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Abstract: In this study, we explore the concept of symmetry as it applies to the dynamics of the
Hepatitis B Virus (HBV) epidemic model. By incorporating symmetric principles in the stochastic
model, we ensure that the control strategies derived are not only effective but also consistent across
varying conditions, and ensure the reliability of our predictions. This paper presents a stochastic
optimal control analysis of an HBV epidemic model, incorporating vaccination as a pivotal control
measure. We formulate a stochastic model to capture the complex dynamics of HBV transmission
and its progression to acute and chronic stages. By leveraging stochastic differential equations, we
examine the model’s stationary distribution and asymptotic behavior, elucidating the impact of
random perturbations on disease dynamics. Optimal control theory is employed to derive control
strategies aimed at minimizing the disease burden and vaccination costs. Through rigorous numerical
simulations using the fourth-order Runge–Kutta method, we demonstrate the efficacy of the proposed
control measures. Our findings highlight the critical role of vaccination in controlling HBV spread
and provide insights into the optimization of vaccination strategies under stochastic conditions. The
symmetry within the proposed model equations allows for a balanced approach to analyzing both
acute and chronic stages of HBV.

Keywords: HBV stochastic model; stationary distribution; stochastic asymptotic behavior; optimal
control

MSC: 60G51; 60J25; 60H10; 92B05; 92D30

1. Research Background

Viruses infecting the liver cause hepatitis B. Hepatitis B is a significant global health
concern, with millions of people affected worldwide. Understanding this disease is cru-
cial for prevention, diagnosis, and treatment. Hepatitis B is a highly contagious virus
transmitted through various means. These include sharing needles or syringes, receiving
contaminated blood transfusions or organ transplants, or being stuck with a contaminated
needle. Unprotected sexual intercourse with an infected partner can also result in transmis-
sion. The virus can also be spread through objects like razors or toothbrushes contaminated
with infected blood and through an infected mother’s breast milk. Healthcare workers
are at risk of exposure to infected blood, making it essential to take necessary precautions
when dealing with infected patients [1–4]. It is possible for individuals with hepatitis B
to not show any symptoms, especially during the initial stages of the infection. However,
when symptoms do appear, they may include jaundice, loss of appetite, fatigue, abdominal
pain, nausea, joint pain, and dark urine. Hepatitis B infections are classified as either acute
or chronic. Acute hepatitis B typically lasts a few months, and the body’s immune system
can usually clear the virus within this time. However, if the virus persists in the body
for over six months, it is considered a chronic infection [5]. The result can be severe liver
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damage and an increased risk of liver cancer [6,7]. Therefore, it is essential to diagnose
and treat Hepatitis B as early as possible to avoid any potential complications. Blood tests
can determine if hepatitis B is acute or chronic, detect viral antigens and antibodies, and
assess liver function. Hepatitis B can be prevented through vaccination. Practicing safe sex,
avoiding the sharing of needles or items that may have blood on them, and maintaining
proper infection control measures in healthcare facilities are essential to preventing the
spread of the infection. The symptoms of acute hepatitis B can be managed with supportive
care rather than specific treatment. On the other hand, chronic hepatitis B is managed
with antiviral medications to suppress viral replication and lower liver inflammation. In
severe cases, a liver transplant may be necessary for individuals with significant liver
damage. Over 250 million people are chronically infected with hepatitis B worldwide [8].
Additionally, it leads to liver-related deaths and morbidities.

Mathematical modeling is one of the most essential tools for understanding disease
transmission dynamics [9,10]. Mathematical models have been instrumental in the study
of HBV and have helped researchers to identify crucial mechanisms of the virus, such
as its transmission, effects on the body, and available treatments. These models have
also provided valuable insights for developing effective vaccines [11], which have saved
countless lives in the past decades and will continue to be invaluable in the fight against
HBV. By enabling scientists to understand the intricate workings of the virus more deeply
than ever, these models have allowed them to identify critical factors such as transmission
and prevention methods. This breakthrough has revolutionized the fight against the virus,
providing scientists the means to combat it more effectively. It has enabled governments
to make more informed decisions about responding to the virus. Mathematicians have
developed a number of mathematical models to control the spread of infectious diseases.
As a result of these models, public health policies have been informed, resources have been
targeted to those who are most at risk, and predictions have been made about the spread of
the disease. They have also been used to assess the efficacy of different interventions, such
as contact tracing and social distancing [12,13]. Ghulam et al. [14] delved into a stochastic
epidemic model for hepatitis B featuring saturated incidence rates. Amir Khan et al. [15]
explored the impact of environmental fluctuations on transmission rates using a stochastic
epidemic model. Murad et al. [16] introduced a stochastic model for the transmission of
the Hepatitis B virus (HBV), incorporating environmental noise to elucidate the dynam-
ics. Tahir Khan et al. [17] developed stochastic models to investigate the dynamics of
the hepatitis B epidemic, specifically examining population changes and their long-term
impact on the epidemic’s behavior. Jiying Mawe and Shasha Ma et al. [18] investigated a
transmission model for stochastic HBV with media coverage featuring saturated incidence
rates. Mathematical simulation models are widely utilized to study and control infectious
diseases, particularly in the context of preventing the spread of contagious diseases [19–23].

In this study, the authors created and analyzed a probability-based model that deter-
mines stability. A control theory was also developed for the stochastic and deterministic
models as part of the study. In the control aspect, the main focus was determining the
control measure of the infection rate to reduce the number of infected individuals with
time. Stochastic models were optimized to minimize their expected values. A determinis-
tic model was approached using the Pontryagin principle, while stochastic models were
controlled using the Hamilton–Jacobi–Bellman equation.

The subsequent sections of this paper are organized in the following way. Section 2
presents the model that governs the dynamics of HBV. Section 3 presents the unique-
ness and existence of a non-negative solution globally. Section 4 presents an in-depth
investigation of the disease’s extinction, from which necessary criteria are determined.
The suggested model’s ergodicity and the possibility of a specific stationary distribution
are examined in Section 5. Section 6 discusses the optimal control for both deterministic
and stochastic models. Deterministic model optimal control is based on Pontryagin’s
maximum principle, while for stochastic model is based on the Hamilton–Jacobi–Bellman
equation. Both methods aim to maximize the expected value of the system’s cost function.



Symmetry 2024, 16, 1306 3 of 37

In Section 7, the simulation results are displayed. We summarize our results in Section 8 at
the conclusion.

2. Model Formulation

An HBV stochastic model will be formulated in this section with different assump-
tions. The whole population is represented by N(t) and then divided into six different
classes: S(t) susceptible, V(t) vaccinated, A(t) acutely infected, Z(t) chronically infected,
H(t) hospitalized, and R(t) recovered. A community’s population at any given t time is
represented by N(t). In other words, N(t) = S(t) + V(t) + A(t) + Z(t) + H(t) + R(t). A
model’s long-term behaviour may be affected by the changing population environment,
which is important to note. The following hypothesis is therefore applied to the model.

L1 : We assume that both the parameter and system state are non-negative.
L2 : Acute duration is short, and if the treatment fails during this period, the individual

will be considered in a chronic class.
L3 : Our model will include environmental noise by considering the function Bi(t) for

i = {1, 2, 3, 4, 5, 6} as the Brownian standard motion, and δ1, δ2, δ3, δ4, δ5, and δ6 > 0
represent the intensities of white noises. Furthermore, Brownian motion satisfies
Bi(0) = 0 for all i.

L4 : Once an individual recovers from the disease, they will obtain permanent immunity.

The stated assumptions (L1 − L4) leads to the mathematical model described by
stochastic Equation (1):

dS(t) = [ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ)S(t)]dt + δ1S(t)dB1(t),

dV(t) = [Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t)]dt + δ2V(t)dB2(t),

dA(t) = [
β1S(t)A(t)

N
+

β2V(t)A(t)
N

− (α1 + α2 + ψ1 + χ)A(t)]dt + δ3 A(t)dB3(t),

dZ(t) = [α1 A(t)− (γ1 + ψ2 + γ2 + χ)Z(t)]dt + δ4Z(t)dB4(t),

dH(t) = [ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t)]dt + δ5H(t)dB5(t),

dR(t) = [γ1Z(t) + α2 A(t) + ψ3H(t)− χR(t)]dt + δ6R(t)dB6(t).

(1)

where (B1, B2, B3, B4, B5, B6, )(t) are independent standard Brownian motions, and classic
Gaussian white noise intensities are (δ1, δ2, δ3, δ4, δ5, δ6) accordingly. The contact be-
tween the surrounding environment and an individual in this model is shown by δ1S(t)B1,
δ2V(t)B2, δ3 A(t)B3, δ4Z(t)B4, δ5H(t)B5, and δ6R(t)B6.

In model (1), all parameters are positive, reflecting various aspects of HBV dynamics,
as detailed. The parameters include Π, the recruitment rate of new individuals; β1 and β2,
which describe the infection rates from susceptible and vaccinated individuals, respectively;
η, the rate of waning vaccine-induced immunity; and χ, the frequency of natural deaths.
Other parameters include γ, the contact rate between individuals with weakened immune
systems and those who are sick; γ1, the recovery rate for chronically ill individuals; γ2,
the chronic HBV mortality rate; α1 and α2, which describe the transition rate from acute
to chronic infection and recovery rates, respectively; and ψ, the proportion of newborns
without effective vaccination. Additionally, ψ1, ψ2, ψ3, and ψ4 represent hospitalization
rates for acute and chronic patients, recovery rates from hospitalization, and disease-
induced mortality rates, respectively. These parameters collectively shape the model’s
depiction of HBV transmission and progression within the population.
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Model (1) has a deterministic form:

dS
dt

= ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ)S(t),

dV
dt

= Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t),

dA
dt

=
β1S(t)A(t)

N
+

β2V(t)A(t)
N

− (α1 + α2 + ψ1 + χ)A(t),

dZ
dt

= α1 A(t)− (γ1 + ψ2 + γ2 + χ)Z(t),

dH
dt

= ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t),

dR
dt

= γ1Z(t) + α2 A(t) + ψ3H(t)− χR(t).

(2)

According to [24,25], deterministic model (2) contains a basic reproduction number.
According to a population of susceptible individuals, the basic reproduction number is the
number of infected people infected by infected individuals. This number measures the
disease’s spread potential. It is a critical indicator of the severity of an epidemic.

RD
0 =

β1 + β2

(α1 + α2 + ψ1 + χ)
. (3)

Both models (1) and (2) are explained in graphical form in Figure 1a,b. Figure 1a,b
clearly show how the HBV model works, with the infected host continuously producing
and transmitting the virus to others.

(a) (b)

Figure 1. Flowcharts of models (1) and (2) showing HBV transmission rate. (a) Model (1) flowchart.
(b) Model (2) flowchart.

3. Existence and Uniqueness in the Realm of Positive Solutions

According to a biological study of models (1) and (2), their solution should be positive
globally. The initial step is to prove that this property is satisfied by the solution of model (1).

Theorem 1. Model (1) has a unique solution (S(t), V(t), A(t), Z(t), H(t), R(t)) regardless of
the initial value of t ≥ 0 (S(0), V(0), A(0), Z(0), H(0), R(0)) ∈ R6

+, and the solution remains in
R6
+ with probability one, as, S(t), V(t), A(t), Z(t), H(t), R(t) ∈ R6

+ fol all t ≥ 0 a.s.
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Proof. Evidently, the coefficients governing model (1) exhibit local Lipschitz continuity
irrespective of the chosen initial values (S(0), V(0), A(0), Z(0), H(0), R(0)) ∈ R6

+. This
ensures the existence of a unique local solution (S(t), V(t), A(t), Z(t), H(t), R(t)) over
the interval t ∈ [0, τe), where τe represents the explosion time (refer to [26] for a com-
prehensive explanation). To establish global validity, it becomes imperative to demon-
strate that τe is almost surely infinite. Select k0 ≥ 0 to be sufficiently large such that
(S(0), V(0), A(0), Z(0), H(0), R(0)) all reside within the interval [ 1

k0
, k0]. For every integer

k ≥ k0, we define the subsequent stopping time.

τk = in f
{

t ∈ [0, τe) : min S(t), V(t), A(t), Z(t), H(t), R(t)} ≤ 1
k

or max{S(t), V(t), A(t), Z(t), H(t), R(t) ≥ k}
}

. (4)

The set inf∅ throughout this paper equals ∞ (since we normally denote empty sets
as ∅). Based on this definition, τk increases as k → ∞. If τ∞ = limk→∞τk, then τ∞ ≤ τe a.s.,
that is, if τ∞ = ∞ a.s. A pair of constants T > 0 also exists, ϵ ∈(0, 1), if this assertion is
false; thus,

ϵ < P{T ≥ τ∞}. (5)

with an integer k1 ≥ k0. Therefore,

P{T ≥ τk} ≥ ϵ, ∀ k1 ≤ k. (6)

Now, a C2-function V : R6
+ → R+, where R+ = x ∈ R : x ≥ 0, is as follows:

V(S, V, A, Z, H, R) = S + V + A + Z + H + R − 6 − (ln S + ln V + ln A + ln Z + ln H + ln R). (7)

By applying Ito’s formula, we obtain the following result:

V(S, V, A, Z, H, R) = LV(S, V, A, Z, H, R) + δ1(S − 1)dB1(t) + δ2(V − 1)dB2(t) + δ3(A − 1)dB3(t)

+ δ4(Z − 1)dB4(t) + δ5(H − 1)dB5(t) + δ6(R − 1)dB6(t).
(8)

where

LV =

(
1 − 1

S

)(
ψΠ − β1S(t)A(t)

N
+ ηV − (γ + χ) S

)
+

δ2
1
2

+

(
1 − 1

V

)(
Π(1 − ψ) + γS(t)− β2V(t)A(t)

N
− (η + χ)V(t)

)
+

δ2
2
2

+

(
1 − 1

A

)(
β1S(t)A(t)

N
+

β2V(t)A(t)
N

− (α1 + α2 + ψ1 + χ)A(t)
)
+

δ2
3
2

+

(
1 − 1

Z

)(
α1 A(t)− (γ1 + ψ2 + γ2 + χ)Z(t)

)
+

δ2
4
2

+

(
1 − 1

H

)(
ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t)

)
+

δ2
5
2

+

(
1 − 1

R

)(
γ1Z(t) + α2 A(t) + ψ3H(t)− χR(t)

)
+

δ2
6
2

.

(9)
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LV = ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ)S(t)− ψΠ
S(t)

+
β1 A(t)

N
− ηV(t)

S(t)
+ γ + χ +

δ2
1
2

+ Π(1 − ψ) + γS(t)− β2V(t)A(t)
V

− (η + χ)V(t)− Π(1 − ψ)

V(t)
− γS(t)

V(t)
+

β2 A(t)
N

+ η + χ

+
δ2

2
2
+

β1S(t)A(t)
N

+
β2V(t)A(t)

N
− (α1 + α2 + ψ1 + χ)A(t)− β1S(t)

N
− β2V(t)

N
+ α1 + α2

+ ψ1 + χ +
δ2

3
2
+ α1 A(t)− (γ1 + ψ2 + γ2 + χ)Z(t)− α1 A(t)

Z(t)
+ γ1 + ψ2 + γ2 + χ +

δ2
4
2

+ ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t)− ψ1 A(t)
H

− ψ2Z(t)
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ γ1Z(t)

+ +α2 A(t) + ψ3H(t)− χR(t)− γ1Z(t)
R

− α2 A(t)
R

− ψ3H(t)
R

+ χ +
δ2

6
2

.

= ψΠ + ηV(t) +
β1 A(t)

N
+ γ + χ +

δ2
1
2
+ Π + γS(t) +

β2 A(t)
N

+ η + χ +
δ2

2
2
+

β1S(t)A(t)
N

+
β2V(t)A(t)

N
+ α1 + α2 + ψ1 + χ +

δ2
3
2
+ α1 A(t) + γ1 + ψ2 + γ2 + χ +

δ2
4
2
+ ψ1 A(t) + ψ2Z(t)

+ ψ3 + ψ4 + χ +
δ2

5
2
+ γ1Z(t) + α2 A(t) + ψ3H(t) + χ +

δ2
6
2
− β1S(t)A(t)

N
− γS(t)− χS(t)− ψΠ

S(t)

− ηV(t)
S(t)

− Πψ − β2V(t)A(t)
V

− ηV(t)− χV(t)− Π(1 − ψ)

V(t)
− γS(t)

V(t)
− α1 A(t)− α2 A(t)− ψ1 A(t)

− χA(t)− β1S(t)
N

− β2V(t)
N

− γ1Z(t)− ψ2Z(t)− γ2Z(t)− χZ(t)− α1 A(t)
Z(t)

− ψ3H(t)− ψ4H(t)

− χH(t)− ψ1 A(t)
H

− ψ2Z(t)
H

− χR(t)− γ1Z(t)
R

− α2 A(t)
R

− ψ3H(t)
R

.

≤ Π + β1 + β2 + γ + 6χ + η + α1 + α2 + ψ1 + ψ2 + ψ3 + ψ4 + γ1 + γ2 +
δ2

1 + δ2
2 + δ2

3 + δ2
4 + δ2

5 + δ2
6

2
:= K. (10)

In view of the fact that K is a positive independent constant of S, V, A, Z, H, R and t,
we come up with the following:

V(S, V, A, Z, H, R) ≤ Kdt + δ1(S − 1)dB1(t) + δ2(V − 1)dB2(t) + δ3(A − 1)dB3(t)

+ δ4(Z − 1)dB4(t) + δ5(H − 1)dB5(t) + δ6(R − 1)dB6(t).
(11)

By integrating both sides of Equation (11) and taking expectations from 0 to T ∧ τk,
we obtain

EV(S(T ∧ τk), V(T ∧ τk), A(T ∧ τk), Z(T ∧ τk), H(T ∧ τk), R(T ∧ τk))

≤ V(S(0), V(0), A(0), Z(0), H(0), R(0)) + KT < ∞.
(12)

For each K ≥ k1, consider the event Ωk = τk ≤ t as defined in Equation (6). We
have P(Ωk) ≥ ∞. Upon observing each ω ∈ Ωk, at least one of the variables S(τk, ω),
V(τk, ω), A(τk, ω), Z(τk, ω), H(τk, ω), and R(τk, ω) takes a value equal to either k or 1

k .
Consequently, the values of S(τk, ω), V(τk, ω), A(τk, ω), Z(τk, ω), H(τk, ω), and R(τk, ω)
are at least {k − 1 − logk or 1

k − 1 − log 1
k = 1

k − 1 + logk}
Following this,

V(S(τk, ω), V(τk, ω), A(τk, ω), Z(τk, ω), H(τk, ω), R(τk, ω), ) + KT ≥ (k − 1 − lnk) ∧ (
1
k
− 1 + lnk), (13)
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The minimum of a and b is represented by a ∧ b, where a ∧ b donates the minimum of a
and b. Regarding (12) and (13), as of now,

V(S(0), V(0), A(0), Z(0), H(0), R(0)) + KT ≥
E[IΩkV(S(τk, ω), V(τk, ω), A(τk, ω), Z(τk, ω), H(τk, ω), R(τk, ω))] ≥

∈ [(k − 1 − lnk) ∧ (
1
k
− 1 + lnk)].

(14)

The indicator function for Ωk is IΩk. Suppose that k →∞ leads to concentration
∞ > V(S(0), V(0), A(0), Z(0), H(0), R(0)) + KT = ∞ such that we have τ∞ = ∞ a.s.

At this juncture, the demonstration of Theorem 1 reaches its culmination.

4. Stochastic Analysis

In epidemiology, predicting an infectious disease’s long-term effects is one of the most
important concepts. It introduces stochastic Lyapunov functions and delineates criteria for
disease extinction within the framework of model (1). It may be possible to eliminate the
infected compartment at the disease-free equilibrium of (1). If the disease-free equilibrium
achieves global asymptotic stability, stochastic model (1) guarantees the eradication of the
infection. Stochastic models are very interesting in extinction theory.

The Extinction of the Disease

This part proves a few lemmas and theorems and shows how the HBV extinction
model works. Next, let us take a look at

〈
Y(t)

〉
=

1
t

∫ t

0
y(x)dx. (15)

Then, we have the following lemmas.

Lemma 1 ([27,28] (Strong Law of Large Number)). Suppose that Y = Yt≥0 is a local real-value
continuous martingale that becomes zero at t = 0; then,

lim
t→∞

〈
Y, Y

〉
t = ∞, a.s. ⇒ lim

t→∞

Yt〈
Y, Y

〉
t
= 0, a.s., also

lim
t→∞

sup

〈
Y, Y

〉
t

t
< 0, a.s. ⇒ lim

t→∞

Yt

t
= 0, a.s.

(16)

Lemma 2. The following characteristics will be obtained for any define initial point
(S0, V0, A0, Z0, H0, R0) ∈ R6

+, for the solution (S(t), V(t), A(t), Z(t), H(t)R(t)) of model (1):

lim
t→∞

S(t)
t

= 0, lim
t→∞

V(t)
t

= 0, lim
t→∞

A(t)
t

= 0,

lim
t→∞

Z(t)
t

= 0, lim
t→∞

H(t)
t

= 0, lim
t→∞

R(t)
t

= 0, a.s.
(17)

Moreover, when χ > 1
2 (δ

2
1 ∨ δ2

2 ∨ δ2
3 ∨ δ2

4 ∨ δ2
5 ∨ δ2

6) holds,

lim
t→∞

1
t

∫ t

0
S(r)dB1(r) = 0, lim

t→∞

1
t

∫ t

0
V(r)dB2(r) = 0, lim

t→∞

1
t

∫ t

0
A(r)dB3(r) = 0,

lim
t→∞

1
t

∫ t

0
Z(r)dB4(r) = 0, lim

t→∞

1
t

∫ t

0
H(r)dB5(r) = 0, lim

t→∞

1
t

∫ t

0
R(r)dB6(r) = 0, a.s.

(18)

Proof. In this case, Lemma 2 can be proved in the same manner as Lemma 4.1 in [29], so
the proof is omitted.

Furthermore, upon fulfilling the specified conditions, we can assert that model (1)
attains a stochastic disease-free state:
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(C1) :RE
0 < 1.

(C2) : χ > 1
2 (δ

2
1 ∨ δ2

2 ∨ δ2
3 ∨ δ2

4 ∨ δ2
5 ∨ δ2

6).

where
RE

0 =
β1 + β2

(α1 + α2 + ψ1 + χ +
δ2

3
2 )

. (19)

Theorem 2. If the solution of model (1) satisfies both C1 and C2 with the initial conditions
(S0, V0, A0, Z0, H0, R0) ∈ R6+ for ((S(t), V(t), A(t), Z(t), R(t)), then it possesses the
following properties:

lim sup
t→∞

〈
S(t)

〉
=

Π(η + χψ)

χ(γ + η + χ)
, lim sup

t→∞

〈
V(t)

〉
=

χΠ(1 − ψ) + γψ

χ(γ + η + χ)
lim sup

t→+∞

〈
A(t)

〉
t

= 0,

lim sup
t→+∞

〈
Z(t)

〉
t

= 0, lim sup
t→+∞

〈
H(t)

〉
t

= 0, lim sup
t→+∞

〈
R(t)

〉
t

= 0, a.s.

(20)

As a result, the disease has indeed disappeared.

Proof. We obtain the following set of equations by integrating model (1):

S(t)− S(0)
t

= ψΠ −
β1
〈
S(t)A(t)

〉〈
N
〉 + η

〈
V(t)

〉
− (γ + χ)

〈
S(t)

〉
+

δ1

t

∫ t

0
S(r)dB1(r),

V(t)− V(0)
t

= Π(1 − ψ) + γ
〈
S(t)

〉
−

β2
〈
V(t)A(t)

〉〈
N
〉 − (η + χ)

〈
V(t)

〉
+

δ2

t

∫ t

0
V(r)dB2(r),

A(t)− A(0)
t

=
β1
〈
S(t)A(t)

〉〈
N
〉 +

β2
〈
V(t)A(t)

〉〈
N
〉 − (α1 + α2 + ψ1 + χ)

〈
A(t)

〉
+

δ3

t

∫ t

0
A(r)dB3(r),

Z(t)− Z(0)
t

= α1
〈

A(t)
〉
− (γ1 + ψ2 + γ2 + χ)

〈
Z(t)

〉
+

δ4

t

∫ t

0
Z(r)dB4(r),

H(t)− H(0)
t

= ψ1
〈

A(t) + ψ2
〈

Z(t) +
〉
− (ψ3 + ψ4 + χ)

〈
H(t)

〉
+

δ5

t

∫ t

0
H(r)dB5(r),

R(t)− R(0)
t

= γ1
〈

Z(t)
〉
+ α2

〈
A(t)

〉
+ ψ3

〈
H(t)

〉
− χ

〈
R(t)

〉
+

δ6

t

∫ t

0
R(r)d + B6(r).

(21)

We apply Itô’s formula and the third equation of model (1), and we obtain the following
form:

d(ln A(t)) =
[

β1SA
N

+
β2VA

N
− (α1 + α2 + ψ1 + χ)A

]
1
A

dt −
δ2

3
2

dt + δ3dB3(t),

=

[
β1S
N

+
β2V
N

− (α1 + α2 + ψ1 + χ)

]
dt −

δ2
3
2

dt + δ3dB3(t),

=

[
β1S
N

+
β2V
N

− (α1 + α2 + ψ1 + χ +
δ2

3
2
)

]
dt + δ3dB3(t).

(22)

By integrating Equation (22) over the interval [0, t] and subsequently dividing both
sides by t, we derive

ln A(t)− ln A(0) =
∫ t

0

[
β1S
N

+
β2V
N

− (α1 + α2 + ψ1 + χ +
δ2

3
2
)

]
dt + δ3dB3(t),

≤
[

β1 + β2 − (α1 + α2 + ψ1 + χ +
δ2

3
2
)

]
t + δ3dB3(t),

=

(
α1 + α2 + ψ1 + χ +

δ2
3
2

)[
RE

0 − 1
]

t + δ3dB3(t).

(23)
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In accordance with the strong law of large numbers, we can obtain

lim
t→∞

B3(t)
t

= 0 a.s. (24)

By taking the superior limit on both sides of Equation (23) and combining it with (17),
we can obtain

lim
t→∞

sup
ln A(t)

t
≤
(

α1 + α2 + ψ1 + χ +
δ2

3
2

)[
RE

0 − 1
]
< 0, a.s. (25)

So, this mean that if RE
0 < 1, we can obtain

lim
t→∞

A(t) = 0 a.s.

Using Lemmas 1 and 2 and conditions (C1) and (C2) makes it simple to obtain

lim sup
t→∞

log
〈

A(t)
〉

t
< 0. (26)

By once more employing Lemmas 1 and 2, along with conditions (C1) and (C2), and
utilizing Equation (26), we have

lim sup
t→∞

〈
Z(t)

〉
= 0, a.s, lim sup

t→∞

〈
H(t)

〉
= 0, a.s, lim sup

t→∞

〈
R(t)

〉
= 0, a.s,

lim sup
t→∞

〈
S(t)

〉
=

Π(η + χψ)

χ(γ + η + χ)
, a.s, lim sup

t→∞

〈
V(t)

〉
=

χΠ(1 − ψ) + γψ

χ(γ + η + χ)
, a.s.

At this point, the proof of Theorem 2 has been completed.

5. Stochastic Analysis of the Endemic State

When analyzing the dynamics of an epidemic, our concern extends beyond the mere
possibility of the disease dying out. We also consider the scenario where the disease
persists within a community. It is commonly acknowledged that the stochastic model
being discussed has stable equilibria, including both disease-free and endemic states.
Consequently, our attention in this section is directed toward the presence of a stationary
distribution. This distribution serves as an indicator of whether the infection is spreading
or not, and we will employ Khasminskii’s theory [30] for this purpose. To proceed, we will
introduce several lemmas and definitions crucial for proving our main result.

Assuming a homogeneous Markov process Y(t) in Rn
+,

d f Y(t) = b(Y)dt +
k

∑
r

σrdBr(t).

The following is the form of the diffusion matrix:

A(Y) = [aij(x)], aij(x) =
k

∑
r=1

σi
r(x)σr

j (x).

Lemma 3 ([30]). Markov process X(t) possesses a singular stationary distribution m(·) under the
condition that a bounded domain U ⊂ Rd with a smooth boundary alongside its closure U ∈ Rd

satisfies the following stringent criteria:

1. Within the neighborhood {U} and across its domain, the minimum eigenvalue of the matrix
{A(t)} is maintained at a specific distance from zero.
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2. When x is an element of the space Rd\U, and the mean time τ needed to reach U from x is
not infinite, with supx∈K Exτ remaining finite for every compact subset K ⊂ Rn, and for any
π-measurable function f (·), we deduce the following:

P
(

lim
T→∞

1
T

∫ T

0
f (Yx(t))dt =

∫
Rd

f (x)π(dx)
)
= 1,

where x ∈ Rd.

We must specify the parameter because of its importance.

RS
0 =

β1γ2α1ψ

(γ + χ +
δ2

1
2 )(α1 + α2 + ψ1 + χ +

δ2
3
2 )(γ1 + ψ2 + γ2 + χ +

δ2
4
2 )

. (27)

The Stationary Distribution and Ergodicity

Ergodicity and the existence of a stationary distribution will be discussed in this
section.

Theorem 3. If RS
0 > 1, then model (1)’s solution (S(t),V(t),A(t),Z(t),H(t),R(t)) is ergodic.

Additionally, there is a singular stationary distribution called π(.).

Proof. To establish claim (2) in Lemma 3, we need to construct a C2-function that maps
from the space R6

+ to R+. The proposed function takes on the following structure:

V⊮ = S + V + A + Z + H + R − c1 ln S − c2 ln A − c3 ln Z.

Here, c1, c2, and c3 represent positive real numbers; their values are currently unknown.
We obtain the following relationships by applying the Itô formula to model (1):

L(S + V + A + Z + H + R) = Π − χ(S + V + A + Z + H + R)− γ2Z(t).

(−c1 ln S) = − c1ψΠ
S

+
c1β1 A(t)

N
− c1ηV(t)

S
+ c1(γ + χ) +

c1δ2
1

2
,

(−c2 ln A) = − c2β1S(t)
N

− c2β2V(t)
N

+ c2(α1 + α2 + ψ1 + χ) +
c2δ2

3
2

,

(−c3 ln Z) = − c3α1 A
Z

+ c3(γ1 + ψ2 + γ2 + χ) +
c3δ2

4
2

.

(28)

Therefore, we have

LV⊮ = Π − χN − γ2Z − c1ψΠ
S

+
c1β1 A

N
− c1ηV

S
− c2β1S

N
− c2β2V

V
− c3α1 A

Z

+ c1(γ + χ +
δ2

1
2
) + c2(α1 + α2 + ψ1 + χ +

δ2
3
2
) + c3(γ1 + ψ2 + γ2 + χ +

δ2
4
2
).

We have

LV⊮ ≤ −4
[
(γ2Z)× (

c3α1 A
Z

)× (
c1ψΠ

S
)× (

c2β1S
N

)

] 1
4

− χN +
c1β1 A

N

− c1ηV
S

− c2β2V
N

+ c1(γ + χ +
δ2

1
2
) + c2(α1 + α2 + ψ1 + χ +

δ2
3
2
)

+ c3(γ1 + ψ2 + γ2 + χ +
δ2

4
2
) + Π.

Let

c1

(
γ + χ +

δ2
1
2

)
= c2

(
α1 + α2 + ψ1 + χ +

δ2
3
2

)
= c3

(
γ1 + ψ2 + γ2 + χ +

δ2
4
2

)
= Π.
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The constants in this case are defined as follows:

c1 =
Π(

γ + χ +
δ2

1
2

) , c2 =
Π(

α1 + α2 + ψ1 + χ +
δ2

3
2

) , c3 =
Π(

γ1 + ψ2 + γ2 + χ +
δ2

4
2

) .
(29)

Consequently,

LV⊮ ≤ −4


 Π4β1α1γ2ψ(

γ + χ +
δ2

1
2

)(
α1 + α2 + ψ1 + χ +

δ2
3
2

)(
γ1 + ψ2 + γ2 + χ +

δ2
4
2

)


1
4

− Π


− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

.

After simplifying the expressions, we arrive at the subsequent inequality:

LV⊮ ≤ −4Π
[
(RS

0 )
1/4 − 1

]
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

. (30)

Furthermore, we are able to obtain

V2 = c4(S + V + A + Z + H + R − c1 ln S − c2 ln A − c3 ln Z)− ln S − ln V − ln H − ln R + S + V + A + Z + H + R,

= (c4 + 1)(S + V + A + Z + H + R)− (c1c4 + 1)ln S − ln V − c2c4 ln A − c3c4 ln Z − ln H − ln R.

The constant c4, with a positive value, will be defined at a later stage. This can be
demonstrated in a useful way.

lim inf
(S,V,A,Z,H,R)∈R6

+\Uk

V2(S, V, A, Z, H, R) = +∞, as n → ∞, (31)

Here, Un = ( 1
n , n)× ( 1

n , n)× ( 1
n , n)× ( 1

n , n). Subsequently, it needs to be demonstrated
that V2(S, V, A, Z, H, R) has at least one minimum value V2(S0, V0, A0, Z0, H0, R0).

For the variables S, V, A, Z, H, and R, representing the current state, the partial deriva-
tive of the function V2(S, V, A, Z, H, R) can be expressed as follows:

∂V2(S, V, A, Z, H, R)
∂S

= c4 + 1 − 1 + c1c4

S
,

∂V2(S, V, A, Z, H, R)
∂V

= c4 + 1 − 1
V

,

∂V2(S, V, A, Z, H, R)
∂A

= c4 + 1 − c2c4

A
,

∂V2(S, V, A, Z, H, R)
∂Z

= c4 + 1 − c3c4

Z
,

∂V2(S, V, A, Z, H, R)
∂H

= c4 + 1 − 1
H

,

∂V2(S, V, A, Z, H, R)
∂R

= c4 + 1 − 1
R

.

It becomes evident that the function V2 exhibits a single stagnation point:

(S0, V0, A0, Z0, H0, R0) =

(
c1c4 + 1
c4 + 1

,
1

c4 + 1
,

c4c2

c4 + 1
,

c3c4

c4 + 1
,

1
c4 + 1

,
1

c4 + 1

)
. (32)
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Furthermore, the matrix of the second partial derivatives (Hessian matrix) for
V2(S, V, A, Z, H, R) at (S0,V0,A0,Z0,H0,R0) is

B =



c1c4+1
S2(0) 0 0 0 0 0

0 1
V2(0) 0 0 0 0

0 0 c2c4
A2(0) 0 0 0

0 0 0 c3c4
Z2(0) 0 0

0 0 0 0 1
H2(0) 0

0 0 0 0 0 1
R2(0)


. (33)

The Hessian matrix is positive definite. Consequently, V2(S, V, A, Z, H, R) achieves
a minimum value at V2(S0, V0, A0, Z0, H0, R0). Given Equation (31) and acknowledging
the continuity of V2(S, V, A, Z, H, R), it can be inferred that V2(S, V, A, Z, H, R) possesses
a unique minimum value V2(S0, V0, A0, Z0, H0, R0) within the domain R6

+.

A non-negative C2-function V : R6
+ → R+ shall be introduced as follows:

V(S, V, A, Z, H, R) = V2(S, V, A, Z, H, R)−V2(S(0), V(0), A(0), Z(0), H(0), R(0)).

We carried out a precise analysis using the stochastic model and Ito’s formula:

LV ≤ c4

{
− 4Π

[
(RS

0 )
1/4 − 1

]
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R

− ψ3H
R

+ χ +
δ2

6
2
+ ψ − χN − γ2Z.

(34)

The relation stated above will result in the following assertion:

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R

− ψ3H
R

+ χ +
δ2

6
2
+ ψ − χN − γ2Z.

(35)

where
c5 = 4Π

[
(RS

0 )
1/4 − 1

]
Our next step will be to define the set forms:

D =

{
ϵ1 < S

1
ϵ2

, ϵ3 < V <
1
ϵ4

, ϵ5 < A <
1
ϵ6

, ϵ7 < Z <
1
ϵ8

ϵ9 < H <
1

ϵ10
ϵ11 < R <

1
ϵ12

}
.
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Here, ϵi for (i = 1, 2, 3, 4, · · · , 12) is a small positive real number that is currently
undetermined. To maintain simplicity, it is advantageous to divide the region R6

+\D into
the following subsections:

D1 =

{
(S, V, A, Z, H, R) ∈ R6

+, 0 < S ≤ ϵ1

}
,

D2 =

{
(S, V, A, Z, H, R) ∈ R6

+, 0 < V ≤ ϵ3, S > ϵ2

}
,

D3 =

{
(S, V, A, Z, H, R) ∈ R6

+, 0 < A ≤ ϵ5, V > ϵ4

}
,

D4 =

{
(S, V, A, Z, H, R) ∈ R6

+, 0 < Z ≤ ϵ7, A > ϵ6

}
,

D5 =

{
(S, V, A, Z, H, R) ∈ R6

+, 0 < H ≤ ϵ9, Z > ϵ8

}
,

D6 =

{
(S, V, A, Z, H, R) ∈ R6

+, 0 < R ≤ ϵ11, Z > ϵ12

}
,

D7 =

{
(S, V, A, Z, H, R) ∈ R6

+, S ≥ 1
ϵ2

}
,

D8 =

{
(S, V, A, Z, H, R) ∈ R6

+, V ≥ 1
ϵ4

}
,

D9 =

{
((S, V, A, Z, H, R) ∈ R6

+, A ≥ 1
ϵ6

}
,

D10 =

{
(S, V, A, Z, H, R) ∈ R6

+, Z ≥ 1
ϵ8

}
,

D11 =

{
(S, V, A, Z, H, R) ∈ R6

+, H ≥ 1
ϵ10

}
,

D12 =

{
(S, V, A, Z, H, R) ∈ R6

+, R ≥ 1
ϵ12

}
.

Continuing our analysis, it is imperative to affirm the negativity of LV(S, V, A, Z, H, R)
across the domain R6

+\D. Put simply, it is necessary for each subregion within this set to
exhibit the negativity of the mentioned function.

Case 1. If (S, V, A, Z, H, R) ∈ D1, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψΠ

S
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψΠ

ϵ1
.

It is possible to pick a sufficiently small ϵ1 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − ψΠ

ϵ1
< 0. Hence, as a

result, we can conclude that LV < 0 for any (S,V,A,Z,H,R) ∈ D1.

Case 2. If (S, V, A, Z, H, R) ∈ D2, using Equation (35), we obtain



Symmetry 2024, 16, 1306 14 of 37

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − γS

V
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − γϵ4

ϵ2
.

It is possible to pick a sufficiently small ϵ2 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − γϵ4

ϵ2
< 0. Hence, As a

result, we can conclude that LV < 0 for any (S,V,A,Z,H,R) ∈ D2.

Case 3. If (S, V, A, Z, H, R) ∈ D3, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − Π(1 − ψ)

V
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − Π(1 − ψ)

ϵ3
.

It is possible to pick a sufficiently small ϵ3 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − Π(1−ψ)

ϵ3
< 0. As a result,

we can conclude that LV < 0 for any (S,V,A,Z,H,R) ∈ D3.

Case 4. If (S, V, A, C, H, R) ∈ D4, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ηV

S
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ηϵ2

ϵ4
.

It is possible to pick a sufficiently small ϵ4 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2C
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − ηϵ2

ϵ4
< 0. As a result, we

can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D4.

Case 5. If (S, V, A, Z, H, R) ∈ D5, using Equation (35), we obtain
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LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2C
H

+ ψ3 + ψ4 + χ +
δ2

5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − β2 A

N
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − β2ϵ5

ϵ5
.

It is possible to pick a sufficiently small ϵ5 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − β2ϵ5

ϵ5
< 0. As a result, we

can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D5.

Case 6. If (S, V, A, Z, H, R) ∈ D6, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψA

H
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ1ϵ10

ϵ6
.

It is possible to pick a sufficiently small ϵ6 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − ψ1ϵ10

ϵ6
< 0. As a result,

we can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D6.

Case 7. If (S, V, A, Z, H, R) ∈ D7, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − β2 A

N
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − β2ϵ5

ϵ7
.

It is possible to pick a sufficiently small ϵ5 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − β2ϵ5

ϵ7
< 0. As a result, we

can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D7.

Case 8. If (S, V, A, Z, H, R) ∈ D8, using Equation (35), we obtain
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LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − γ1Z

R
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − γ1ϵ10

ϵ8
.

It is possible to pick a sufficiently small ϵ6 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − γ1ϵ10

ϵ8
< 0. As a result,

we can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D8.

Case 9. If (S, V, A, Z, H, R) ∈ D9, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ1 A

H
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ1ϵ5

ϵ9
.

It is possible to pick a sufficiently small ϵ9 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − ψ1ϵ5

ϵ9
. < 0. As a result,

we can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D9.

Case 10. If (S, V, A, Z, H, R) ∈ D10, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ3H

R
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ3ϵ12

ϵ10
.

It is possible to pick a sufficiently small ϵ10 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − ψ3ϵ12

ϵ10 < 0. As a result,
we can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D10.



Symmetry 2024, 16, 1306 17 of 37

Case 11. If (S, V, A, Z, H, R) ∈ D11, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2C
H

+ ψ3 + ψ4 + χ +
δ2

5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ3H

R
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − ψ3ϵ9

ϵ11
.

It is possible to pick a sufficiently small ϵ11 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − ψ3ϵ9

ϵ11
< 0. As a result, we

can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D11.

Case 12. If (S, V, A, Z, H, R) ∈ D12, using Equation (35), we obtain

LV ≤ −c4c5 + c4

{
− χN +

c1β1 A
N

− c1ηV
S

− c2β2V
N

}
− ψΠ

S
+

β1 A
N

− ηV
S

+ γ + χ +
δ2

1
2
− Π(1 − ψ)

V
− γS

V
− β2 A

N

+ η + χ +
δ2

2
N

− ψ1 A
H

+
ψ2Z

H
+ ψ3 + ψ4 + χ +

δ2
5
2
− γ1Z

R
− α2 A

R
− ψ3H

R
+ χ +

δ2
6
2
+ ψ − χN − γ2Z.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − β2 A

N
.

≤ −c4c5 + c4

{
c1β1 A

N

}
+

β1 A
N

+ γ + χ +
δ2

1
2
+ η + χ +

δ2
2

N
+

ψ2Z
H

+ ψ3 + ψ4 + χ +
δ2

5
2
+ χ +

δ2
6
2
+ ψ − β2ϵ5

ϵ12
.

It is possible to pick a sufficiently small ϵ12 > 0 such that −c4c5 + c4

{
c1β1 A

N

}
+ β1 A

N +

γ + χ +
δ2

1
2 + η + χ +

δ2
2

N + ψ2Z
H + ψ3 + ψ4 + χ +

δ2
5
2 + χ +

δ2
6
2 + ψ − β2ϵ5

ϵ12
< 0. As a result, we

can conclude that LV < 0 for any (S, V, A, Z, H, R) ∈ D12.

LV(S, V, A, Z, H, R) < −W < 0 for all (S, V, A, Z, H, R) ∈ R6
+\D.

Hence,

dV(S, V, A, Z, H, R) < −Wdt + [(c4 + 1)S − (c1c4 + 1)δ1]dB1(t) + [(c4 + 1)V − δ2]dB2(t)

+ [(c4 + 1)A − c2c4δ3]dB3(t) + [(c4 + 1)Z − c3c4δ4]dB4(t)

+ [(c4 + 1)H − δ5]B5(t) + [(c4 + 1)R − δ6]dB6(t).

(36)

Suppose that (S0, V0, A0, Z0, H0, R0) = (x1, x2, x3, x4, x5, x6) = x ∈ R6
+\D. Further, if

τx represents the duration it takes for the curve originating from x to reach D, then

τn = in f {t : |X(t)| = n} and τ(n)(t) = min{τx, t, τn}.
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By integrating Equation (36) over the interval [0, τ(n)(t)], employing Dynkin formula,
and subsequently calculating the expectation, we have

EV(S(τ(n)(t)), V(τ(n)(t)), A(τ(n)(t)), Z(τ(n)(t)), H(τ(n)(t))), R(τ(n)(t)))− V(x),

= E
∫ τ(n)(t)

0
LV(S(u), V(u), A(u), Z(u), H(u), R(u))du,

≤ E
∫ τ(n)(t)

0
−Wdu = −WEτ(n)(t).

As V(x) is non-negative,

Eτ(n)(t) ≤ V(x)
W

.

Referring to the proof of Theorem 3, it has been demonstrated that P{τe = ∞} = 1.
Hence, we need to ensure the consistency of the structure of the model (1). Furthermore, as
we allow both t, n → ∞, it is almost certain that τ(n)(t) → τx. Additionally, through the
application of Fatou’s Lemma, we obtain that

Eτ(n)(t) ≤ V(x)
W

,

is finite, indicating that supx∈KEτx is also finite, where K represents a compact subset of
R6
+. As a result, statement (2) in Lemma 3 is proved. Moreover, model (1) is characterized

by the diffusion matrix

B =



δ2
1S2 0 0 0 0 0
0 δ2

2V2 0 0 0 0
0 0 δ2

3 A2 0 0 0
0 0 0 δ2

4 Z2 0 0
0 0 0 0 δ2

5 H2 0
0 0 0 0 0 δ2

6 R2

.

Picking M = min(S,V,A,Z,H,R)∈D∈R6
+
{δ2

1S2, δ2
2V2, δ2

3 A2, δ2
4 Z2, δ2

5 H2, δ2
6 R2}, we obtain

6

∑
i,j=1

aij(S, V, A, Z, H, R)ξiξ j = δ2
1S2ξ2 + δ2

2V2ξ2
2 + δ2

3 A2ξ2 + δ2
4ξ2

4Z2 + H2ξ2 + δ2
5 + δ2

6ξ2
6R2 ≥ M|ξ|2, (S, V, A, Z, H, R) ∈ D,

This concludes verification of statement (1) of Lemma 3, where ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
belongs to the domain R6

+. Consequently, this demonstrates the system’s ergodic behavior
and establishes the existence of a single stationary distribution for the system. With this,
the theorem’s proof is complete.

6. Optimal Control

Mathematical biology is increasingly concerned with optimal control theory. These
tools can be used to find an effective control strategy by considering suitable control func-
tions [31,32]. Mathematics, dynamical system theory, and economics [33] broadly apply
the control approach. This work [34] deduces several optimality conditions and other
control theory features. Infectious diseases can be prevented or minimized using several
strategies. The most effective method is to reduce the contagious disease with the least
cost [35]. Using this method, real-world problems can be linked to the underlying system
mathematically. Since most issues require physical knowledge, this step can be very chal-
lenging. In numerous scenarios, our available information is restricted to experimental
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data and fundamental insights from the literature. To develop an accurate model, re-
viewing a large amount of bibliographic material and following several trials is necessary.
To create the best model for experimental results, one must start with a simple model and
work their way up to a more complex one. It has been developed and investigated [36] that
stochastic delay models contain n competing species.

Additionally, many authors have developed effective harvesting strategies. Liu and
Meng [37] explored optimal harvesting strategies by examining the qualitative behavior
of stochastic delay systems. The authors employed Hessian matrices, ergodic theory, and
optimal harvesting theory to derive empirically supported conclusions regarding the upper
limit of sustainable yield. For more information on stochastic optimal control systems,
please see [31,32] and references.

It is discussed in this section how model (1) can be controlled equivalently. We will
formulate the corresponding stochastic and deterministic control systems by considering
u1(t) and u2(t) as the control measures.

In models (1) and (2), the control variables have the follopwing specific interpretations:

1. The control measure u1(t) represents vaccination to lower the vulnerable population
over time.

2. The variable u2(t) represents the treatment of HBV patients, leading to a reduction in
infected individuals within the community.

The objective of this study is to reduce the count of infected and susceptible individuals
by implementing an effective control strategy, simultaneously enhancing the recovery rate.

6.1. Optimal Control of Deterministic Model (2)

In the same way as in [24,25], we apply control theory tools here to decrease the spread
of HBV. With u1, u2, and u3 as inputs, we obtain the optimal strategy for (2).

To eliminate the hepatitis B virus, we use model (2) and implement u1, u2, and u3
(three control measures). The objective functions are minimized as follows:

J(u1(t), u2(t), u3(t)) =
∫ T

0

[
w1 A + w2Z +

1
2

w3u2
1(t) +

1
2

w4u2
2(t) +

1
2

w5u2
3(t)

]
dt. (37)

Equations (37) and (38) are called optimal control systems per the following system:

S′(t) = ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ + u1(t))S(t),

V′(t) = Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t),

A′(t) =
β1S(t)A(t)

N
+

β2V(t)A(t)
N

− (α1 + α2 + ψ1 + χ + u2(t))A(t),

Z′(t) = α1 A(t)− (γ1 + ψ2 + γ2 + χ + u3(t))Z(t),

H′(t) = ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t),

R′(t) = γ1Z(t) + (α2 + u2(t))A(t) + ψ3H(t)− χR(t) + u1(t)S(t).

(38)

S(0) > 0, V(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0, H(0) ≥ 0, R(0) > 0. (39)
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In Equation (37), the terms w1(t) and w2(t) are the cost incurred due to the infected
population. w3(t), w4(t), and w5(t) are positive constants that describe the cost of the
control variables vaccination and treatment. Equation (37) represents the total cost, and
the integrand function L1 = w1 A + w2Z + 1

2 w3u2
1(t) +

1
2 w4u2

2(t) +
1
2 w5u2

3(t) represents
the actual and chronic cost at the time t. The notations for wi in Equation (37) represent
positive real numbers for i = 1, 2, ..., 5. These symbols represent the weights assigned to
infectious agents, vaccination, and treatment costs. Guided by the objective function, the
aim is to minimize the number of infected individuals and optimize their recovery, all while
managing costs effectively. Specifically, our objective is to define (u1, u2, u3) as control
variables in the following manner:

J(u∗
1 , u∗

2 , u∗
3) = min{J(u1(t), u2(t), u3(t)); u1(t), u2(t), u3(t) ∈ U}. (40)

System (2) has a control set U that represents the control set

U := {(u1(t), u2(t), u3(t)) | ui(t)are Lebesgue measureable on[0, T]0 ≤ u1(t), u2(t) ≤ 1, u3(t) ≤ 1}. (41)

Defining control measures is the first step toward moving forward.

6.1.1. Existence of Solution

This study aimed to determine whether there is a solution to control problems (38)
and (39). A non-negative solution of the state system is found through non-negative initial
data and Lebesgue measurable control variables [38].

Let

dφ

dt
= Lφ + χ(φ), (42)

where

φ =



S(t)
V(t)
A(t)
Z(t)
H(t)
R(t)


,

L =



−(γ + χ + u1(t)) 0 0 0 0 0
γ −(η + χ) 0 0 0 0
0 0 −(α1 + α2ψ1 + χ + u2(t)) 0 0 0
0 0 α1 −(γ1 + ψ2 + γ2 + χ + u3(t)) 0 0
0 0 ψ1 ψ2 −(ψ1 + ψ4 + χ) 0

u1(t) 0 (α2 + u2(t)) γ1 χ3 −χ


,

χ(φ) =



ψΠ − β1S(t)A(t)
N

Π(1 − ψ)− β2V(t)A(t)
N

β1S(t)A(t)
N +

β2V(t)A(t)
N

0
0
0


.

(43)

Nonlinear system (42) has a bounded coefficient. Letting



Symmetry 2024, 16, 1306 21 of 37

F(φ) = L(φ) + G(φ), (44)

fulfills

| G(φ1)− G(φ2) | ≤| S1(t)− S2(t) | +m2 | V1(t)− V2(t) | +m3 | A1(t)− A2(t) | +m4 | Z1(t)− Z2(t) |
+ m5 | H1(t)− H2(t) | +m6 | R1(t)− R2(t) |,
≤ M(| S1(t)− S2(t) | + | V1(t)− V2(t) | + | A1(t)− A2(t) | + | Z1(t)− Z2(t) |
+ | H1(t)− H2(t) | + | R1(t)− R2(t) |).

(45)

where M = max mi, i = 1, 2, 3, 4, 5, 6 is independent of the state of (38). Additionally,
we observe that | F(φ1) − F(φ2) |≤| φ1 − φ2 | N, where N = max |L|, M < ∞. This
ensures that function G is uniformly continuous in a Lipschitz sense. A solution to model
(44) exists according to the definitions of the controls; the state variables are as follows:
S(0) > 0, V(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0, H(0) ≥ 0, R(0) > 0. Regarding the optimal
controlling existence, the results below are worthy of stating and proving.

Theorem 4. Control problems (37)–(40) can be solved using a vector
u∗(t) = (u∗

1(t), u∗
2(t), u∗

3(t)) ∈ U for control.

Proof. We will follow [24] to derive the theorem’s conclusion. By doing this, we obtain the
following results:

1. For all values of t, the states control’s are non-negative.
2. Closed and convex sets are defined in (41).
3. The boundedness assures the property of compactness of control model (38).
4. In expression (37), the integrand exhibits convexity concerning the control functions,

ensuring the existence of optimal control variables (u∗
1 , u∗

2 , u∗
3).

6.1.2. Optimality Condition

We must create a Lagrangian and Hamiltonian to determine the optimality of systems
(37)–(39). The state variables are (x = (S, V, A, Z, H, R), and the control variables are
u = (u1, u2). A Lagrangian L can be defined with these variables:

L(x, u) =
∫ T

0

[
w1 A(t) + w2Z(t) +

1
2

w3u2
1 +

1
2

w4u2
2 +

1
2

w5u2
3

]
dt. (46)

A Hamiltonian H function becomes

H(λ, u, x) = −L(u, x) + λ.g(u, x), where

λ = (λ1, λ2, λ3, λ4, λ5, λ6), g(u, x) = (g1(u, x), g2(u, x), g3(u, x), g4(u, x), g5(u, x), g6(u, x)), having

g1(x, u) = ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ + u1(t))S(t),

g2(x, u) = Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t),

g3(x, u) =
β1S(t)A(t)

N
+

β2V(t)A(t)
N

− (α1 + α2 + ψ1 + χ + u2(t))A(t),

g4(x, u) = α1 A(t)− (γ1 + ψ2 + γ2 + χ + u3(t))Z(t),

g5(x, u) = ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t),

g6(x, u) = γ1Z(t) + (α2 + u2(t))A(t) + ψ3H(t)− χR(t) + u1(t)S(t).
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As a result, we will have a Hamiltonian of the following form for our control system:

H(λ, u, x) = w1 A + w2Z +
1
2

w3u2
1(t) +

1
2

w4u2
2(t) +

1
2

w5u2
3(t)

+ λ1(t)
(

ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ + u1(t))S(t)
)

+ λ2(t)
(

Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t)
)

+ λ3(t)
(

β1S(t)A(t)
N

+
β2V(t)A(t)

N
− (α1 + α2 + ψ1 + χ + u2(t))A(t)

)
+ λ4(t)(α1 A(t)− (γ1 + ψ2 + γ2 + χ + u3(t))Z(t))
+ λ5(t)(ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t))
+ λ6(t)(γ1Z(t) + (α2 + u2(t))A(t) + ψ3H(t)− χR(t) + u1(t)S(t)).

To determine an optimal control solution for the problem, the Pontryagin maximum
principle [39,40] establishes the existence of a Lagrange multiplier vector λ, such as{

dλ(t)
dt

= −∂H
∂x

(x∗(t), u∗(t), λ(t)),
∂H(x∗, u∗, λ)

∂u
= 0

}
, (47)

with maximality and transversality conditions

H(u∗(t), λ(t), x∗(t)) = supu∈[0,l1]×[0,l2]H(u, λ(t), x∗(t)), (48)

and

λ(T) = 0, (49)

Theorem 5. Let S∗, V∗, A∗, Z∗, H∗, and R∗ denote the optimal state solution with the associated
optimal variables (u∗

1 , u∗
2 , u∗

3) for optimal control problems (37)–(39). In this context, there exists
am adjoint model that satisfies

dλ1(t)
dt

= (λ1(t)− λ3(t))
β1 A∗(t)

N
− u∗

1(t)λ6(t) + (γ + χ + u∗
1(t))λ1(t)− γλ2(t),

dλ2(t)
dt

= η(λ2(t)− λ1(t)) + χλ2(t) + (λ2(t)− λ3(t))
β2 A∗(t)

N
,

dλ3(t)
dt

= −w + (λ1(t)− λ3(t))
β1S∗(t)

N
+ (λ2(t)− λ3(t))

β2V∗(t)
N

+ (λ3(t)− λ4(t))α1

+ (λ3(t)− λ6(t))α2 + (λ3(t)− λ5(t))ψ1 + (χ + u∗
2(t))λ3(t),

dλ4(t)
dt

= (λ4(t)− λ6(t))γ1 + (λ4(t)− λ5(t))ψ2(t) + (χ + u∗
3(t))λ4(t),

dλ5(t)
dt

= (λ5(t)− λ6(t))ψ3 + (ψ4 + χ)λ5(t),

λ6(t)
dt

= χλ6(t).

(50)

In incorporating terminal constraints,

λi(T) = 0, i = {1, 2, 3, 4, 5, 6}. (51)



Symmetry 2024, 16, 1306 23 of 37

The optimal values of the control measures are determined by

u∗
1(t) = max

{
0, min{ [λ6(t)− λ1(t)]S∗

w2
, 0}, 1

}
, (52)

u∗
2(t) = max

{
0, min{ [λ6(t)− λ3(t)]A∗

w3
, 0}, 1

}
, (53)

and

u∗
3(t) = max

{
0, min{ [λ6(t)− λ4(t)]Z∗

w4
, 0}, 1

}
. (54)

Proof. According to the Pontryagin principle, Equation (50) for the deputy is derived from
Section 6.1.2. From Equation (49), we can obtain terminal condition (51). By differentiating
the Hamiltonian function with respect to each control variable ui and subsequently solving
the equations ∂H

∂ui
= 0 for i = 1, 2, we can obtain the optimal values of the control measures.

It is easy to prove the theorem in Equations (52) and (53) by assuming the lower and upper
limits of the controls.

Leveraging the adjoint Equation (50) along with its corresponding conditions (39) and
(51), we successfully address the control problem for both the control and state variables.
The control measures are also characterized. To continue the study of control theory, we
will implement the same measures of control as we did in model (1).

6.2. Optimal Control of Stochastic Model (1)

The stochastic counterpart of model (1) is formulated as follows:

dS(t) =
[

ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ + u1(t))S(t)
]

dt + δ1S(t)B1(t),

dV(t) =
[

Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t)
]

dt + δ2V(t)B2(t),

dA(t) =
[

β1S(t)A(t)
N

+
β2V(t)A(t)

N
− (α1 + α2 + ψ1 + χ + u2(t))A(t)

]
dt + δ3 A(t)B3(t),

dZ(t) = [α1 A(t)− (γ1 + ψ2 + γ2 + χ + u3(t))Z(t)]dt + δ4Z(t)B4(t),

dH(t) = [ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t)]dt + δ5H(t)B5(t),

dR(t) = [γ1Z(t) + (α2 + u2(t))A(t) + ψ3H(t)− χR(t) + u1(t)S(t)]dt + δ6R(t)B6(t).

(55)

alongside initial conditions

S(0) > 0, V(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0, H ≥ 0, R > 0. (56)

To simplify things, a vector of the following form is introduced:

x(t) = [x1, x2, x3, x4, x5, x6]
′
, u(t) = [u1, u2, u3]

′
, (57)

Also,

dx(t) = f (x, u)dt + g(x)dw(t). (58)

The temporal dependence of functions ui and xi is accompanied by the following
expression for the initial data:
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x(0) = [x1, x2, x3, x4, x5, x6]
′
(0) = x0. (59)

Below are the vectors that contain the functions f and g:

f1(x(t), u(t)) =
[

ψΠ − β1S(t)A(t)
N

+ ηV(t)− (γ + χ + u1(t))S(t)
]

dt + δ1S(t)B1(t),

f2(x(t), u(t)) =
[

Π(1 − ψ) + γS(t)− β2V(t)A(t)
N

− (η + χ)V(t)
]

dt + δ2V(t)B2(t),

f3(x(t), u(t)) =
[

β1S(t)A(t)
N

+
β2V(t)A(t)

N
− (α1 + α2 + ψ1 + χ + u2(t))A(t)

]
dt + δ3 A(t)B3(t),

f4(x(t), u(t)) = [α1 A(t)− (γ1 + ψ2 + γ2 + χ + u3(t))Z(t)]dt + δ4Z(t)B4(t),

f5(x(t), u(t)) = [ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t)]dt + δ5H(t)B5(t),

f6(x(t), u(t)) = [γ1Z(t) + (α2 + u2(t))A(t) + ψ3H(t)− χR(t) + u1(t)S(t)]dt + δ6R(t)B6(t).

(60)

where g1 = δ1, g2 = δ2, g3 = δ3, g4 = δ4, g5 = δ5, and g6 = δ6. In this case, we a suppose
quadratic cost function of the form

J(u) =
1
2

E

{∫ T

0

(
A1 A + A2Z +

B1u2
1

2
+

B2u2
2

2
+

B3u2
3

2

)
dt +

k1S2

2
+

k1V2

2
+

k1 A2

2
+

k1Z2

2
+

k1H2

2
+

k1R2

2

}
, (61)

where A1, A2, B1, B2, B3, and k1 for i = {1, 2, 3, 4, 5, 6} are positive real numbers.
Again, we are focused on obtaining a control vector u∗(t) = (u∗

1(t), u∗
2(t), u∗

3(t)) as
follows:

J(u) ≥ J(u∗), ∀u ∈ U, (62)

A controlling set (an admissible set) is U in this case.

U =
{

ui(t); ui(t) ∈ [0, umax
i ], ∀ui ∈ L2[0, T], t ∈ [0, T], i = 1, 2, 3

}
. (63)

In this context, umax
i for i = 1, 2, 3 is assumed to be positive and real. The Hamiltonian

Hm(x, u, p, q) for the given system is to be formulated based on the stochastic maximum
principle.

H(x, u, p, q) = −l(x, u) + ⟨g(x), q⟩+ ⟨ f (x, u), p⟩. (64)

where ⟨·, ·⟩ denotes the Euclidean inner product space, and q = [q1, q2, q3, q4, q5, q6]
′ and

p = [p1, p2, p3, p4, p5, p6]
′ are two distinct sets of adjoint vectors. The maximum principle

can be expressed directly as

dx∗(t) =
∂H(x∗, u∗, p, q)

∂p
dt + g(x∗(t))dW(t), (65)

dp∗(t) = −∂H(x∗, u∗, p, q)
∂x

dt + q(t)dW(t), (66)

Hm(x∗, u∗, p, q) = minu∈UHm(x∗, u∗, p, q). (67)

Equations (65) and (66) have initial and terminal conditions for x(t), where the optimal
path is x∗(t), and
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x∗(0) = x0. (68)

p(T) = −∂h(x∗(T))
∂x

, (69)

accordingly. As shown by Equation (67), the x∗(t) optimal control is a function of q(t), p(t),
and x∗(t); thus,

dx∗(t) =
∂H(x∗, u∗, p, q)

∂p
dt + g(x∗(t))dW(t), (70)

dp(t) = −∂H(x∗, u∗, p, q)
∂x

dt + q(t)dW(t). (71)

Therefore, the given Hamiltonian is

H =

(
A1 A + A2Z +

B1u2
1

2
+

B2u2
2

2
+

B3u2
3

2
+

k1S2

2
,

k2V2

2
,

k3 A2

2
,

k4Z2

2
,

k5H2

2
,

k6R2

2

)

+ P1

(
ψΠ − β1S(t)A(t)

N
+ ηV(t)− (γ + χ + u1(t))S(t)

)
+ δ1Sq1

+ P2

(
Π(1 − ψ) + γS(t)− β2V(t)A(t)

N
− (η + χ)V(t)

)
+ δ2Vq2

+ P3

(
β1S(t)A(t)

N
+

β2V(t)A(t)
N

− (α1 + α2 + ψ1 + χ + u2(t))A(t)
)
+ δ3 Aq3

+ P4(t)(α1 A(t)− (γ1 + ψ2 + γ2 + χ + u3(t))Z(t)) + δ4Zq4

+ P5(t)(ψ1 A(t) + ψ2Z(t)− (ψ3 + ψ4 + χ)H(t)) + δ5Hq5

+ P6(t)((γ1 + u3(t))Z(t) + (α2 + u2(t))A(t) + ψ3H(t)− χR(t) + u1(t)S(t)) + δ6Rq6.

(72)

Stochastic maximum theory states that

dp∗(t)− ∂H(x∗, u∗, p, q)
∂x

dt + q(t)dW(t). (73)

We obtain

dP1(t)
dt

= (P1(t)− P3(t))
β1 A(t)

N
− u1(t)P6(t) + (γ + χ + u1(t))P1(t)− γP2(t) + δ1q1,

dP2(t)
dt

= η(P2(t)− P1(t)) + χP2(t) + (P2(t)− P3(t))
β2 A(t)

N
+ δ2q2,

dP3

dt
Z = −A1 + (P1(t)− P3(t))

β1S(t)
N

+ (P2(t)− P3(t))
β2V(t)

N
+ (P3(t)− P4(t))α1

+ (P3(t)− P6(t))α2 + (P3(t)− P5(t))ψ1 + (χ + u2(t))P3(t) + δ3q3,

dP4(t)
dt

= (P4(t)− P6(t))γ1 + (P4(t)− P5(t))ψ2(t) + (γ2 + χ + u2(t))P4(t) + δ4q4,

dP5(t)
dt

= (P5(t)− P6(t))ψ3 + (ψ4 + χ)P5(t) + δ5q5,

P6(t)
dt

= χP6(t) + δ6q6.

(74)
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Auxiliary starting and terminal conditions are also provided:

S∗(0) = S
′
, V∗(0) = V

′
, A∗(0) = A

′
, Z∗(0) = Z

′
, H∗(0) = H

′
, R∗(0) = R

′
, p(T) = −∂h(x∗(T))

∂x
, (75)

and

h(S, V, A, Z, H, R) =
k1S2

2
+

k2V2

2
+

k3 A2

2
+

k4Z2

2
+

k5H2

2
+

k6R2

2
, (76)

where p1(T) = −k1S, p2(T) = −k2V, p3(T) = −k3 A, p4(T) = −k4Z, p5(T) = −k5H, and
p6(T) = −k1R. Now, we differentiate the Hamiltonian equation relative to u1 and u2 to
obtain the optimal controls: u∗

1 and u∗
2 .

u∗
1(t) = max

{
0, min{ [P6(t)− P1(t)]S∗

B2
, 0}, 1

}
, (77)

u∗
2(t) = max

{
0, min{ [P6(t)− P3(t)]A∗

B3
, 0}, 1

}
, (78)

and

u∗
3(t) = max

{
0, min{ [P6(t)− P4(t)]Z∗

B4
, 0}, 1

}
. (79)

In control theory, the control variables are typically manipulated to achieve the desired
objective(s). The objectives that are preplanned will be completed by governing the dynam-
ics of the problem with differential equations and setting the control limits as indicated
in Equation (60). To design a cost function, follow relation (61), which requires careful
attention, especially when balancing terms and selecting words at t′s final value. Control
theory’s primary tool (Pontryagin’s maximum principle [41]) must be demonstrated before
being applied. In this step, the compactness argument is commonly used based on the
control set and control boundedness. Once the boundedness of the cost function has been
established, it becomes imperative to construct a minimizing/maximizing sequence of
states and controls (depending on the nature of the problem). A crucial aspect of the
analysis involves ensuring the convergence of such sequences in the relevant spaces. Con-
sequently, the problem undergoes transformation into an equivalent optimization problem
of the Hamiltonian on a point-by-point basis. Thus, the Hamiltonian can be defined as
follows, drawing upon [42]:

Hamiltonian = (RHS of Differential equations)(adjoint) + (integrand of the objective functional).

To find the optimal solution, we must differentiate the Hamiltonian for u∗ at the point
where it reaches its optimal value, also known as the optimality condition(s). We must
take the derivative of the Hamiltonian for the state variables in order to obtain the deputy
system. Transversality supports this process (75).

7. Computer Simulations

This study employed numerical simulations to validate the obtained analytical results.
To obtain an estimate for the stochastic system, the initial step involved discretizing model
(1) as shown below. This section presents the numerical simulations used to verify the
obtained analytical results. As a first step, we will discretize model (1) as follows:
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Si+1 = Si +

[
ψΠ − β1Si Ai

N
+ ηVi − (γ + χ)Si

]
△ t + δ1Si

√
△tζ1,i +

δ2
1
2

Si(ζ
2
1,i − 1)△ t,

Vi+1 = Vi +

[
Π(1 − ψ) + γSi −

β2Vi Ai
N

− (η + χ)Vi

]
△ t + δ2Vi

√
△tζ2,i +

δ2
2
2

Vi(ζ
2
2,i − 1)△ t,

Ai+1 = Ai +

[
β1Si Ai

N
+

β2Vi Ai
N

− (α1 + α2 + ψ1 + χ)Ai

]
△ t + δ3 Ai

√
△tζ3,i +

δ2
3
2

Ai(ζ
2
3,i − 1)△ t,

Zi+1 = Zi +

[
α1 Ai − (γ1 + γ2 + ψ2 + χ)Zi

]
△ t + δ4Zi

√
△tζ4,i +

δ2
4
2

Zi(ζ
2
4,i − 1)△ t,

Hi+1 = Hi +

[
ψ1 Ai + ψ2Zi − (ψ3 + ψ4 + χ)Hi

]
△ t + δ5Hi

√
△tζ5,i +

δ2
5
2

Hi(ζ
2
5,i − 1)△ t,

Ri+1 = Ri +

[
γ1Zi + α2 Ai + ψ3Hi − χRi

]
△ t + δ6Ri

√
△tζ6,i +

δ2
6
2

Ri(ζ
2
6,i − 1)△ t.

(80)

There are independent Gaussian stochastic variables ζi,j that follow a normal distri-
bution, namely N(0, 1). In addition, δi (for i = 1, · · · , 6) represents the intensity levels of
the white noise. Let us assume that time steps have a size of ∆t. The stochastic model
will be simulated using MATLAB using the algorithm outlined in (80). A deterministic
model will be simulated using the conventional Runge–Kutta fourth-order (Rk4) algorithm.
The following sections of the manuscript present the graphical outcomes of the simula-
tions. The following section will present a graphical illustration of the model’s long-term
behavior. Moreover, we will demonstrate how manipulating the values of specific sensitive
parameters within the model can affect the disease dynamics.

7.1. An Extinction-Based Numerical Simulation

In this part, we are focused on simulating model (1) using the first-order Milstein
stochastic method. Due to the involvement of six Brownian motions in the model, denoted
by dBi(t), the approach to approximate the double stochastic integral employs tools from
stochastic theory.

To begin to demonstrate the disease’s extinction within the population, we will con-
sider the following parameter values: Π = 0.03, β = 0.002, γ = 0.5, η = 0.2, χ = 0.05,
α1 = 0.01, α2 = 0.01, ψ = 1, ψ1 = 0.01, ψ2 = 0.02, ψ3 = 0.01, γ1 = 0.025, and γ2 =
0.01. Likewise, the initial values for the population are taken as (S0,V0,A0,Z0,H0,R0) =
(30, 20, 15, 60, 40, 50), and the noise intensities are provided by (δ1, δ2, δ3, δ4, δ5, δ6) =
(20, 15, 5, 20, 10, 10). We have set the time scale in our simulations to weeks. The ba-
sic reproduction number (RD

0 ) plays a crucial role in infectious disease models, serving as a
determinant of whether the disease can die out or will persist within the population. As a
result, in our initial calculations, we determined that RE

0 = 0.93, which is evidently below
one. Therefore, the conclusion of Theorem 2 is valid as evidenced by visual inspection of
Figure 2a. The graph clearly illustrates that when RE

0 < 1 is maintained, the disease will
eventually fade away from the population. The basic reproduction number RD

0 for the
deterministic model (Equation (1)) has been computed using the same parameter set. Once
more, it was evident that RD

0 = 0.95, which is unambiguously below unity. Drawing from
the implications of Theorem 2, we arrive at a parallel outcome for the deterministic model.
Alternatively, it can be stated that if RE

0 < 1, the disease-free equilibrium demonstrates
both local and global asymptotic stability. It is crucial to demonstrate that, over time, the
solutions of the deterministic model converge to the disease-free equilibrium.
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(a) Deterministic model (b) Stochastic model

Figure 2. Theses graphs show the paths of deterministic and stochastic models (1) and (2) when RE
0

and RD
0 are less than one.

7.2. Numerical Simulations of the Disease Distribution

The proposed stochastic model should have a unique stationary distribution; we
will examine an alternative set of parameters [16]: Π = 0.03, β = 0.002, γ = 0.5,
η = 0.2, χ = 0.05, α1 = 0.001, α2 = 0.0002, ψ = 0.01, ψ1 = 1, ψ2 = 0.35, ψ3 = 0.001,
γ1 = 0.0025, and γ2 = 0.01. In this scenario, the white noise intensities are set as
(δ1, δ2, δ3, δ4, δ5, δ6) = (10, 20, 15, 20, 5, 10), while the initial data for each compartment
remain the same as in Section 7.2. In using these parameter values, the threshold parameter
RD

0 for the deterministic model was computed to be 1.75. The value of RD
0 plays a crucial

role in assessing the stability of the model’s endemic equilibrium point E∗. If RD
0 exceeds

one, it can be inferred that E∗ is globally asymptotically stable. From the data presented
in Figure 3a–f, it can be deduced that the infection will persist and spread throughout the
population if RS

0 exceeds 1. Using the parameters in the model (1), we found that RD
0 = 1.7,

which is above the threshold of one. This observation indicates that the simulations are
consistent with the conclusions outlined in Theorem 3. The curves show slight variations
around their corresponding endemic equilibrium points in this scenario due to the small
white noise intensities. This indicates that the disease will persist in the population for an
extended period. Theorem 3 provides analytical evidence of the existence of an ergodic
stationary distribution, further supported by the numerical results shown in Figure 4.
Additionally, we created a frequency distribution histogram using the bootstrap-estimated
values for each compartment, revealing the consistent persistence of the disease. There-
fore, implementing more effective prevention and control measures can only eliminate
the condition.

7.3. The Influence of β on Stochastic Model (1)

We conducted simulations to show how β affects the dynamics of the infected classes.
Specifically, we looked at three values of β: 1, 1.2, and 1.5. Alongside other parameters
outlined in Section 7.2, we used stochastic noises (δ1, δ2, δ3, δ4, δ5, δ6) = (10, 20, 15, 20, 5, 10).
The results of the simulations are visually presented in Figure 5, where we compare the
stochastic model and its deterministic counterpart. The graphs in Figure 5a–c show that as
β decreases, the populations converge more quickly toward disease extinction. Therefore,
lowering the β values is necessary to achieve disease extinction. A better understanding of
HBV dynamics requires incorporating nonlinear stochastic noises.
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Figure 3. Tracking trajectories of susceptible, vaccinated, acute infections, chronic carriers, and
recovered individuals for models (1) and (2).
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(a) S(t) (b) V(t)

(c) A(t) (d) Z(t)

(e) H(t) (f) R(t)

Figure 4. Ergodic stationary distribution of model (1).
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Figure 5. The plot visually depicts the temporal evolution of populations for A(t) and Z(t), utilizing
both deterministic and stochastic models.

7.4. The Influence of Noise δ on Stochastic System (1)

Let us change the values of (δ1, δ2, δ3, δ4, δ5, δ6) while keeping the other parameters the
same as in Section 7.2. Figure 6 depicts the partial solutions of the functions A(t) and Z(t)
under the influence of this change. In comparing stochastic model (1) with its deterministic
counterpart, significant perturbations in the stochastic version can lead to a population
decrease, potentially reaching zero. However, these perturbations have only a minor impact
on the dynamic behavior of infected individuals. According to our simulation analysis,
even minor perturbations can have a notable impact on the magnitudes of A(t) and Z(t).
The comprehensive examination of epidemic models, from both practical and theoretical
viewpoints, necessitates the inclusion of nonlinear stochastic noises. Additionally, the
numerical simulations, as shown in Figure 6a–c, emphasize the importance of implement-
ing effective measures (such as quarantine strategies) to limit interactions between the
environment and humans while regulating human activities. These steps are necessary to
reduce the spread of HBV, especially in endemic areas.
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Figure 6. The trajectories of A(t) and Z(t) projected by the stochastic model and their corresponding
deterministic counterpart are depicted.

7.5. Optimizing Control Strategies through Numerical Simulations

In this segment of the study, we showcase graphical outcomes of optimal control for
models (1) and (2). The simulation was conducted utilizing the fourth-order ‘Runge–Kutta’
method.

To address state system (38) under condition (51) within the time interval 0, 80, we
will initiate the solution process with the prescribed method. Subsequently, the adjoint
equations will be approximated using the backward RK − 4 method within the same time
frame. The transversal conditions of (51) will also be considered.

The following parameters are used in the numerical plotting: Π = 95, η = 0.027, χ = 0.1,
γ = 0.09, γ1 = 0.02, γ2 = 0.003, β = 0.4, α1 = 0.3, α2 = 0.1, ψ = 0.07, ψ1 = 0.03, ψ2 = 0.3, ψ3 = 0.1,
and ψ4 = 0.01. The values of δ are δ1 = 0.943, δ2 = 0.405, δ3 = 0.345, δ4 = 0.601,
δ5 = 0.601, and δ6 = 0.701. The system initiates with the following initial conditions:
S(0) = 70, V(0) = 70, A(0) = 100, Z(0) = 20, H(0) = 50, and R(0) = 30.

The results obtained are presented in Figure 7a–f, and Figure 8a–f showcase the control
curve for model (2) and the dynamic curves for vulnerable, acutely, and chronically in-
fected individuals. According to the simulation, implementing control measures decreased
infected, susceptible, and hospitalized populations, while the recovered and vaccinated
populations increased. The comparison between the two cases with and without controls
shows significant differences.
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Figure 7. Simulated susceptible, vaccinated, and acutely infected populations for both deterministic
and stochastic models.
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Figure 8. Simulated chronic, hospitalized, and recovered populations for both deterministic and
stochastic models.

To simulate model (1), the stochastic ‘RK4’ technique was used. The optimal solution
was found by evaluating approximate adjoint equations and considering transversality
conditions. The first step involved solving state system (74) using the RK4 scheme. Then, for
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the adjoint equations, we use a backward technique to elevate system (74). The conditions
of transversality (75) were also taken into consideration.

The controlling agents were determined by combining the controls and the values
from (77) and (78). This process was repeated until the unknown values were sufficiently
close to those obtained previously. The plots depict a decline in the epidemic’s infectious
compartments, which is concurrent with the expansion of the curative effect. Further details
can be found in Figures 7 and 8. Illustrations of optimal control schemes for types 1 and 2
are presented in Figures 7b–f and 8b–f. In the context of the HBV model, these control types
lead to reductions in the susceptible, acute infectious, chronic infectious, and hospitalized
populations, while concurrently increasing the recovered and vaccinated populations.

In Figure 9a,b, both model (1) and (2) are shown with and without control factors.
The difference in the graphs is clearly visible. This shows that the control factors have a
significant effect on the spread of the disease.
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Figure 9. These graphs show an optimal control of deterministic and stochastics systems with and
without control.

8. Conclusions

This study provides a detailed stochastic optimal control analysis for an HBV epidemic
model, with a particular focus on the impact of vaccination. Our work highlights several
key contributions to the understanding and management of HBV transmission dynamics.
Firstly, by incorporating stochastic differential equations into the model, we accounted for
the inherent randomness and environmental fluctuations that significantly affect disease
spread. This stochastic approach allowed us to capture the variability in transmission
rates and the progression of HBV infections, providing a more realistic and comprehensive
representation of the epidemic’s behavior compared to traditional deterministic models.
Secondly, our analysis demonstrated the importance of vaccination as a primary control
strategy. Through the application of optimal control theory, we derived strategies that not
only minimize the number of infected individuals but also optimize the associated costs
of vaccination. This dual focus on effectiveness and efficiency is crucial for public health
policies, especially in resource-limited settings where maximizing the impact of available
resources is imperative. The numerical simulations performed using the fourth-order
Runge–Kutta method reinforced the theoretical findings. These simulations illustrated that
optimal vaccination strategies could significantly reduce the prevalence of both acute and
chronic HBV infections. The results underscore that timely and adequate vaccination can
curb the spread of HBV, thereby lowering the incidence of severe liver diseases and related
mortalities. Furthermore, our findings emphasize that the integration of stochastic elements
into epidemic models enhances their predictive power and robustness. By considering
random perturbations, we were able to better understand the potential range of epidemic
outcomes and design control strategies that are resilient to uncertainties. This approach
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is particularly relevant in real-world scenarios where various unpredictable factors can
influence disease dynamics. Our study also suggests several directions for future research.
Extending the stochastic model to incorporate additional control measures, such as antiviral
treatments and public health interventions like contact tracing and education campaigns,
could provide a more holistic understanding of HBV management. Additionally, exploring
the impact of demographic changes, migration, and other epidemiological factors could
further refine the model and its applicability to diverse populations.

Limitation: Our model assumes a minimal impact from the chronic class on hospitaliza-
tion rates, as NUC therapy has made hospitalization for most chronic patients unnecessary.
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