techniques mimic the genetic mechanisms of natural organisms, aiding
the algorithm in finding potentially optimal solutions.

There are numerous methods for performing crossover and mutation, and selecting
the most effective techniques is essential for enhancing the algorithm’s search capabilities.
Given the use of permutation encoding in this study, we have opted for the Partially
Matched Crossover approach and the flip mutation method. Figures 6 and 7 illustrate
the processes associated with these two operators, where the colored blocks represent the
genes that are altered during the crossover and mutation processes.

4 9,  1 4,  5 1« « «

Mapping Relationships
Exchange

Repair (according to the 

mapping relationships)

Figure 6. Partially Matched Crossover.



Symmetry 2024, 16, 1305 16 of 39

Flip

Figure 7. Flip mutation.

3.7. Stage-Specific Strategies of Evolution

As an iterative algorithm, MOFECO stands out for its dynamic approach to enhancing
the quality of the population across multiple iterations, with the ultimate aim of identifying
the optimal or near-optimal solutions. Based on this, we propose MOFECO-SS. The
concept of “Stage-Specific” in our algorithm refers to the tailored strategies applied during
different stages of the optimization process, enhancing the balance between exploration and
exploitation to improve the solution quality and convergence speed. Implementing distinct
evolutionary strategies tailored to specific stages of the iteration process is instrumental in
augmenting both the efficiency of the algorithm and the quality of the resultant solutions.
This strategic adaptation facilitates a crucial equilibrium between the exploration of the
solution space and the exploitation of promising regions, thereby bolstering the capability of
algorithms to circumvent local optima and accelerate convergence towards global optima.

In the MOFECO-SS, the evolutionary process is divided into three stages based on the
termination condition, which is defined by the number of objective function evaluations.
The algorithm concludes its iterations when the count of evaluations, denoted as c, reaches
a predefined threshold cmax. The initial stage of evolution occurs when c is within the first
20% of cmax. The mid-stage takes place when c is between 20% and 80% of cmax. Finally, the
last 20% of cmax marks the late stage of evolution.

3.7.1. Initial Stage: Intensifying Exploration

In the initial stage of the MOFECO-SS, the primary objective is to explore a broad
range of the solution space. Given that the initial population is generated randomly, this
stage inherently benefits from a high level of diversity among the elements, presenting an
excellent opportunity for exploring new solution spaces. Building upon this foundation,
we enhance exploration through crossover and mutation operators. For each element xlr(g),
select a random cycle r′ distinct from its own cycle and choose the best element in the cycle,
denoted by xbr′(g), r ̸= r′. Then use the crossover operator to combine the xlr(g) with the
xbr′(g), generating a new element. Finally, apply a higher mutation rate pm_is to mutate the
new element, further broadening the solution space.

3.7.2. Mid-Stage: Balancing Exploration and Exploitation

During the mid-stage of the evolutionary process, which encompasses a significant
portion of the total evaluations, the algorithm begins to balance its approach between
further exploration and the exploitation of promising solutions. While new solutions
are still explored, the emphasis gradually shifts towards refining the existing ones. This
involves a more nuanced application of crossover and mutation operations, where the
parameters are adjusted to foster incremental improvements rather than drastic changes.
Here’s a detailed look at how this progression is implemented:

Based on the sorting mechanism of force, elements within the cycle are arranged in
order from worst to best, as shown in Figure 8. We utilize a parameter, denoted as pc_ms,
to divide the elements in each cycle into two groups: one representing relatively inferior
elements (denoted as L ∗ pc_ms), and the other representing relatively superior elements
(notated as L ∗ (1− pc_ms). The different colors in the figure are used to distinguish these
two groups, with red indicating the worst element and blue representing the best element.
We employ elements from these two groups to perform crossover operations with the
xnd(g) and xbr′(g).
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L{ {

_c msL p*

L{ {

_(1 )c msL p* -

Cycle r

The best elementThe worst element

brx

Figure 8. Ordering of elements in a cycle.

Additionally, we use parameter pm_ms to determine the mutation probability during
the mid-stage, which is applied in local search operations on the best elements within
the cycle, i.e., xbr(g). This targeted search refines this top element further, optimizing its
performance characteristics and enhancing its contribution to the overall solution quality.

The selection criteria of elements during this stage become more stringent, focusing on
elements that not only exhibit high performance but also contribute to maintaining diversity
within the population. This ensures that while the search is becoming more focused, it does
not converge prematurely or narrow down excessively, which could potentially exclude
optimal solutions.

3.7.3. Late Stage: Intensifying Exploitation

In the late stage of the algorithm, the focus should shift to exploitation, which involves
further optimizing the current better solutions xcbs(g) to accelerate convergence. At this
stage, the current better solutions could be the current non-dominated solution xnd(g) or
the best solution within each cycle xbr(g). Furthermore, in the late stage of evolution, the
current population xlr(g) may have already evolved into relatively good solutions. In this
study, we determine xcbs(g) through experimental results and then employ the mutation
operator on them for exploitation.

The pseudocode in Algorithm 2 illustrates how these stages are implemented in
the algorithm.

Algorithm 2 Stage-Specific strategies at different evolutionary stages

1: if c < cmax ∗ 20% then
2: xnew(g)← crossover(xlr(g), xbr′ (g))
3: if rand < pm_is then
4: xnew(g)← mutation(xnew(g))
5: end if
6: else if c < cmax ∗ 80% then
7: if l < L ∗ pc_ms then
8: xnew1(g)← crossover(xlr(g), xnd(g))
9: else

10: xnew1(g)← crossover(xlr(g), xbr′ (g))
11: end if
12: if rand < pm_ms then
13: xnew2(g)← mutation(xbr(g))
14: end if
15: else
16: xnew(g)← mutation(xcbs(g))
17: end if
18: Output the final optimization results
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3.7.4. Flowchart of Stage-Specific Strategies of Evolution

The flowchart of Stage-Specific strategies of evolution is shown in Figure 9.

Yes

No

Yes

Yes

No

No

When the MOFECO-SS enters the Mid-stageWhen the MOFECO-SS enters the Initial stage

When the MOFECO-SS enters the Late stage

Proceed to the subsequent phase
( ) mutation( ( ))new cbsg g¬x x

_ ?m isrand p£

( ) mutation( ( ))new newg g¬x x

'( ) crossover( ( ), ( ))new lr brg g g¬x x x _* ?c msl L p<

1( ) crossover( ( ), ( ))new lr ndg g g¬x x x

1 '( ) crossover( ( ), ( ))new lr brg g g¬x x x

_ ?m msrand p£

2 mutation( ( ))new br g¬x x

Figure 9. The flowchart of Stage-Specific strategies.

3.8. Flowchart of MOFECO-SS

The process for solving BIGVRP using the MOFECO-SS is depicted in the flowchart as
Figure 10. The process unfolds as follows:

• Parameter setting: Initialize by setting all necessary parameters required for the
algorithm to function effectively.

• Population initialization: Begin by generating an initial population randomly. This
population is of size popsize ,which serves as the basis for further evolutionary operations.

• Objective function evaluation: Calculate the objective function for each member of the
initial population. Assess the quality of each element based on these calculations.

• Non-dominated sorting: Employ non-dominated sorting on the initial population
based on the results of the objective function evaluation. This step identifies a set of
non-dominated solutions, which will be utilized in subsequent evolutionary processes.

• Main evolutionary loop:

– Force calculation: Compute the force exerted on each element within the popula-
tion. This metric will guide the sorting and selection process.

– Element sorting: Sort elements within each cycle based on the magnitude of the
calculated forces, aligning the population for targeted evolutionary strategies.

– Evolutionary strategy application: Implement various evolutionary strategies tailored
to the elements, depending on their current stage within the evolutionary cycle.

– Combination of populations: Merge the newly derived individuals from these
evolutionary strategies with the existing parent population to form a comprehen-
sive pool of candidates.

• Population management:

– Further non-dominated sorting: Apply non-dominated sorting to the combined
population and compute the crowding distance to ensure a diverse set of solutions.

– From this sorted and crowded population, extract the top popsize elements. These
selected elements will constitute the new, updated population for the next itera-
tion of the loop.

• Termination check: Continue the iterative process until the termination condition is
satisfied, which in this case is defined as reaching the maximum number of objective
function evaluations, cmax.

• Output the solution: At the conclusion of the algorithm, once the termination condition
is met, output the final set of non-dominated solutions. This set represents the optimal
solutions derived from the algorithm.
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Figure 10. The flowchart of MOFECO-SS.

This structured approach allows the MOFECO-SS to effectively navigate the complexi-
ties of optimizing logistics in cold chain management, ensuring that each step is geared
towards refining the solution space for the best possible outcomes.

4. Experimental Result and Analysis of MOFECO-SS

To ensure the robustness and reliability of the parameter settings, all experiments
for parameter tuning were independently conducted 15 times. For the comparison of
algorithms, each experiment was repeated 31 times. The implementation was carried
out using MATLAB R2018a and executed on a system with a 2.4 GHz Intel Xeon-E5645
processor, 32 GB of RAM, and running Windows 10.

4.1. Case Study and Parameter Setting

This study applies the proposed model to a real-world scenario referenced from
Shandong Jiajiayue Group Co., Ltd., as described in Reference [30]. Jiajiayue is a leading
supermarket chain in Shandong Province, recognized for its extensive logistics operations
and commitment to integrating agricultural production with retail. For this case, we focus
on the Songcun Fresh Logistics Distribution Center in Wendeng, Weihai, China. This center
serves as a critical platform for the company’s “supermarket + base” model, ensuring
efficient and timely delivery of fresh produce.

The case study involves the distribution of vegetables such as cucumbers, tomatoes,
celery, and beans to 20 supermarket stores within a 40-km radius of the Wendeng urban
area. Deliveries are carried out using a uniform fleet of refrigerated trucks, with a set
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average speed of 25 km/h per truck. The external temperature during transportation is
assumed to be constant at 27 °C, and the refrigeration temperature is maintained at 6 °C to
preserve the quality of the produce.

The location, demand, optimal time window, acceptable time window, and service
time for each customer point are known, as shown in Table 2. Number 0 represents the
distribution center, and numbers 1–20 represent the 20 customer points. The parameter
settings for the BIGVRP are presented in Table 3, while the parameter configurations of
MOFECO-SS are detailed in Table 4.

Table 2. Demand information of customers.

Number X Coordinate (km) Y Coordinate
(km) Demand (t) [ET , LT] [EET , LLT] Service Time

(min)

0 13,271.60 2896.72 0.00 [5 : 30, 17 : 00] [5 : 00, 17 : 30] 0
1 13,270.70 2898.86 1.50 [6 : 00, 8 : 00] [5 : 30, 9 : 00] 20
2 13,270.47 2900.73 0.50 [7 : 30, 9 : 00] [7 : 00, 9 : 30] 10
3 13,269.09 2899.42 1.50 [6 : 00, 8 : 00] [5 : 30, 8 : 30] 20
4 13,268.75 2898.41 2.00 [6 : 30, 8 : 20] [6 : 00, 9 : 00] 20
5 13,271.67 2901.61 2.00 [6 : 40, 8 : 30] [6 : 10, 10 : 00] 25
6 13,269.14 2901.44 1.80 [7 : 00, 9 : 00] [6 : 30, 10 : 20] 25
7 13,267.98 2900.32 1.00 [7 : 20, 9 : 00] [7 : 00, 9 : 30] 22
8 13,270.21 2902.49 1.00 [7 : 30, 9 : 00] [7 : 00, 10 : 00] 15
9 13,267.91 2898.22 1.00 [7 : 00, 8 : 30] [6 : 40, 9 : 30] 15

10 13,266.67 2900.79 1.00 [7 : 00, 9 : 00] [6 : 30, 9 : 40] 15
11 13,267.42 2902.81 0.50 [7 : 30, 9 : 30] [7 : 00, 10 : 30] 15
12 13,269.22 2903.54 0.50 [7 : 30, 9 : 00] [7 : 00, 10 : 00] 10
13 13,265.98 2902.38 1.50 [7 : 30, 9 : 30] [7 : 00, 10 : 30] 10
14 13,273.00 2901.03 2.00 [7 : 30, 9 : 00] [7 : 00, 10 : 00] 20
15 13,272.98 2902.44 1.50 [6 : 50, 8 : 30] [6 : 20, 9 : 30] 25
16 13,271.86 2903.3 2.00 [7 : 00, 8 : 40] [6 : 40, 9 : 30] 20
17 13,271.00 2902.4 1.50 [7 : 00, 8 : 40] [6 : 40, 9 : 30] 20
18 13,272.03 2901.11 0.50 [7 : 50, 9 : 00] [7 : 00, 10 : 00] 10
19 13,269.82 2898.65 2.50 [6 : 30, 8 : 30] [6 : 00, 9 : 30] 30
20 13,271.21 2898.11 1.00 [7 : 50, 9 : 00] [7 : 00, 10 : 00] 15

Table 3. Parameters setting of BIGVRP.

Symbols Unit Value

N none 20
K none 3
c f RMB/car 200
ct RMB/km 2.0
cd RMB/t 1000
cr1 RMB/h 15
cr2 RMB/h 20
cp1 RMB/h 50
cp2 RMB/h 80
ce RMB/kg 1
Q t 9
Qc kg 25
ρ∗ kg/km 0.377
ρ0 kg/km 0.165
ε1 none 0.002
ε2 none 0.003
v km/h 25
µ g/kg · h 0.165
η kg/L 2.63
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Table 4. Parameters setting of MOFECO-SS.

Symbols Value

popsize 100
cmax 100,000
pm_is 0.9

4.2. Performance Metrics

Multi-objective optimization (MOO) algorithms are employed to address issues in-
volving several conflicting objectives. The primary aim is to generate a range of solutions
that achieve an optimal balance between these competing goals. Assessing the performance
of MOO algorithms is essential to determining their capability in discovering high-quality
solutions that span the entire Pareto front, encompassing all non-dominated solutions.

This study adopts several evaluation metrics to assess the performance of the
MOO algorithms:

4.2.1. Hypervolume

The hypervolume (HV) metric is commonly employed to assess the coverage of the
objective space by a set of solutions. It provides an integrated view of both the conver-
gence and the diversity of the solution set, offering a balanced perspective on algorithm
performance [31]. The HV is calculated using the following formula:

HV = λ

 |s|⋃
i=1

υi

 (29)

where the followins true:

• λ represents the Lebesgue measure.
• υi is the hypervolume contribution of the solution point, calculated from the reference point.
• s stands for the solution set representing the Pareto front.

The reference point (Re f ) is typically chosen based on the worst values for each
objective function across the true Pareto front. The HV increases as the solution set provides
better coverage of the objective space, indicating improved algorithm performance.

4.2.2. Inverse Generational Distance

The Inverted Generational Distance (IGD) is a widely used metric in multi-objective
optimization for assessing algorithmic performance [32]. It measures the average distance
from each point on the Pareto front to its nearest solution. The formula for calculating the
IGD is as follows:

IGD(A, B) =
1
|B| ∑

y∈B
min
x∈A

d(x, y) (30)

where:

• A is the set of solutions obtained from the optimization algorithm.
• B is the reference set, it can be the true or an approximate Pareto front.
• d(x, y) is the distance between a solution x in set A and a solution y in set B. This

distance is usually calculated using the Euclidean distance.

This metric assesses how well the solutions in set A approximate those in set B,
with lower values indicating better approximation. It can assess whether the solution set
uniformly and tightly covers the Pareto front.

4.2.3. Iϵ indicator

The Iϵ indicator primarily measures the extent to which one solution set can
ϵ-dominate another solution set [33]. This means for every solution in the reference set,
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there is at least one solution in the algorithm’s set such that it is not worse than the refer-
ence solution by more than a fixed factor ϵ across all objectives. The formula for the Iϵ is
given as:

Iϵ(A, B) = inf{ϵ ≥ 0 : ∀y ∈ B, ∃x ∈ A : x ≤ ϵ · y} (31)

where x ≤ ϵ · y indicates that for all objectives i, xi ≤ ϵ · yi.
This definition seeks the smallest ϵ such that for every solution y in the reference set B.

There exists at least one solution y in set A, and when each objective of x is scaled by ϵ, it
does not perform worse than y.

Therefore, we can use this metric to compare the performance of two solution sets
by calculating Iϵ(A, B) and Iϵ(B, A): If Iϵ(A, B) < Iϵ(B, A), then A is generally considered
better than B because it requires smaller improvements to match or surpass all objectives
in B. If Iϵ(A, B) > Iϵ(B, A), then B is generally considered better than A.

In this paper, we adopt this metric to evaluate the performance differences of algo-
rithms under different parameter settings, thereby determining the values of parameters.

4.2.4. Generational Distance

Generational Distance (GD) is a performance metric used in the field of multi-objective
optimization to quantify how close the solutions generated by an optimization algorithm
are to the true or reference Pareto front [34]. This metric focuses on the convergence aspect
of the solutions, providing a measure of the average minimum distance from each solution
in the algorithm-generated set to the nearest point on the reference Pareto front. The
formula is given as flow:

GD(A) =
1
|A|

√√√√ |A|∑
i=1

(min
y∈B

d(xi, y)2 (32)

This metric evaluates the proximity of the generated solutions to the Pareto front,
where smaller values suggest a closer alignment.

4.2.5. Pure Diversity

In the context of multi-objective optimization, the Pure Diversity (PD) metric is used
to assess the level of diversity within the solution set generated by the algorithm, focusing
on the variations between the different solutions [31]. This metric plays a critical role in
evaluating the algorithm’s effectiveness in exploring the entire solution space. The formula
commonly used to compute PD is as follows:

PD =
2

|A|(|A| − 1)

|A|−1

∑
i=1

|A|

∑
j=i+1

d
(
xi, xj

)
(33)

where the following is true:

• xi, xj represent two distinct solutions from the set.
• d

(
xi, xj

)
is the distance between these two solutions, which can be determined using

Euclidean distance or any other suitable metric.

This formula provides the average distance between all pairs of solutions within the
set, offering a quantitative measure of the diversity in the solution set. A higher PD value
indicates greater diversity, reflecting more pronounced differences between the solutions.

4.2.6. Reference Set

From Sections 4.2.2 and 4.2.4, we can see when calculating performance metrics
IGD and GD, a reference set is required, which can either be the true Pareto front or
an approximate Pareto front. For practical problems in this paper, the multi-objective
cold chain logistics distribution and the true Pareto front is unknown. Therefore, to
compute IGD and GD, it is necessary to design a reference set to quantitatively evaluate
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the performance of algorithms. In this paper, according to the BIGVRP model described,
our designed reference set is shown in Figure 11. It is a segment of the curve from the
function in Equation (34), where the vertical coordinates range between 0 and 1. From this
curve segment, 1000 evenly distributed reference points are selected.
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0.2
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1
Reference set

Figure 11. Reference set.

f2 =
40

f1 − 2100
− 0.1 + ε (34)

where ε is a small positive number to ensure that Equation (30) remains meaningful; in this
study, the value is set to 0.000001.

4.3. Strategy Selection in Late Stage

In the late stage of the MOFECO-SS, a more detailed search around the currently found
best solutions, which could be xnd(g), xlr(g), or xbr(g), is conducted through mutation
operators to find better solutions within high-quality regions of the solution space.

We designed three experiments, where MOFECO-SS employs three different evolu-
tionary strategies during the final phase of evolution to solve the BIGVRP as shown in
Table 5. These are used to determine which strategy ultimately enhances the algorithm’s
performance the most. The solution sets obtained are compared using Iϵ metric. The
calculation results are shown in Table 6:

Table 5. Strategy selection in late stage.

Evolutionary Strategy

S1 Mut(xnd(g))
S2 Mut(xlr(g))
S3 Mut(xbr(g))

Table 6. The average value of indicator Iϵ(A, B).

B A S1 S2 S3

S1 1.28 1.00
S2 1.03 1.02
S3 1.94 2.48

From Table 6, it can be seen that:
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Iϵ(S1, S2) = 1.03 and Iϵ(S2, S1) = 1.28: S1 needs a 3% improvement to match S2,
while S2 only requires at least 28% to match S1. This suggests that S1 is generally stronger
than S2.

Iϵ(S1, S3) = 1.94 and Iϵ(S3, S1) = 1.00: S1 needs a 94% improvement to match S1,
while S3 only requires a 0% to 1% improvement to match S1. This strongly indicates that S3
is better than S1 in achieving the objectives.

Iϵ(S2, S3) = 2.48 and Iϵ(S3, S2) = 1.02: S2 requires a 148% improvement to reach the
levels of S3, whereas S3 needs only a slight improvement of 2% to match S2. This suggests
that S3 is significantly better than S2.

In summary, S3 appears to be the most competitive solution set among the three when
compared against the others, as it generally requires less improvement to surpass the other
sets or is already performing better. Indeed, in the late stage of evolution, the population
may have already evolved into relatively good individuals. Typically, mutating the current
non-dominated solutions xnd(g) or the optimal solutions within a cycle xbr(g) might be
more promising as they represent potential global optima or local optima. Mutating all
individuals xlr(g) could lead to excessive exploration of the search space, reducing the
efficiency of the algorithm. If local search is applied to the set of non-dominated solutions
at this stage, it could likely lead to local optima, reducing the diversity of the algorithm.
However, conducting local searches on the optimal individuals within a cycle during the
late stage of evolution will not only avoid the algorithm getting trapped in local optima
but also enhance its diversity and make it easier to find globally optimal solutions.

Therefore, in the late stage of MOFECO-SS evolution, we employ local search on xbr(g)
to enhance exploitation.

4.4. Parameters Study

• Determining the parameters L and R
In the MOFECO-SS algorithm, the population is divided into R cycles, each consisting
of L elements, thus popsize = L × R. In this paper, popsize = 100, it is necessary
to study the impact of the number of elements in each cycle on the performance
of the algorithm and to determine the optimal number of elements. Therefore, we
established five sets of experiments based on different values of L, with L increasing
from the smallest to the largest. Each set of experiments was conducted independently
15 times. After running these experiments, we computed the average values of the
indicator Iϵ from the 15 outcomes. The averages are presented in Table 7.
As a consequence, the algorithm for BIGVRP performs best when L = 5, R = 20. This
indicates the specific configuration of the parameters, where the number of elements
per cycle is set to 5 and the number of cycles is set to 20. The results in the optimal
performance of the MOFECO-SS for solving the BIGVRP. This finding is significant
because it suggests that both a smaller grouping of elements within each cycle and a
higher total number of such cycles lead to more effective outcomes.
The optimal results from this specific configuration may be due to the interaction
between L and R, which influences the algorithm’s capacity to effectively explore and
exploit the solution space. For instance, with L = 5, each cycle contains a manageable
number of elements, potentially allowing the algorithm to more effectively fine-tune
solutions within each cycle. Additionally, having R = 20 cycles increases the diversity
of the solutions being explored, which may help escape local optima and speed up the
overall search process.

• Determining the parameters pc_ms and pm_ms
During the mid-stage of evolution in MOFECO-SS, we used two parameters, pc_ms
and pm_ms, to balance exploration and exploitation. The parameter pc_ms divides the
elements within each cycle into two parts, each adopting different strategies to explore
new solutions. The parameter pm_ms, on the other hand, determines the probability
of exploiting already discovered good solutions. Therefore, we set different values
for these two parameters and conducted experiments, still using the indicator Iϵ to
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compare the performance of the algorithm based on different settings. The calculation
results are shown in Tables 8 and 9, respectively.

Table 7. The average value of indicator Iϵ(A, B).

B A L = 5 L = 10 L = 20 L = 25 L = 50

L = 5 2.11 1.85 1.97 1.82
L = 10 1.13 1.09 1.12 1.06
L = 20 1.24 2.11 1.32 1.36
L = 25 1.34 1.80 1.40 1.56
L = 50 1.22 1.36 1.30 1.27

Table 8. The average value of indicator Iϵ(A, B).

B A pc_ms = 0.2 pc_ms = 0.4 pc_ms = 0.6 pc_ms = 0.8

pc_ms = 0.2 1.22 1.17 1.33
pc_ms = 0.4 1.73 1.63 1.95
pc_ms = 0.6 1.64 1.65 1.90
pc_ms = 0.8 1.29 1.38 1.31

Table 9. The average value of indicator Iϵ(A, B).

B A pm_ms = 0.1 pm_ms = 0.5 pm_ms = 0.9

pm_ms = 0.1 1.08 1.16
pm_ms = 0.5 1.99 1.98
pm_ms = 0.9 1.64 1.41

From Table 7, the following can be observed:

• Iϵ(L = 5, L = 10) < Iϵ(L = 10, L = 5),
• Iϵ(L = 5, L = 20) < Iϵ(L = 20, L = 5),
• Iϵ(L = 5, L = 25) < Iϵ(L = 25, L = 5),
• Iϵ(L = 5, L = 50) < Iϵ(L = 50, L = 5).

From Table 8, it can be observed that when A represents the solution set obtained with
pc_ms = 0.6 and B represents the solution sets obtained under all other conditions, Iϵ(A, B)
is consistently smaller than Iϵ(B, A). This indicates that the solutions derived from setting
pc_ms = 0.6 are superior, suggesting that this parameter setting may be more effective or
efficient compared with others.

This indicates that during the mid-stage of MOFECO-SS, achieving the best results
involves crossing the top 60% of elements in each cycle with xnd, while the remaining 40%
of elements undergo crossover with the best elements from other cycles outside their own.

Table 9 compares the performance of different mutation probabilities against each
other using the indicator Iϵ(A, B). It can be observed that when A represents the solution
set obtained with pm_ms = 0.5 and B represents the solution sets obtained under all other
conditions, Iϵ(A, B) is consistently smaller than Iϵ(B, A), which suggests that a mutation
probability of pm_ms = 0.5 offers the most balanced and effective approach during the
mid-stage of an evolutionary algorithm. This rate effectively balances exploration (finding
new solutions) and exploitation (refining existing solutions), leading to better overall
performance compared with both higher and lower mutation rates.

Choosing this mutation rate helps ensure that the algorithm neither converges too
quickly to local optima (a risk with lower mutation rates) nor explores too inefficiently
(a risk with higher mutation rates). Such balanced settings are crucial for achieving robust
and efficient performance in MOFECO-SS.
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4.5. Comparison with Optimization Algorithms

To further validate the performance of the MOFECO-SS algorithm proposed in this
paper, we also employed seven other multi-objective optimization algorithms to solve
the BIGVRP under the same conditions. Among these, four are multi-objective opti-
mization algorithms introduced in recent years based on different mechanisms: Multi-
Objective Grey Wolf Optimization (MOGWO) [35], Multi-Objective Whale Optimization
Algorithm (MOWOA) [36], Multi-Objective Honey Badger Algorithm (MOHBA) [37],
and Multi-Objective Aquila Optimization (MOAO) [38]. In addition, there is the classic
NSGA-II, and the last two are the original MOFECO and an improved version based
on local search, LSMOFECO. The selection of these algorithms aims to cover a range of
classic to modern algorithm strategies and mechanisms, providing a comprehensive as-
sessment of the performance and practicality of the MOFECO-SS algorithm in the field of
multi-objective optimization.

The seven multi-objective optimization algorithms are applied to solve the BIGVRP.
Each algorithm maintains the same population size and evolutionary termination condi-
tions as MOFECO-SS, with other parameter settings taken from their original proposals.
Each algorithm is independently run 31 times, and performance is analyzed using calcu-
lated evaluation metrics.

Table 10 shows that MOFECO-SS excels in HV, IGD, and PD metrics and is second
only to MOFECO in GD. This suggests that MOFECO-SS’s solution sets, devised to tackle
the BIGVRP, demonstrate robust convergence and diversity. Meanwhile, algorithms like
MOAO, MOHBA, MOWOA, and MOGWO generally perform poorly across all metrics,
indicating they may be less suited for the BIGVRP without further adaptation. Table 11
confirms MOFECO-SS’s superiority in HV and IGD, while MOFECO leads in GD and PD.
Table 12 reveals the standard deviation of these metrics over 31 runs, noting MOHBA’s
unusually low standard deviation, likely due to fewer solution findings. Despite this,
MOFECO-SS consistently outperforms in HV, IGD, and GD, with LSMOFECO excelling
in PD.

Table 10. Comparison of eight algorithms based on the average values of various performance metrics.

HV IGD GD PD

NSGAII 342.87 77.85 0.09 8642.52
MOAO 138.09 166.58 14.66 5781.14

MOHBA 102.51 197.96 31.10 4969.43
MOWOA 157.71 150.47 8.93 7218.92
MOGWO 186.29 135.46 5.79 7031.24
MOFECO 344.81 69.88 0.05 11,309.38

LSMOFECO 329.24 73.12 0.14 10,153.59
MOFECO-SS 383.65 54.55 0.08 13,771.46

In addition, Figure 12 presents the Pareto solution sets obtained by different algorithms,
demonstrating the effectiveness of the MOFECO-SS algorithm in finding superior solutions.
The superiority of MOFECO-SS is evident in several aspects:

• Distribution and convergence:
The Pareto front solutions generated by MOFECO-SS exhibit better distribution and
convergence compared with other algorithms. The solutions are more uniformly
spread across the Pareto front, indicating a broader range of high-quality solutions.

• Objective function values:
The axes on the graph represent the two objective functions. The solutions obtained
by MOFECO-SS are closer to the optimal values, as indicated by the lower total costs
and higher customer satisfaction. This demonstrates that the solutions found by
MOFECO-SS are more efficient and effective in balancing the trade-offs between the
two objectives.
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Figure 12. Pareto fronts obtained by eight algorithms in 31 independent runs (solutions obtained in
each run are denoted by each color). (a) NSGAII, (b) MOAO, (c) MOHBA, (d) MOWOA, (e) MOGWO,
(f) MOFECO, (g) LSMOFECO, (h) MOFECO-SS.

In summary, Figure 12 illustrates that the proposed MOFECO-SS algorithm outper-
forms the other seven algorithms by providing better-distributed and more convergent
Pareto solutions with improved objective function values. Although some algorithms
like NSGA-II, MOFECO, and LSMOFECO show decent distribution and convergence, the
objective function values found by these algorithms are generally worse compared with
those found by MOFECO-SS. Overall, MOFECO-SS demonstrates superior performance
in both the distribution and convergence of solutions, validating its capability to find
higher-quality solutions in the context of the BIGVRP in CCL.
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Table 11. Comparison of eight algorithms based on the best values of various performance metrics.

HV IGD GD PD

NSGAII 400.02 63.68 0.04 18,605.93
MOAO 173.60 109.35 1.18 11,700.03

MOHBA 114.39 182.29 20.26 7710.19
MOWOA 175.63 123.02 0.33 15,234.82
MOGWO 206.89 119.14 0.24 11,680.04
MOFECO 416.41 38.21 0.03 20,834.71

LSMOFECO 421.45 45.73 0.05 14,001.52
MOFECO-SS 427.44 35.93 0.04 20,664.21

Table 12. Comparison of eight algorithms based on the standard deviation of various performance metrics.

HV IGD GD PD

NSGAII 31.68 11.17 0.08 3174.46
MOAO 11.96 19.76 7.40 2585.58

MOHBA 4.29 3.19 4.91 1087.23
MOWOA 9.70 11.48 5.39 2742.83
MOGWO 11.85 10.03 4.67 2254.26
MOFECO 33.30 16.77 0.02 4282.28

LSMOFECO 35.98 14.79 0.18 2975.77
MOFECO-SS 24.62 13.93 0.04 3461.99

Based on this, Figures 13–16 display the median value of the performance metrics from
31 experimental results for each algorithm, providing a clearer comparison of these eight
algorithms. Additionally, the reference set designed for calculating the IGD and GD evalu-
ation metrics is also depicted. The four figures visually demonstrate that a majority of the
solutions discovered by MOFECO-SS lie in the lower-left region compared with solutions
found by other algorithms. This is particularly advantageous for the minimization model
proposed in this paper, as the solutions identified by MOFECO-SS are generally superior.

Overall, MOFECO-SS’s superior performance across most metrics can be attributed to
its effective integration of multi-objective optimization strategies with a stable and well-
balanced search algorithm, capable of consistently finding near-optimal solutions with high
diversity and dominance in the solution space for the BIGVRP.
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Figure 13. Pareto fronts of each algorithm corresponding to the median HV value from 31 experi-
mental results.
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Figure 14. Pareto fronts of each algorithm corresponding to the median IGD value from 31 experi-
mental results.
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Figure 15. Pareto fronts of each algorithm corresponding to the median GD value from 31 experi-
mental results.
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Figure 16. Pareto fronts of each algorithm corresponding to the median PD value from 31 experimen-
tal results.
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4.6. Statistical Significance Testing

To ensure the statistical significance of the performance differences between MOFECO-
SS and the other seven algorithms across the four key metrics (HV, IGD, GD, and PD), we
performed the Wilcoxon signed-rank test. The results in Table 10 display the average values
for each algorithm across the metrics, and Table 13 presents the p-values from the Wilcoxon
test, allowing us to analyze whether these differences are statistically significant.

In terms of the HV, MOFECO-SS demonstrated superior performance, achieving the
highest HV value (383.65) among all the algorithms. The Wilcoxon test results confirmed that
the differences between MOFECO-SS and the other algorithms in the HV metric are statistically
significant, with a p-value far below 0.05. This indicates that MOFECO-SS significantly
outperformed the other algorithms in terms of coverage and diversity of solutions.

For the IGD, MOFECO-SS also achieved the best results, with an IGD value of 54.55,
which was the lowest among all the algorithms. A lower IGD indicates that the solutions
generated by MOFECO-SS are closer to the true Pareto front. The Wilcoxon test further verified
that the differences between MOFECO-SS and the other algorithms in IGD are statistically
significant, with p-values all below 0.05. This confirms that MOFECO-SS produced solutions
that are significantly closer to the true Pareto front compared with the other algorithms.

However, in terms of GD, MOFECO performed slightly better than MOFECO-SS,
with a GD value of 0.05 compared with MOFECO-SS’s 0.08. Although the difference
between these two values is relatively small, the Wilcoxon test indicates that the difference
is statistically significant (p = 4.86× 10−4), suggesting that MOFECO has a slight edge over
MOFECO-SS in generating solutions closer to the ideal Pareto front.

Finally, for PD, MOFECO-SS demonstrated outstanding performance, with a PD value
of 13,771.46, which was significantly higher than that of the other algorithms. The Wilcoxon
test confirmed that the differences between MOFECO-SS and the other algorithms in
the PD metric are statistically significant, with p-values all below 0.05. This indicates that
MOFECO-SS generated a more diverse set of solutions compared with the other algorithms.

In summary, the Wilcoxon signed-rank test results demonstrate that MOFECO-SS signifi-
cantly outperformed the other algorithms in terms of HV, IGD, and PD, indicating superior
coverage, proximity to the Pareto front, and solution diversity. While MOFECO was slightly
better than MOFECO-SS in the GD metric, the difference is statistically significant. These
findings confirm the robustness and effectiveness of MOFECO-SS in solving multi-objective
optimization problems, particularly in the context of the BIGVRP, where it excels in generating
high-quality, diverse solution sets across multiple key performance metrics.

Table 13. Wilcoxon p-values for comparisons between MOFECO-SS and other algorithms on key metrics.

HV IGD GD PD

NSGAII 1.23 × 10−4 6.57× 10−6 9.97 × 10−2 9.48 × 10−6

MOAO 1.17 × 10−6 1.17 × 10−6 1.17 × 10−6 1.43 × 10−6

MOHBA 1.17 × 10−6 1.17 × 10−6 1.17 × 10−6 1.17 × 10−6

MOWOA 1.17 × 10−6 1.17 × 10−6 1.17 × 10−6 3.41 × 10−6

MOGWO 1.17 × 10−6 1.17 × 10−6 1.17 × 10−6 1.92 × 10−6

MOFECO 1.33 × 10−4 1.07 × 10−3 4.86 × 10−4 2.30 × 10−2

LSMOFECO 9.48 × 10−6 1.55 × 10−4 1.83 × 10−3 3.36 × 10−4

4.7. Experimental Results and Compromise Solution
4.7.1. Experimental Results

In this study, we have designed an optimal set of parameters for the MOFECO-SS
algorithm, enabling it to achieve the best performance in solving the BIGVRP. We selected
a solution set that corresponds to the maximum HV indicator for analysis. Depending on
different optimization considerations of decision-makers, specific solutions are chosen as
shown in Table 14.
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Table 14. Solutions corresponding to different decisions.

f1 (RMB) f2 C f (RMB) Ct (RMB) Cd (RMB) Cr (RMB) Cp (RMB) Ce (RMB) EM (kg)

Solution_1 2299.44 0.63 600.00 317.96 106.41 178.79 1096.28 54.23 79.23
Solution_2 2442.12 0.05 600.00 328.86 120.84 180.54 1211.89 61.23 86.23
Solution_3 2413.32 0.24 600.00 303.27 111.41 175.85 1222.79 53.94 78.94
Solution_4 2302.31 0.62 600.00 320.37 105.99 178.64 1097.31 54.45 79.45
Solution_5 2414.13 0.22 600.00 304.37 112.93 175.64 1221.20 54.45 79.45

• Solution_1 corresponds to the path with the minimum total and time penalty costs.
This makes it ideal for scenarios where minimizing direct and indirect costs related to
distribution inefficiencies is crucial.

• Solution_2 is the best for customer satisfaction. This route is optimized for delivering
the highest levels of service quality, potentially considering factors like delivery times
and customer feedback.

• Solution_3 is selected for having the minimum transportation costs, carbon emissions,
and carbon emission costs. It represents the most environmentally friendly option,
suitable for operations aiming to reduce their ecological footprint and comply with
environmental regulations.

• Solution_4 corresponds to the route with the minimum costs associated with cargo
damage. This route would be particularly valuable in transporting fragile or high-
value items, where reducing the incidence of damage is critical.

• Solution_5 is the best route for minimizing refrigeration costs. It is ideal for the
transport of perishable goods where refrigeration is a major cost driver.

Figures 17–21 illustrate the specific routes for each refrigerated truck corresponding
to each logistics path. The choice of route depends on the specific operational goals and
constraints of the logistics operation. Each route offers distinct advantages in terms of
cost, customer satisfaction, environmental impact, and specific logistical challenges. By
aligning route selection with strategic business objectives, whether that is minimizing
costs, enhancing customer satisfaction, promoting sustainability, or ensuring product
integrity, decision-makers can effectively optimize their logistics operations to support
broader business outcomes. This strategic approach ensures that the MOFECO-SS is not
only optimized for performance but also tailored to meet the diverse needs of modern
logistics environments.

From the experimental results, it can be seen that the findings from this study offer
several valuable insights for managers in the cold chain logistics sector:

Balancing cost and sustainability: The MOFECO-SS algorithm provides a practical
tool for logistics managers to balance cost efficiency with environmental sustainability. By
minimizing carbon emissions alongside distribution costs, managers can align their opera-
tions with corporate sustainability goals and regulatory requirements, thereby enhancing
the company’s reputation and compliance.

Enhancing customer satisfaction: The algorithm’s ability to maximize customer sat-
isfaction through optimized delivery routes ensures that perishable goods such as food
and pharmaceuticals are delivered timely and in optimal condition. This is critical for
maintaining customer loyalty and competitive advantage in markets where product quality
and timely delivery are paramount.

Flexibility in route planning: The flexibility of MOFECO-SS allows for tailored route
planning that can adapt to various operational constraints and customer demands. Man-
agers can use this flexibility to dynamically adjust routes in response to real-time changes in
demand, traffic conditions, and other disruptions, thereby improving the overall resilience
and responsiveness of the logistics network.
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Figure 17. Solution_1 with the minimum total and time penalty costs.
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Figure 18. Solution_2 with the maximum customer satisfaction.
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Figure 19. Solution_3 with the minimum transportation and carbon emission costs.

1.3266 1.3268 1.327 1.3272

X coordinate (km) 10
4

2896

2897

2898

2899

2900

2901

2902

2903

2904

Y
 c

o
o
rd

in
at

e 
(k

m
)

Refrigerated truck route map

0

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
Distribution center

Customer point

Route(1)

Route(2)

Route(3)

( )

( )

(3)

0, 13, 15, 9, 12, 20, 11, 18, 10, 8, 2, 0

0, 16, 7, 14, 19, 3, 0

Route 1 ={ };

Route 2 ={0, 17, 4, 5, 6, 1, 0};

Route { }.=

Figure 20. Solution_4 with the minimum cargo damage costs.
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Figure 21. Solution_5 with the minimum refrigeration costs.

Strategic decision-making: The comprehensive approach of MOFECO-SS in consid-
ering multiple objectives simultaneously provides managers with a holistic view of the
trade-offs involved in route planning. This facilitates more informed strategic decision-
making, enabling managers to prioritize different aspects of logistics operations based on
current business objectives and external conditions.

Scalability and adaptability: The algorithm’s Stage-Specific adaptation mechanism
ensures that it remains effective across different scales of operation, from small local
networks to large international logistics systems. Managers can leverage this scalability to
implement the algorithm across various levels of their supply chain, ensuring consistent
optimization performance.

By integrating these insights into their operations, managers can enhance both the
efficiency and sustainability of their logistics networks, ultimately contributing to better
operational outcomes and long-term strategic advantages.

4.7.2. Compromise Solution

In multi-objective optimization, different solutions may emphasize different objectives,
making it essential to select a compromise solution that balances all key objectives. In this
study, we utilize the Ideal Point Method [39] to identify a compromise solution from the set
of solutions with the largest HV indicator. The Ideal Point Method allows us to evaluate
how close each solution is to the ideal point, where the ideal point represents the best
possible values for each of the objectives in the problem.

To begin, we determined the ideal point for each objective function. For objectives that
need to be minimized (e.g., transportation costs, carbon emissions), the ideal point is the
minimum value observed across all solutions. Conversely, for objectives that need to be
maximized, the ideal point is the maximum value observed. Thus, the ideal point serves as
a benchmark for optimal performance across all objectives.
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Next, we calculated the distance between each solution and the ideal point using the
Euclidean distance formula:

d(x) =

√
n

∑
i
( fi(x)− f ∗i )

2 (35)

where fi(x) represents the value of the i-th objective for solution x, and f ∗i represents the
ideal value for the i-th objective, n is the number of objective functions. By calculating
the distance for each solution, we identified the solution closest to the ideal point. This
solution, known as the compromise solution, offers the best balance among all objectives.

Table 15 shows the objective function values of the selected compromise solution.
This solution balances several objectives, such as total cost, customer satisfaction, and
environmental impact. For example:

• The total cost is 2363.55 RMB, which, while not the lowest, represents a well-balanced
trade-off with other objectives.

• Customer satisfaction is relatively high, with a score of 0.42, indicating that delivery
conditions largely meet customer expectations.

• The carbon emissions are 84.84 kg, demonstrating strong environmental sustainability.

Figure 22 visually illustrates the specific routes for each refrigerated truck corre-
sponding to the compromise solution. The compromise solution aims to balance multiple
objectives such as cost, customer satisfaction, and environmental sustainability. Each route
is optimized to meet the overall strategic goals of the logistics operation by minimizing
trade-offs among these objectives. The three distinct routes demonstrate how different
customer points are served efficiently, ensuring that the logistics operation remains both
cost-effective and environmentally responsible while maintaining high service quality.
This approach allows decision-makers to achieve a well-rounded optimization, addressing
various operational constraints and priorities in a balanced manner.
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Figure 22. Compromise solution.
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Table 15. Objective function values of the compromise solution.

Objective Function Values

f1 (RMB) 2363.55
f2 (RMB) 0.42

C f (RMB) 600.00
Ct (RMB) 325.56
Cd (RMB) 114.20
Cr (RMB) 180.31
Cp (RMB) 1143.48
Ce (RMB) 59.84
EM (kg) 84.84

5. Conclusions and Future Work

This study introduces the MOFECO-SS algorithm, designed to balance the dual ob-
jectives of minimizing total costs (including carbon emissions) and maximizing customer
satisfaction in the context of GVRP. Through extensive experiments, it has been shown
that MOFECO-SS significantly outperforms other meta-heuristic algorithms across several
key performance metrics. Statistical significance testing via the Wilcoxon signed-rank test
confirmed that MOFECO-SS consistently generates higher-quality solutions with better
coverage, proximity to the Pareto front, and diversity.

The results from this study indicate that MOFECO-SS produces Pareto front solutions
with superior distribution and convergence compared with other algorithms, offering
a diverse set of high-quality solutions. By leveraging the flexibility of the MOFECO-SS
framework, logistics managers can tailor route plans to align with strategic business objec-
tives, such as reducing operational costs, enhancing customer satisfaction, and promoting
sustainability. The application of the Ideal Point Method further demonstrated the algo-
rithm’s capability to select compromise solutions from the Pareto front, balancing multiple
objectives to meet varying operational demands.

Furthermore, the statistical significance testing confirmed the robustness of MOFECO-
SS across all metrics. The algorithm achieved significant improvements in HV, IGD, and
PD when compared with other algorithms. Although MOFECO performed slightly better
in GD, the overall performance of MOFECO-SS remains competitive and highly effective
in addressing multi-objective optimization challenges, particularly in GVRP scenarios.

Despite these promising results, this study acknowledges several limitations. Certain
assumptions were made about road conditions, traffic, and customer demand to simplify
the problem, which may not fully reflect the complexities of real-world logistics environ-
ments. While these assumptions are common in logistics optimization research, future
studies should aim to incorporate more dynamic and realistic factors, such as variable traffic
conditions and fluctuating customer demand patterns, to enhance the model’s applicability.

Additionally, the performance of MOFECO-SS is influenced by the choice of parame-
ters. While this study utilized manually-tuned parameters, future research could explore
automated parameter tuning techniques, including machine learning-based methods, to
enhance the algorithm’s adaptability across different logistics scenarios. This could lead to
improved performance and broader applicability, making MOFECO-SS more effective in a
wider range of real-world conditions.

Looking ahead, future research could focus on several key areas to further enhance the
practicality and applicability of the MOFECO-SS algorithm. First, integrating real-time data,
such as traffic information and dynamic customer demands, through Internet of Things
(IoT) technologies could significantly improve the algorithm’s performance in dynamic
logistics environments. By incorporating real-time data, the algorithm could adapt more
efficiently to sudden changes in the logistics network, thereby improving route efficiency
and customer service levels.
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In addition, future studies could explore the application of MOFECO-SS in various in-
dustries through case studies and pilot implementations. Testing the algorithm in different
sectors, such as perishable goods, pharmaceuticals, and e-commerce, could offer valuable
insights into its practical benefits and challenges. These real-world applications would help
bridge the gap between theoretical optimization models and practical logistics operations,
providing valuable feedback to refine the algorithm for specific industry needs.

Finally, expanding the scope of the optimization objectives by considering additional
sustainability factors, such as energy consumption during transportation and the use of
alternative fuel vehicles, could further enhance the algorithm’s contribution to sustainable
logistics operations. By incorporating broader sustainability goals, MOFECO-SS could
become an even more powerful tool for addressing both operational and environmental
challenges in modern logistics networks.

In conclusion, by addressing these future research directions, this study not only
advances the academic understanding of logistics optimization but also provides prac-
tical, actionable strategies for logistics managers to improve operational efficiency and
sustainability in supply chain operations. The combination of strong performance across
key metrics and statistical validation ensures that MOFECO-SS is a valuable contribution
to the field of multi-objective optimization.
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