On (p,q)-Analogs of the α-th Fractional Fourier Transform and Some (p,q)-Generalized Spaces
Abstract
:1. Introduction
2. (p,q)-Calculus and (p,q)-Generalized Functions
- (i)
- For , we have
- (ii)
- For , we have
- (iii)
3. The α-th (p,q)-Fractional Fourier Transform and Its Convolution
- (i)
- (Linearity) For real numbers we have
- (ii)
- (Scaling) For a real number β, we have
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
4. The (p,q)-Space
- (i)
- (ii)
- as
- (iii)
- for some
5. The (p,q)-Space of Ultra-Boehmians
- (i)
- (ii)
- as as
- (iii)
- (iv)
- (v)
6. Inversion and Characteristics
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. q-difference equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Al-Omari, S. q-analogs and properties of the Laplace-type integral operator in the quantum calculus theory. J. Inequal.Appl. 2020, 2020, 203. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Ucar, F. q-Sumudu transforms of q-analogs of Bessel functions. Sci. World J. 2014, 2014, 327019. [Google Scholar] [CrossRef] [PubMed]
- Al-Omari, S.; Baleanu, D.; Purohit, D. Some results for Laplace-type integral operator in quantum calculus. Adv. Differ. Equ. 2018, 124, 124. [Google Scholar] [CrossRef]
- Purohit, S.D.; Kalla, S.L. On q-Laplace transforms of the q-Bessel functions. Calc. Appl. Anal. 2007, 10, 189–196. [Google Scholar]
- Ucar, F.; Albayrak, D. On q-Laplace type integral operators and their applications. J. Differ. Equ. Appl. 2012, 18, 1001–1014. [Google Scholar] [CrossRef]
- Albayrak, D.; Purohit, S.D.; Ucar, F. On q-Sumudu transforms of certain q-polynomials. Filomat 2013, 27, 411–427. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V. Some new Hermite–Hadamard and Ostrowski type inequalities for s-preinvex functions in (p,q)-calculus with applications. Bull. Iran. Math. Soc. 2023, 49, 33. [Google Scholar] [CrossRef]
- Vyas, V.; L-Jarrah, A.A.; Purohit, S.; Araci, S.; Nisar, K. q-Laplace transform for product of general class of q-polynomials and q-analog of L-function. J. Inequ. Appl. 2020, 11, 21–28. [Google Scholar]
- Sadjang, P. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 1–21. [Google Scholar]
- Sadjang, P.N. On two (p,q)-analogs of the Laplace transform. J. Difference Equ. Appl. 2017, 23, 1562–1583. [Google Scholar]
- Sadjang, P.N. On the (p,q)-gamma and the (p,q)-beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
- Suthar, D.L.; Purohit, S.D.; Araci, S. Solution of fractional Kinetic equations associated with the (p,q)-Mathieu-type series. Discret. Dyn. Nat. Soc. 2020, 2020, 8645161. [Google Scholar] [CrossRef]
- Milovanovi, G.V.; Gupta, V.C.; Malik, N. (p,q)-beta functions and applications in approximation. Bol. Soc. Mat. Mex. 2018, 24, 219–237. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Refinements of Hermite-Hadamard inequalities for continuous convex functions via (p,q)-calculus. Mathematics 2021, 9, 446. [Google Scholar] [CrossRef]
- Jirakulchaiwong, S.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Kim, H. On (p,q)-analogs of Laplace-typed integral transforms and applications. Symmetry 2021, 13, 631. [Google Scholar] [CrossRef]
- Zemanian, A.H. Distribution Theory and Transform Analysis; Dover Publications Inc.: New York, NY, USA, 1987. [Google Scholar]
- Mikusinski, P. Tempered Boehmians and ultra distributions. Proc. Am. Math. Soc. 1995, 123, 813–817. [Google Scholar] [CrossRef]
- Nemzer, D. Extending the Stieltjes transform. Sarajevo J. Math. 2014, 10, 197–208. [Google Scholar] [CrossRef]
- Al-Omari, S.; Araci, S. Certain fundamental properties of generalized natural transform in generalized spaces. Adv. Differ. Equ. 2021, 2021, 163. [Google Scholar] [CrossRef]
- Nemzer, D. A note on the convergence of a series in the space of Boehmians. Bull. Pure Appl. Math. 2008, 2, 63–69. [Google Scholar]
- Pathak, R.; Prasad, A.; Kumar, M. Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator. J. Pseudo-Differ. Oper. Appl. 2012, 3, 239–254. [Google Scholar] [CrossRef]
- Al-Omari, S.; Kilicman, A. An estimate of Sumudu transform for Boehmians. Adv. Differ. Equ. 2013, 2013, 77. [Google Scholar] [CrossRef]
- Nemzer, D. Quasi-asymptotic behavior of Boehmians. Novi Sad J. Math. 2016, 46, 87–102. [Google Scholar] [CrossRef]
- Nemzer, D. Boehmians of Lp-growth. Integ. Trans. Spec. Funct. 2016, 27, 653–666. [Google Scholar] [CrossRef]
- Al-Omari, S.K. Hartley transforms on certain space of generalized functions. Georg. Math. J. 2013, 20, 415–426. [Google Scholar] [CrossRef]
- Al-Omari, S.; Kilicman, A. On the generalized Hartley and Hartley-Hilbert transformations. Adv. Differ. Equ. 2013, 2013, 222. [Google Scholar] [CrossRef]
- Acar, T. (p,q)-generalization of Szasz-Mirakyan operators. Math. Methods Appl. Sci. 2016, 39, 2685–2695. [Google Scholar] [CrossRef]
- Burban, I.M.; Klimyk, A.U. (p,q)-differentiation, (p,q)-integration and (p,q)-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Boehme, T.K. The support of Mikusnski Operators. Trans. Am. Math. Soc. 1973, 176, 319–334. [Google Scholar]
- Garcia, J.; Mas, D.; Dorsch, R. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Appl. Opt. 1996, 35, 7013–7018. [Google Scholar] [CrossRef]
- Romero, H.; Cerutti, R.; Luque, L. A new fractional Fourier transform and convolution product. Int. J. Pure Appl. Math. 2011, 68, 397–408. [Google Scholar]
- Narayanana, V.; Prabhu, K. The fractional Fourier transform: Theory, implementation and error analysis. Microprocess. Micro Syst. 2003, 27, 511–521. [Google Scholar] [CrossRef]
- Almeida, L. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process. Lett. 1997, 4, 15–17. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef]
- Jain, P.; Basu, C.; Panwar, V. Fractional (p,q)-Mellin Transform and Its Applications. Bull. Iran. Math. 2023, 49, 47. [Google Scholar] [CrossRef]
- Al-Omari, S. Estimates and properties of certain q-Mellin transform on generalized q-calculus theory. Adv. Differ. 2021, 2021, 233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Omari, S.; Salameh, W. On (p,q)-Analogs of the α-th Fractional Fourier Transform and Some (p,q)-Generalized Spaces. Symmetry 2024, 16, 1307. https://doi.org/10.3390/sym16101307
Al-Omari S, Salameh W. On (p,q)-Analogs of the α-th Fractional Fourier Transform and Some (p,q)-Generalized Spaces. Symmetry. 2024; 16(10):1307. https://doi.org/10.3390/sym16101307
Chicago/Turabian StyleAl-Omari, Shrideh, and Wael Salameh. 2024. "On (p,q)-Analogs of the α-th Fractional Fourier Transform and Some (p,q)-Generalized Spaces" Symmetry 16, no. 10: 1307. https://doi.org/10.3390/sym16101307
APA StyleAl-Omari, S., & Salameh, W. (2024). On (p,q)-Analogs of the α-th Fractional Fourier Transform and Some (p,q)-Generalized Spaces. Symmetry, 16(10), 1307. https://doi.org/10.3390/sym16101307