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Abstract: Convex bilevel optimization problems (CBOPs) exhibit a vital impact on the decision-
making process under the hierarchical setting when image restoration plays a key role in signal
processing and computer vision. In this paper, a modified double inertial extragradient-like approach
with a line search procedure is introduced to tackle the CBOP with constraints of the CFPP and
VIP, where the CFPP and VIP represent a common fixed point problem and a variational inequality
problem, respectively. The strong convergence analysis of the proposed algorithm is discussed under
certain mild assumptions, where it constitutes both sections that possess a mutual symmetry structure
to a certain extent. As an application, our proposed algorithm is exploited for treating the image
restoration problem, i.e., the LASSO problem with the constraints of fractional programming and
fixed-point problems. The illustrative instance highlights the specific advantages and potential infect
of the our proposed algorithm over the existing algorithms in the literature, particularly in the domain
of image restoration.

Keywords: modified inertial subgradient extragradient method; variational inequality problem;
pseudomonotone mapping; nonexpansive mapping; fixed point
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1. Introduction

Suppose ∅ ̸= C ⊂ H where C possesses both convexity and closedness and the
real Hilbert space H has the inner product ⟨·, ·⟩ and induced norm ∥ · ∥. Let PC be the
nearest-point projection from H onto C. For a mapping S : C → C, we use Fix(S) and R
to indicate the fixed-point set of S and the real-number set, respectively. For an operator
A : H → H, we recall the classical variational inequality problem (VIP), i.e., the objective is
to find u† ∈ C such that ⟨Au†, v − u†⟩ ≥ 0 ∀v ∈ C, where VI(C, A) stands for the solution
set of the VIP.

As far as we know, in 1976, the Korpelevich extragradient rule put forth in [1], is one
of the most effective tools for tackling the VIP, i.e., for arbitrarily initial u0 ∈ C, {un} is the
sequence fabricated by {

hn = PC(un − ℓAun),
un+1 = PC(un − ℓAhn) ∀n ≥ 0,

(1)

with constant ℓ ∈ (0, 1
L ). The research outcomes on the VIP are abundant and the Korpele-

vich extragradient rule has captured broad attention paid by numerous scholars. Moreover,
they ameliorated this rule in different forms; refer to [2–18] and references therein, to name
but a few.
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In 2018, Thong and Hieu [18] first put forward the inertial subgradient extragradient
approach, i.e., for any starting u1, u0 ∈ H, {un} is the sequence fabricated by

qn = un + αn(un − un−1),
hn = PC(qn − ℓAqn),
Cn = {v ∈ H : ⟨qn − ℓAqn − hn, v − hn⟩ ≤ 0},
un+1 = PCn(qn − ℓAhn) ∀n ≥ 1,

(2)

with constant ℓ ∈ (0, 1
L ). Under mild restrictions, it was shown that {un} is weakly

convergent to a solution of the VIP. In 2020, the inertial subgradient extragradient-type
approach was proposed in [14] for tackling the pseudomonotone VIP with Lipschitzian
self-mapping on H and the common fixed-point problem (CFPP) of finite nonexpansive
self-mappings {Ti}N

i=1 on H. Assume Ω =
⋂N

i=1 Fix(Ti) ∩ VI(C, A) ̸= ∅. Let f : H → H
be of δ-contractivity with 0 ≤ δ < 1, and F : H → H be of both η-strong monotonicity
and κ-Lipschitz continuity s.t. δ < τ := 1 −

√
1 − ρ(2η − ρκ2) for ρ ∈ (0, 2η

κ2 ). Presume
that {ℓn}, {γn}, {βn} are the sequences in (0, ∞) s.t. ∑∞

n=1 βn = ∞, βn → 0, ℓn = o(βn),
0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and βn + γn < 1 ∀n. Besides, we define
Tn := TnmodN ∀n, where nmodN takes values in {1, 2, . . . , N}.

Algorithm 1 (see [14], Algorithm 3.1). Initialization: Let λ1 > 0, ϵ > 0, 0 < µ < 1 and
u1, u0 ∈ H be arbitrarily selected. For given un and un−1, select ϵn ∈ [0, ϵ̄n], with

ϵ̄n =

{
min{ϵ, ℓn

∥un−un−1∥
} if un ̸= un−1,

ϵ otherwise.

Iterations: Reckon un+1 below:
Step 1. Reckon qn = Tnun + ϵn(Tnun − Tnun−1) and yn = PC(qn − λn Aqn).
Step 2. Put (half-space) Cn := {v ∈ H : ⟨qn − λn Aqn − yn, v − yn⟩ ≤ 0}, and reckon

vn = PCn(qn − λn Ayn).
Step 3. Reckon un+1 = βn f (un) + γnun + ((1 − γn)I − βnρF)vn, and update

λn+1 :=

{
min{λn, µ

∥qn−yn∥2+∥vn−yn∥2

2⟨Aqn−Ayn ,vn−yn⟩ } if ⟨Aqn − Ayn, vn − yn⟩ > 0,
λn otherwise.

Set n := n + 1 and go to Step 1.

Under suitable conditions, it was proved that {un} is strongly convergent to a point in
Ω. On the other hand, we recall the bilevel optimization problem (BOP) (see [12]), i.e., the
objective is to seek the minima below

min
x∈S∗

ω(x), (3)

in which ω : H → R denotes a differentiable and strongly convex function and S∗ stands
for the nonempty solution set of the inner-level optimization problem below

min
x∈H

{ f (x) + g(x)}, (4)

in which f : H → R is a differentiable and convex function, ∇ f is L-Lipschitz continuous,
and g : H → R ∪ {+∞} is a proper, convex and lower semi-continuous (l.s.c.) function.
To the most of our knowledge, convex BOPs (CBOPs) display a crucial impact on the
decision-making process under the hierarchical setting, while image restoration plays a
critical role in signal processing and computer vision.

As well known from (3), x∗ ∈ Λ if and only if x∗ ∈ VI(S∗,∇ω), i.e., x∗ ∈ S∗ solves the
VIP: ⟨ω(x∗), x − x∗⟩ ≥ 0 ∀x ∈ S∗, with Λ being the solution set of (3).

If there is the existence of a minimizer x∗ of f + g, then the forward-backward operator
FBα := proxαg(I − α∇ f ) has a fixed point x∗, where ∇ f denotes the gradient of f , α > 0
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denotes the stepsize and proxαg denotes the proximity operator of g. That is, x∗ = FBα(x∗).
If ∇ f is ζ-inverse-strongly monotone with ζ > 0 and α ∈ (0, 2ζ], then the operator FBα

is nonexpansive. In 2016, in order to mitigate the constraints imposed by the Lipschitz
condition on the gradient of f , Cruz and Nghia [19] introduced the linesearch procedure.
They replaced the requirement of Lipschitz continuity for ∇ f with more lenient hypotheses,
as outlined below:

Hypothesis 1. f , g : H → R̄ = (−∞, ∞] are two proper convex l.s.c. functionals s.t. domg ⊂
dom f ;

Hypothesis 2. f is of differentiability on some open set covering domg, the gradient of f possesses
the uniform continuity on each bounded subset of dom f , and there holds the relation for ∇ f to map
each bounded set in domg to a bounded set in H.

In particular, Wattanataweekul et al. [12] designed the double inertial forward-backward
viscosity algorithm with Linesearch C below, to solve the convex minimization problem
(CMP) for the sum of both convex functions.

Linesearch C. Fix x ∈ domg, θ ∈ (0, 1), δ > 0 and σ > 0.
Input Let α = σ.

When α
2{∥∇ f (FB2

α(x))−∇ f (FBα(x))∥+ ∥∇ f (FBα(x))−∇ f (x)∥}
> δ(∥FB2

α(x)− FBα(x)∥+ ∥FBα(x)− x∥), conduct
α = θα.

End
Output α.
Assume that f and g satisfy the Hypotheses (H1)–(H2), and dom f = domg = H. Their

double inertial forward-backward viscosity algorithm with Linesearch C is specified below.

Algorithm 2 (see [12], Algorithm 5). Initialization: Let {µn}, {ρn}, {γn}, {τn} ⊂ R+ be
bounded sequences. Choose x1, x0 ∈ H, θ ∈ (0, 1), δ ∈ (0, 1

8 ) and σ > 0. Given a
κ-contractive self-mapping F on H with 0 ≤ κ < 1.

Iterations: For any n, reckon xn+1 below.

Step 1. Reckon wn = xn − θn(xn−1 − xn) with θn =

{
min{µn, γnτn

∥xn−1−xn∥} if xn−1 ̸= xn,
µn otherwise.

Step 2. Reckon zn = proxαng(I − αn∇ f )wn and yn = proxαng(I − αn∇ f )zn, with
αn=Linesearch C (wn, σ, θ, δ).

Step 3. Reckon un = yn + δn(yn − xn−1) with δn =

{
min{ρn, γnτn

∥yn−xn−1∥
} if yn ̸= xn−1,

ρn otherwise.
Step 4. Reckon xn+1 = γnF(xn) + (1 − γn)un. Set n := n + 1 and go to Step 1.

The strong convergence result for Algorithm 2 was established in [12]. As a conse-
quence, they obtained an algorithm for solving the CBOP (3)–(4). Inspired by the research
works in [12,14], we devise a modified double inertial extragradient-like algorithm with
Linesearch C for solving the CBOP with VIP and CFPP constraints. The strong convergence
result for the proposed algorithm is proved under certain appropriate assumptions, where
the proposed algorithm consists of both sections that possess a mutual symmetry structure
to a certain extent. As an application, our proposed algorithm is invoked to deal with
the image restoration problem, i.e., the LASSO problem with the constraints of fractional
programming and fixed-point problems. The illustrative instance highlights the specific
advantages and potential influence of our proposed algorithm over the existing algorithms
in the literature, particularly in the domain of image restoration.

The structure of the article is sketched below: In Section 2, we release certain basic tools
and terminologies for later usage. Section 3 discusses and analyzes the strong convergence
of the proposed algorithm. Finally, in Section 4, our main result is invoked to deal with
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the image restoration problem, i.e., the LASSO problem with the constraints of fractional
programming and fixed-point problems.

Our algorithm is more advantageous and more flexible than Algorithm 5 in [12]
because it involves solving the VIP for the Lipschitzian pseudomonotone operator and the
CFPP of finite nonexpansive operators. Our result improves and extends the corresponding
results in [12,14,18].

Lastly, it is worth addressing that the existing method (see [12]) is most closely relevant
to our suggested method, that is, the double inertial forward-backward viscosity algorithm
with Linesearch C for tackling a CBOP (see [12]) is developed into the modified double
inertial extragradient-like algorithm with Linesearch C for tackling a CBOP with CFPP
and VIP constraints, where this VIP implicates a Lipschitzian pseudomonotone operator
and this CFPP involves a finite family of nonexpansive mappings. It is noteworthy that
the double inertial forward-backward viscosity algorithm with Linesearch C for settling
the CBOP (see [12]) is invalid for tackling the CBOP with CFPP and VIP constraints due to
the reasons below: (i) the first constraint imposed on the CBOP is the VIP for Lipschitzian
pseudomonotone operator and (ii) the second constraint imposed on the CBOP is the
CFPP of finite nonexpansive mappings. Therefore, there is no way for the double inertial
forward-backward viscosity algorithm with Linesearch C to treat the CBOP with CFPP and
VIP constraints. In this work, it is a natural motivation that the double inertial forward-
backward viscosity algorithm with Linesearch C for tackling the CBOP is developed into
the modified double inertial extragradient-like algorithm with Linesearch C for tackling
the CBOP with CFPP and VIP constraints.

2. Preliminaries

Suppose ∅ ̸= C ⊂ H throughout, with C being of both convexity and closedness in
H. For a given {hn} ⊂ H, we use hn → h (resp., hn ⇀ h) to denote the strong (resp., weak)
convergence of {hn} to h. Let T : C → H be a mapping. T is termed as being nonexpansive
if ∥Tx − Ty∥ ≤ ∥x − y∥ ∀x, y ∈ C. In addition, T : C → H is termed to be

(i) L-Lipschitzian or L-Lipschitz continuous iff ∃L > 0 s.t. ∥Th − Tu∥ ≤ L∥h −
u∥ ∀h, u ∈ C;

(ii) monotone iff ⟨Th − Tu, h − u⟩ ≥ 0 ∀h, u ∈ C;
(iii) pseudomonotone iff ⟨Th, u − h⟩ ≥ 0 ⇒ ⟨Tu, u − h⟩ ≥ 0 ∀h, u ∈ C;
(iv) of ᾰ-strong monotonicity iff ∃ᾰ > 0 s.t. ⟨Th − Tv, h − v⟩ ≥ ᾰ∥h − v∥2 ∀h, v ∈ C;
(v) of β̆-inverse-strong monotonicity iff ∃β̆ > 0 s.t. ⟨Th − Tv, h − v⟩ ≥ β̆∥Th −

Tv∥2 ∀h, v ∈ C;
(vi) of sequentially weak continuity if ∀{hn} ⊂ C, there holds the relation: hn ⇀ h ⇒

Thn ⇀ Th.
One can clearly see that the monotonicity implies the pseudomonotonicity but the

reverse implication is false. It is easily known that ∀h ∈ H, ∃|z ∈ C s.t. ∥h − z∥ ≤
∥h − x∥ ∀x ∈ C. We define PCh = z ∀h ∈ H. Then, PC is known as the nearest-point
projection from H onto C.

Lemma 1 ([20]). For each v, x ∈ H, y ∈ C, s ∈ [0, 1], there are the relations below:
(i) ∥PCv − PCx∥2 ≤ ⟨PCv − PCx, v − x⟩;
(ii) ⟨v − PCv, y − PCv⟩ ≤ 0;
(iii) ∥v − PCv∥2 + ∥y − PCv∥2 ≤ ∥v − y∥2;
(iv) ∥v − x∥2 = ∥v∥2 − ∥x∥2 − 2⟨v − x, x⟩;
(v) ∥sv + (1 − s)x∥2 = s∥v∥2 + (1 − s)∥x∥2 − s(1 − s)∥v − x∥2.

Lemma 2 ([7]). For 0 < β ≤ α and h ∈ H, there are the relations below:

∥h−PC(h−αAh)∥
α ≤ ∥h−PC(h−βAh)∥

β and ∥h − PC(h − βAh)∥ ≤ ∥h − PC(h − αAh)∥.

Lemma 3 ([6]). Let A : C → H be pseudomonotone and continuous. Given an h† ∈ C. Then,
⟨Ah†, h − h†⟩ ≥ 0 ∀h ∈ C ⇔ ⟨Ah, h − h†⟩ ≥ 0 ∀h ∈ C.
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Lemma 4 ([21]). Let {an} be a sequence in [0, ∞) s.t. an+1 ≤ (1 − µn)an + µnbn ∀n ≥ 1,
where {µn} and {bn} are two real sequences s.t. (i) {µn} ⊂ [0, 1] and ∑∞

n=1 µn = ∞, and (ii)
lim supn→∞ bn ≤ 0 or ∑∞

n=1 |µnbn| < ∞. Then, limn→∞ an = 0.

Lemma 5 ([20]). Demiclosedness principle. Let T : C → C be a nonexpansive mapping with
Fix(T) ̸= ∅. Then, I − T is demiclosed at zero, that is, if {hn} ⊂ C s.t. hn ⇀ h ∈ C and
(I − T)hn → 0, then (I − T)h = 0, where I is the identity mapping of H.

On the other hand, the terminology of nearest-point projection is extended to the
notion below.

Let g : H → R̄ be a proper convex l.s.c. function. According to [22,23], one knows
that the mapping proxg, which is termed as the proximity operator associated with g, is
formulated below:

proxg(x) := argminy∈Hg(y) +
1
2
∥x − y∥2.

Meanwhile, it is also of formulation proxg = (I + ∂g)−1, in which ∂g denotes the subdiffer-
ential of g, written as ∂g(x) := {u ∈ H : ⟨u, v − x⟩ ≤ g(v)− g(x) ∀v ∈ H} ∀x ∈ H.

We present some connections between the proximity and subdifferential operators.
For α > 0 and u ∈ H, then proxαg = (I + α∂g)−1 : H → domg, and (u − proxαg(u))/α ∈
∂g(proxαg(u)).

Lemma 6 ([24]). Given a proper convex l.s.c. function g : H → R̄, and two sequences
{hn}, {un} ⊂ H are considered such that un ∈ ∂g(hn) ∀n ≥ 1. If hn ⇀ h and un → u,
then u ∈ ∂g(h).

Lemma 7 ([25]). Presume that {Φn} is a real sequence that does not decrease at infinity in
the sense that, ∃{Φnk} ⊂ {Φn} s.t. Φnk < Φnk+1 ∀k ≥ 1. If the sequence {φ(n)}n≥n0 of
integers is defined as φ(n) = max{k ≤ n : Φk < Φk+1}, with integer n0 ≥ 1 fulfilling
{k ≤ n0 : Φk < Φk+1} ̸= ∅, then the following holds:

(i) φ(n0) ≤ φ(n0 + 1) ≤ · · · and φ(n) → ∞;
(ii) Φφ(n) ≤ Φφ(n)+1 and Φn ≤ Φφ(n)+1 ∀n ≥ n0.

3. Convergence Analysis

In what follows, we introduce and analyze a modified double inertial extragradient-
like approach with Linesearch C, to resolve the convex minimization problem (CMP) for the
sum of both convex functions, with the VIP and CFPP constraints. The strong convergence
outcome for the suggested approach is acquired. Whereby, we derive a new algorithm for
tackling the CBOP with VIP and CFPP constraints. From now on, let dom f = domg = H,
and suppose f and g fulfill the requirements (H1)-(H2). Moreover, assume always that the
following holds:

A is L-Lipschitzian pseudomonotone self-mapping on H satisfying lim infn→∞ ∥Ahn∥ ≥
∥Ah∥ ∀{hn} ⊂ C s.t. hn ⇀ h;

{Ti}N
i=1 is a finite family of nonexpansive self-mappings on H s.t. Ω =

⋂N
i=1 Fix(Ti) ∩

VI(C, A) ∩ S∗ ̸= ∅.
In addition, let the sequence {Tn} be defined as in Algorithm 1, i.e., Tn := TnmodN for

each n ≥ 1. Next, we first present a modified double inertial extragradient-like algorithm
with Linesearch C as follows.

Algorithm 3. Initial Step: Let {µn}, {ρn}, {βn}, {γn}, {τn} ⊂ R+ be bounded sequences.
Choose x1, x0 ∈ H, σ, λ1 > 0, 0 < δ < 1/8 and 0θ, µ < 1. Given a κ-contractive self-
mapping F on H with 0 ≤ κ < 1.

Iterative Steps: For any n, reckon xn+1 below.
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Step 1. Reckon wn = xn − θn(xn−1 − xn) with θn =

{
min{µn, γnτn

∥xn−1−xn∥} if xn−1 ̸= xn,
µn otherwise.

Step 2. Reckon zn = proxαng(I − αn∇ f )wn and yn = proxαng(I − αn∇ f )zn, with

αn = Linesearch C (wn, σ, θ, δ).

Step 3. Reckon qn = Tnyn + δn(Tnyn − Tnxn−1) with

δn =

{
min{ρn, γnτn

∥yn−xn−1∥
} if yn ̸= xn−1,

ρn otherwise.
(5)

Step 4. Reckon un = PC(qn − λn Aqn) and vn = PCn(qn − λn Aun), with

Cn := {v ∈ H : ⟨qn − λn Aqn − un, v − un⟩ ≤ 0}.

Step 5. Reckon xn+1 = γnF(xn) + βnxn + (1 − βn − γn)vn, and update

λn+1 :=

{
min{λn, µ

∥qn−un∥2+∥vn−un∥2

2⟨Aqn−Aun ,vn−un⟩ } if ⟨Aqn − Aun, vn − un⟩ > 0,
λn otherwise.

(6)

Set n := n + 1 and go to Step 1.

Condition 3. Presume that {τn}, {γn}, {βn}, {αn} ⊂ R+ are such that the following hold:
(C1) 0 < a1 ≤ αn ≤ a2 < 1;
(C2) γn ∈ (0, 1), γn → 0 and ∑∞

n=1 γn = ∞;
(C3) βn + γn ≤ 1, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and τn → 0.

Remark 1. It is easy to see that, from the definitions of θn, δn we obtain that limn→∞
θn
γn

×∥xn −
xn−1∥ = 0 and limn→∞

δn
γn
∥yn − xn−1∥ = 0. Indeed, we have θn∥xn − xn−1∥ ≤ γnτn and

δn∥yn − xn−1∥ ≤ γnτn ∀n ≥ 1, which together with limn→∞ τn = 0 imply that θn
γn
∥xn −

xn−1∥ ≤ τn → 0 and δn
γn
∥yn − xn−1∥ ≤ τn → 0 as n → ∞.

In order to show the strong convergence of Algorithm 3, we need several lemmas
below. The first lemma can be found in [12], Lemma 3.1

Lemma 8. Let {xn} be the sequence generated by Algorithm 3 and p ∈ H. Then,

∥wn − p∥2 − ∥yn − p∥2 ≥ 2αn[( f + g)(yn) + ( f + g)(zn)− 2( f + g)(p)]
+ (1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2) ∀n ≥ 1.

Lemma 9. Suppose {λn} is fabricated in (6). Then, the following hold: (i) {λn} is nonincreasing
and (ii) min{λ1, µ

L} =: λ ≤ λn ∀n.

Proof. By (6) we first obtain λn+1 ≤ λn ∀n. Also, it is evident that

1
2 (∥qn − un∥2 + ∥vn − un∥2) ≥ ∥qn − un∥∥vn − un∥

⟨Aqn − Aun, vn − un⟩ ≤ L∥qn − un∥∥vn − un∥

}
⇒ λn+1 ≥ min{λn,

µ

L
}.

Remark 2. In case qn = un or Aun = 0, one has un ∈ VI(C, A). In fact, by Lemmas 2 and 9,
when qn = un or Aun = 0, we obtain

0 = ∥un − PC(qn − λn Aqn)∥ ≥ ∥un − PC(un − λAun)∥.vspace6pt
We are now ready to show several lemmas, which are vital to discuss the strong convergence of

our algorithm.
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Lemma 10. For the sequences {qn}, {un}, {vn} fabricated in Algorithm 3, one has

∥vn − q∥2 ≤ ∥qn − q∥2 − (1 − µ
λn

λn+1
)∥qn − un∥2 − (1 − µ

λn

λn+1
)∥vn − un∥2 ∀q ∈ Ω. (7)

Proof. We first assert that

2⟨Aqn − Aun, vn − un⟩ ≤
µ

λn+1
∥qn − un∥2 +

µ

λn+1
∥vn − un∥2 ∀n ≥ 1. (8)

Indeed, if ⟨Aqn − Aun, vn − un⟩ ≤ 0, (8) is valid. On the contrary, by (6) one has (8).
Also, let q ∈ Ω ⊂ C ⊂ Cn. It can be readily seen that

∥vn − q∥2 = ∥PCn(qn − λn Aun)− PCn q∥2 ≤ ⟨vn − q, qn − λn Aun − q⟩
= 1

2∥vn − q∥2 + 1
2∥qn − q∥2 − 1

2∥vn − qn∥2 − ⟨vn − q, λn Aun⟩.

This means that

∥vn − q∥2 ≤ ∥qn − q∥2 − ∥vn − qn∥2 − 2⟨vn − q, λn Aun⟩. (9)

According to q ∈ VI(C, A), one obtains ⟨Aq, y − q⟩ ≥ 0 ∀y ∈ C. Because A is of pseu-
domonotonicity on C, one has ⟨Ay, y − q⟩ ≥ 0 ∀q ∈ C. Setting y := un ∈ C one obtains
⟨Aun, q − un⟩ ≤ 0. As a result,

⟨Aun, q − vn⟩ = ⟨Aun, q − un⟩+ ⟨Aun, un − vn⟩ ≤ ⟨Aun, un − vn⟩. (10)

Combining (9) and (10), one obtains

∥vn − q∥2 ≤ ∥qn − q∥2 − ∥vn − un∥2 − ∥un − qn∥2 + 2⟨qn − λn Aun − un, vn − un⟩. (11)

Since un = PC(qn − λn Aqn) and vn ∈ Cn, we have

2⟨qn − λn Aun − un, vn − un⟩ = 2⟨qn − λn Aqn − un, vn − un⟩+ 2λn⟨Aqn − Aun, vn − un⟩
≤ 2λn⟨Aqn − Aun, vn − un⟩,

which together with (8), implies that

2⟨qn − λn Aun − un, vn − un⟩ ≤ µ
λn

λn+1
∥qn − un∥2 + µ

λn

λn+1
∥vn − un∥2. (12)

Therefore, substituting (12) for (11), we infer that inequality (7) holds.

Lemma 11. Suppose {xn} is fabricated in Algorithm 3. Assume limn→∞ τn = 0. Then {xn}
is bounded.

Proof. Let q ∈ Ω. Using Lemma 8, we obtain

∥wn − q∥2 − ∥yn − q∥2 ≥ 2αn[( f + g)(yn) + ( f + g)(zn)− 2( f + g)(q)]
+ (1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2)

≥ (1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2) ≥ 0.
(13)

Thanks to wn = xn − θn(xn−1 − xn), we deduce that

∥yn − q∥ ≤ ∥wn − q∥ ≤ ∥xn − q∥+ θn∥xn−1 − xn∥. (14)
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This along with the definition of qn, leads to

∥qn − q∥ ≤ ∥Tnyn − q∥+ δn∥Tnyn − Tnxn−1∥
≤ ∥yn − q∥+ δn∥xn−1 − yn∥
≤ ∥xn − q∥+ θn∥xn−1 − xn∥+ δn∥xn−1 − yn∥.

(15)

On the other hand, using (7) we obtain

∥vn − q∥2 ≤ ∥qn − q∥2 − (1 − µ
λn

λn+1
)∥qn − un∥2 − (1 − µ

λn

λn+1
)∥vn − un∥2.

Because 1 − µ λn
λn+1

→ 1 − µ > 0 as n → ∞, we might assume 1 − µ λn
λn+1

> 0 ∀n. Therefore,

∥vn − q∥ ≤ ∥qn − q∥ ∀n. (16)

According to Remark 1, one has that θn
γn
∥xn−1 − xn∥ → 0 and δn

γn
∥xn−1 − yn∥ → 0 as n → ∞.

As a result, ∃M1 > 0 s.t.

θn

γn
∥xn−1 − xn∥+

δn

γn
∥xn−1 − yn∥ ≤ M1 ∀n ≥ 1. (17)

Combining (15)–(17), we obtain

∥vn − q∥ ≤ ∥qn − q∥
≤ ∥xn − q∥+ θn∥xn − xn−1∥+ δn∥yn − xn−1∥
= ∥xn − q∥+ γn[

θn
γn
∥xn − xn−1∥+ δn

γn
∥yn − xn−1∥]

≤ ∥xn − q∥+ γn M1 ∀n ≥ 1.

(18)

Using the definition of xn+1 and (18), we have

∥xn+1 − q∥
≤ γn∥F(xn)− q∥+ βn∥xn − q∥+ (1 − βn − γn)∥vn − q∥
≤ γn∥F(xn)− F(q)∥+ γn∥F(q)− q∥+ βn∥xn − q∥+ (1 − βn − γn)∥vn − q∥
≤ γnκ∥xn − q∥+ γn∥F(q)− q∥+ βn∥xn − q∥+ (1 − βn − γn)∥vn − q∥
≤ γnκ∥xn − q∥+ γn∥F(q)− q∥+ βn∥xn − q∥+ (1 − βn − γn)[∥xn − q∥+ γn M1]
≤ [1 − γn(1 − κ)]∥xn − q∥+ γn[M1 + ∥F(q)− q∥]
= [1 − γn(1 − κ)]∥xn − q∥+ γn(1 − κ) · M1+∥F(q)−q∥

1−κ

≤ max{∥xn − q∥, M1+∥F(q)−q∥
1−κ }.

By induction, we obtain ∥xn − q∥ ≤ max{∥x1 − q∥, M1+∥F(q)−q∥
1−κ } ∀n. As a result, {xn} is

of boundedness. Consequently, {F(xn)}, {yn}, {zn}, {qn}, {un}, {vn} and {wn} all are of
boundedness.

Lemma 12. Let {qn}, {yn}, {xn}, {un} and {wn} be fabricated in Algorithm 3. Suppose xn+1 −
xn → 0, qn − yn → 0, qn − un → 0, yn − wn → 0, and ∃{qnk} ⊂ {qn} s.t. qnk ⇀ z ∈ H.
Then, z lies in Ω provided Condition 3 holds.

Proof. From Algorithm 3, we obtain qn − yn = Tnyn − yn + δn(Tnyn − Tnxn−1) ∀n ≥ 1,
and hence

∥Tnyn − yn∥ = ∥qn − yn − δn(Tnyn − Tnxn−1)∥
≤ ∥qn − yn∥+ δn∥Tnyn − Tnxn−1∥
≤ ∥qn − yn∥+ γn · δn

γn
∥yn − xn−1∥.

Using Remark 1 and the assumption qn − yn → 0, we have

lim
n→∞

∥yn − Tnyn∥ = 0. (19)
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Also, from un = PC(qn − λn Aqn), we have ⟨qn − λn Aqn − un, v − un⟩ ≤ 0 ∀v ∈ C,
and hence

1
λn

⟨qn − un, v − un⟩+ ⟨Aqn, un − qn⟩ ≤ ⟨Aqn, v − qn⟩ ∀v ∈ C. (20)

Thanks to Lipschitz’s condition on A, {Aqnk} is of boundedness. Noticing λn ≥ min{λ1, µ
L},

one deduces from (20) that lim infk→∞⟨Aqnk , v − qnk ⟩ ≥ 0. Meanwhile, it is clear that
⟨Aun, v − un⟩ = ⟨Aun − Aqn, v − qn⟩+ ⟨Aqn, v − qn⟩+ ⟨Aun, qn − un⟩. Since qn − un → 0,
one obtains Aqn − Aun → 0. This along with (20) arrives at lim infk→∞⟨Aunk , v − unk⟩ ≥ 0.

Let us assert ∥yn − Tlyn∥ → 0 ∀l ∈ {1, . . . , N}. In fact, since ∥xn − wn∥ = θn∥xn−1 −
xn∥ = γn · θn

γn
∥xn−1 − xn∥ → 0, we deduce from yn − wn → 0 that

∥xn − yn∥ ≤ ∥xn − wn∥+ ∥wn − yn∥ → 0 (n → ∞),

and hence

∥yn − yn+1∥ ≤ ∥yn − xn∥+ ∥xn − xn+1∥+ ∥xn+1 − yn+1∥ → 0 n → ∞.

It is clear that for m = 1, . . . , N,

∥yn − Tn+myn∥ ≤ ∥yn − yn+m∥+ ∥yn+m − Tn+myn+m∥+ ∥Tn+myn+m − Tn+myn∥
≤ 2∥yn − yn+m∥+ ∥yn+m − Tn+myn+m∥.

So, using (19) and yn − yn+1 → 0 one obtains limn→∞ ∥yn − Tn+myn∥ = 0 for m = 1, . . . , N.
This immediately implies that

lim
n→∞

∥yn − Tlyn∥ = 0 for l = 1, . . . , N. (21)

Next, we select {ϵ̆k} ⊂ (0, 1) s.t. ϵ̆k ↓ 0. For each k, one denotes by mk(≥ 1) the
smallest number satisfying

⟨Aunj , v − unj⟩+ ϵ̆k ≥ 0 ∀j ≥ mk. (22)

Because of the decreasing property of {ϵ̆k}, we obtain the increasing property of {mk}.
For simplicity, {unmk

} is still written as {umk}. From qn − un → 0 and qnk ⇀ z it
is easy to see that ∥Az∥ ≤ lim infk→∞ ∥Aunk∥. In case Az = 0, one has that z lies
in VI(C, A). In case Az ̸= 0, from {umk} ⊂ {unk} we might assume Aumk ̸= 0 ∀k.

Hence, one sets hmk =
Aumk

∥Aumk ∥
2 . As a result, ⟨Aumk , hmk ⟩ = 1. Thus, by (22) one ob-

tains ⟨Aumk , x + εkhmk − umk ⟩ ≥ 0. Because A is of pseudomonotonicity, one has ⟨A(v +
ϵ̆khmk ), v + ϵ̆khmk − umk ⟩ ≥ 0, hence arriving at

⟨Av, v − umk ⟩ ≥ ⟨Av − A(v + ϵ̆khmk ), v + ϵ̆khmk − umk ⟩ − ϵ̆k⟨Av, hmk ⟩ ∀k. (23)

Let us show limk→∞ ϵ̆khmk = 0. In fact, using qnk ⇀ z and qn − un → 0, one obtains
unk ⇀ z. Thus, {un} ⊂ C implies that z lies in C. Note, that {umk} ⊂ {unk} and εk ↓ 0.
Therefore,

0 ≤ lim sup
k→∞

∥ϵ̆khmk∥ = lim sup
k→∞

ϵ̆k
∥Aumk∥

≤
lim supk→∞ ϵ̆k

lim infk→∞ ∥Aunk∥
= 0.

As a result, ϵ̆kumk → 0.
In what follows, one claims that z lies in Ω. In fact, using qn − yn → 0 and qnk ⇀ z,

one obtains ynk ⇀ z. By (21) one has ynk − Tlynk → 0 ∀l ∈ {1, . . . , N}. Because
Lemma 5 implies that I − Tl is demiclosed at zero, one obtains z ∈ Fix(Tl). Therefore,
one obtains z ∈ ⋂N

m=1 Fix(Tm). Additionally, as k → ∞, one obtains that the right-
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hand side of (23) converges to 0 due to the fact that A is uniformly continuous, the
sequences {qmk}, {hmk} are bounded and limk→∞ ϵ̆khmk = 0. As a result, ⟨Av, v − z⟩ =
lim infk→∞⟨Av, v − umk ⟩ ≥ 0 ∀v ∈ C. Using Lemma 3 one has that z lies in VI(C, A). As a
result, z ∈ ⋂N

m=1 Fix(Tm) ∩ VI(C, A).
Finally, let us show z ∈ S∗. Indeed, from (13) and wn − yn → 0 it follows that

(1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2)
≤ ∥wn − p∥2 − ∥yn − p∥2

≤ ∥wn − yn∥(∥wn − p∥+ ∥yn − p∥) → 0 (n → ∞),

which hence arrives at

lim
n→∞

∥wn − zn∥ = lim
n→∞

∥zn − yn∥ = 0, (24)

and
∥zn − qn∥ ≤ ∥zn − yn∥+ ∥yn − qn∥ → 0 (n → ∞).

Based on the hypothesis (H2), we obtain

∥∇ f (wnk )−∇ f (znk )∥ → 0 (n → ∞).

Using the condition (C1) and (24), we obtain

lim
k→∞

∥
wnk − znk

αnk

+∇ f (znk )−∇ f (wnk )∥ = 0. (25)

Thanks to znk = proxαnk g(I − αnk∇ f )wnk , we have

wnk − αnk∇ f (wnk ) ∈ znk + αnk ∂g(znk ),

which hence yields

wnk − znk

αnk

+∇ f (znk )−∇ f (wnk ) ∈ ∂g(znk ) +∇ f (znk ) = ∂( f + g)(znk ). (26)

Using Lemma 6 we conclude from (25), (26) and znk ⇀ z that 0 ∈ ∂( f + g)(z). As a result,
z ∈ S∗. Consequently, z ∈ ⋂N

i=1 Fix(Ti) ∩ VI(C, A) ∩ S∗ = Ω.

Theorem 1. Let {xn} be fabricated in Algorithm 3. If Condition 3 holds, then {xn} strongly
converges to an element x∗ ∈ Ω, where x∗ = PΩF(x∗).

Proof. First of all, by the Banach Contraction Principle, one knows that there is only a fixed
point x∗ of PΩ ◦ F in H. So, there is only a solution x∗ ∈ Ω of the VIP

⟨(I − F)x∗, v − x∗⟩ ≥ 0 ∀v ∈ Ω. (27)

In what follows, one divides the remainder of the proofs into a few claims.

Claim 1. We show that

{(1 − 8δ)(∥zn − wn∥2 + ∥yn − zn∥2) + (1 − µ λn
λn+1

)(∥qn − un∥2

+ ∥vn − un∥2)}(1 − βn) + (1 − βn)βn∥vn − xn∥2

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + θn∥xn−1 − xn∥M2 + δn∥xn−1 − yn∥M3 + γn M4

(28)

for some Mi > 0, i = 2, 3, 4.
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Indeed, using Lemma 11, {xn} is bounded, and hence {F(xn)} and {qn} are of bound-
edness. From (13) and the definition of wn, one has

∥yn − x∗∥2 ≤ ∥wn − x∗∥2 − (1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2)
= ∥xn − x∗∥2 + θ2

n∥xn − xn−1∥2 + 2θn⟨xn − x∗, xn − xn−1⟩
− (1 − 8δ)(∥zn − wn∥2 + ∥yn − zn∥2)

≤ ∥xn − x∗∥2 + θn∥xn−1 − xn∥[2∥xn − x∗∥+ θn∥xn−1 − xn∥]
− (1 − 8δ)(∥zn − wn∥2 + ∥yn − zn∥2).

(29)

Since qn = Tnyn + δn(Tnyn − Tnxn−1), by (29) one obtains

∥qn − x∗∥2 ≤ [∥Tnyn − x∗∥+ δn∥Tnyn − Tnxn−1∥]2
≤ [∥yn − x∗∥+ δn∥yn − xn−1∥]2
= ∥yn − x∗∥2 + δn∥xn−1 − yn∥[2∥yn − x∗∥+ δn∥xn−1 − yn∥]
≤ ∥xn − x∗∥2 + θn∥xn−1 − xn∥[2∥xn − x∗∥+ θn∥xn−1 − xn∥]
− (1 − 8δ)(∥zn − wn∥2 + ∥yn − zn∥2) + δn∥xn−1 − yn∥
× [2∥yn − x∗∥+ δn∥xn−1 − yn∥],

(30)

which together with (7), arrives at

∥xn+1 − x∗∥2 = ∥γn(F(xn)− vn) + βn(xn − x∗) + (1 − βn)(vn − x∗)∥2

≤ βn∥xn − x∗∥2 + (1 − βn)∥vn − x∗∥2 − (1 − βn)βn∥vn − xn∥2

+ 2γn⟨F(xn)− vn, xn+1 − x∗⟩
≤ βn∥xn − x∗∥2 + (1 − βn)[∥qn − x∗∥2 − (1 − µ λn

λn+1
)(∥qn − un∥2 + ∥vn − un∥2)]

− (1 − βn)βn∥vn − xn∥2 + 2γn⟨F(xn)− vn, xn+1 − x∗⟩
≤ βn∥xn − x∗∥2 + (1 − βn){∥xn − x∗∥2 + ∥xn−1 − xn∥θn[2∥xn − x∗∥+ ∥xn−1 − xn∥θn]
− (1 − 8δ)(∥zn − wn∥2 + ∥yn − zn∥2) + δn∥xn−1 − yn∥[2∥yn − x∗∥+ ∥xn−1 − yn∥δn]

− (1 − µ λn
λn+1

)(∥qn − un∥2 + ∥vn − un∥2)} − (1 − βn)βn∥vn − xn∥2

+ 2γn⟨F(xn)− vn, xn+1 − x∗⟩
≤ βn∥xn − x∗∥2 + (1 − βn){∥xn − x∗∥2 + ∥xn−1 − xn∥θn M2
− (1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2) + ∥xn−1 − yn∥δn M3

− (1 − µ λn
λn+1

)(∥qn − un∥2 + ∥vn − un∥2)} − βn(1 − βn)∥xn − vn∥2 + γn M4

≤ ∥xn − x∗∥2 − (1 − βn){(1 − 8δ)(∥zn − wn∥2 + ∥yn − zn∥2)

+ (1 − µ λn
λn+1

)(∥qn − un∥2 + ∥vn − un∥2)} − (1 − βn)βn

× ∥vn − xn∥2 + θn∥xn−1 − xn∥M2 + δn∥xn−1 − yn∥M3 + γn M4

where supn≥1[2∥xn − x∗∥+ ∥xn−1 − xn∥θn] ≤ M2, supn≥1[2∥yn − x∗∥+ ∥xn−1 − yn∥δn] ≤
M3 and supn≥1 2∥F(xn)− vn∥∥xn+1 − x∗∥ ≤ M4 for some Mi > 0, i = 2, 3, 4.

Claim 2. We show that

∥xn+1 − x∗∥2 ≤ [1 − γn(1 − κ)]∥xn − x∗∥2 + γn(1 − κ){ θn∥xn−xn−1∥
γn

· M2
1−κ

+ δn∥yn−xn−1∥
γn

· M3
1−κ + 2

1−κ ⟨F(x∗)− x∗, xn+1 − x∗⟩}.
(31)
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Indeed, noticing xn+1 = γnF(xn) + βnxn + (1 − βn − γn)vn, we deduce from
(16) and (30) that

∥xn+1 − x∗∥2 = ∥γn(F(xn)− x∗) + βn(xn − x∗) + (1 − βn − γn)(vn − x∗)∥2

= ∥γn(F(xn)− F(x∗)) + βn(xn − x∗) + (1 − βn − γn)(vn − x∗) + γn(F(x∗)− x∗)∥2

≤ ∥γn(F(xn)− F(x∗)) + βn(xn − x∗) + (1 − βn − γn)(vn − x∗)∥2

+ 2γn⟨F(x∗)− x∗, xn+1 − x∗⟩
≤ γn∥F(xn)− F(x∗)∥2 + βn∥xn − x∗∥2 + (1 − βn − γn)∥vn − x∗∥2

+ 2γn⟨F(x∗)− x∗, xn+1 − x∗⟩
≤ γnκ∥xn − x∗∥2 + βn∥xn − x∗∥2 + (1 − βn − γn)∥qn − x∗∥2

+ 2γn⟨F(x∗)− x∗, xn+1 − x∗⟩
≤ γnκ∥xn − x∗∥2 + βn∥xn − x∗∥2 + (1 − βn − γn)[∥xn − x∗∥2 + θn∥xn − xn−1∥M2
+ δn∥yn − xn−1∥M3] + 2γn⟨F(x∗)− x∗, xn+1 − x∗⟩

≤ [1 − γn(1 − κ)]∥xn − x∗∥2 + θn∥xn − xn−1∥M2 + δn∥yn − xn−1∥M3
+ 2γn⟨F(x∗)− x∗, xn+1 − x∗⟩

= [1 − γn(1 − κ)]∥xn − x∗∥2 + γn(1 − κ){ θn∥xn−xn−1∥
γn

· M2
1−κ + δn∥yn−xn−1∥

γn
· M3

1−κ

+ 2
1−κ ⟨F(x∗)− x∗, xn+1 − x∗⟩}.

Claim 3. We show that xn → x∗ ∈ Ω, which is only a solution of VIP (27). In fact,
setting Φn = ∥xn − x∗∥2, one can derive Φn → 0 in both aspects below.

Aspect 1. Presume that ∃ (integer) n0 ≥ 1 s.t. there holds the nonincreasing property of
{Φn}. One then has that Φn → d < +∞ and Φn − Φn+1 → 0 as n → ∞. From (28) and (17)
one obtains

(1 − βn){(1 − 8δ)(∥wn − zn∥2 + ∥zn − yn∥2) + (1 − µ λn
λn+1

)(∥qn − un∥2

+ ∥vn − un∥2)}+ βn(1 − βn)∥xn − vn∥2

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + θn∥xn − xn−1∥M2 + δn∥yn − xn−1∥M3 + γn M4
= Φn − Φn+1 + γn[

θn
γn
∥xn − xn−1∥M2 +

δn
γn
∥yn − xn−1∥M3] + γn M4

≤ Φn − Φn+1 + γn M1(M2 + M3) + γn M4.

(32)

Since 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, γn → 0, Φn − Φn+1 → 0 and limn→∞(1 −
µ λn

λn+1
) = 1 − µ > 0, we infer from (32) that

lim
n→∞

∥wn − zn∥ = lim
n→∞

∥zn − yn∥ = 0

and
lim

n→∞
∥qn − un∥ = lim

n→∞
∥vn − un∥ = lim

n→∞
∥xn − vn∥ = 0. (33)

Thus, we conclude that

∥vn − qn∥ ≤ ∥vn − un∥+ ∥un − qn∥ → 0 (n → ∞),

∥xn − qn∥ ≤ ∥xn − vn∥+ ∥vn − qn∥ → 0 (n → ∞),

∥yn − wn∥ ≤ ∥yn − zn∥∥zn − wn∥ → 0 (n → ∞), (34)

∥vn − yn∥ ≤ ∥vn − xn∥+ ∥xn − wn∥+ ∥wn − yn∥
≤ ∥vn − xn∥+ θn∥xn − xn−1∥+ ∥wn − yn∥ → 0 (n → ∞),

and hence
∥qn − yn∥ ≤ ∥qn − vn∥+ ∥vn − yn∥ → 0 (n → ∞). (35)

Thanks to xn+1 = γnF(xn) + βnxn + (1 − βn − γn)vn, we have

∥xn+1 − xn∥ ≤ γn∥F(xn)− xn∥+ (1 − βn − γn)∥vn − xn∥
≤ γn∥F(xn)− xn∥+ ∥vn − xn∥ → 0 (n → ∞).

(36)
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Thanks to the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that

lim sup
n→∞

⟨F(x∗)− x∗, xn − x∗⟩ = lim
k→∞

⟨F(x∗)− x∗, xnk − x∗⟩. (37)

Since H is reflexive and {xn} is bounded, we might assume that xnk ⇀ x̃. Hence, from (37)
we obtain

lim sup
n→∞

⟨F(x∗)− x∗, xn − x∗⟩ = lim
k→∞

⟨F(x∗)− x∗, xnk − x∗⟩

= ⟨F(x∗)− x∗, x̃ − x∗⟩.
(38)

Because xn+1 − xn → 0, qn − yn → 0, qn − un → 0, yn − wn → 0 and qnk ⇀ x̃ (due to
qn − xn → 0), by Lemma 12 we infer that x̃ ∈ Ω. Hence from (27) and (38) we obtain

lim sup
n→∞

⟨F(x∗)− x∗, xn − x∗⟩ = ⟨F(x∗)− x∗, x̃ − x∗⟩ ≤ 0, (39)

which immediately leads to

lim sup
n→∞

⟨F(x∗)− x∗, xn+1 − x∗⟩

= lim sup
n→∞

[⟨F(x∗)− x∗, xn+1 − xn⟩+ ⟨F(x∗)− x∗, xn − x∗⟩]

≤ lim sup
n→∞

[∥F(x∗)− x∗∥∥xn+1 − xn∥+ ⟨F(x∗)− x∗, xn − x∗⟩] ≤ 0.

(40)

Note, that {γn(1 − κ)} ⊂ [0, 1], ∑∞
n=1 γn(1 − κ) = ∞, and

lim sup
n→∞

{ θn∥xn−xn−1∥
γn

· M2
1−κ + δn∥yn−xn−1∥

γn
· M3

1−κ

+ 2
1−κ ⟨F(x∗)− x∗, xn+1 − x∗⟩} ≤ 0.

Therefore, using Lemma 4 we deduce from (31) that xn → x∗ as n → ∞.
Aspect 2. Suppose that ∃{Φnk} ⊂ {Φn} s.t. Φnk < Φnk+1 ∀k ∈ N , where N is the set

of all positive integers. Define the mapping φ : N → N by

φ(n) := max{k ≤ n : Φk < Φk+1}.

By Lemma 7, we obtain

Φφ(n) ≤ Φφ(n)+1 and Φn ≤ Φφ(n)+1.

From (28) and (17) we obtain

(1 − βφ(n)){(1 − 8δ)(∥wφ(n) − zφ(n)∥2 + ∥zφ(n) − yφ(n)∥2) + (1 − µ
λφ(n)

λφ(n)+1
)(∥qφ(n) − uφ(n)∥2

+ ∥vφ(n) − uφ(n)∥2)}+ βφ(n)(1 − βφ(n))∥xφ(n) − vφ(n)∥2

≤ Φφ(n) − Φφ(n)+1 + θφ(n)∥xφ(n) − xφ(n)−1∥M2 + δφ(n)∥yφ(n) − xφ(n)−1∥M3 + γφ(n)M4
≤ Φφ(n) − Φφ(n)+1 + γφ(n)M1(M2 + M3) + γφ(n)M4.

(41)

This hence implies that

lim
n→∞

∥zφ(n) − wφ(n)∥ = lim
n→∞

∥yφ(n) − zφ(n)∥ = 0

and
lim

n→∞
∥qφ(n) − uφ(n)∥ = lim

n→∞
∥vφ(n) − uφ(n)∥ = lim

n→∞
∥xφ(n) − vφ(n)∥ = 0.

So it follows that

lim
n→∞

∥qφ(n) − vφ(n)∥ = lim
n→∞

∥qφ(n) − xφ(n)∥ = lim
n→∞

∥yφ(n) − vφ(n)∥ = 0.
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Applying the analogous reasonings to those in the proofs of Aspect 1, one obtains

lim
n→∞

∥wφ(n) − yφ(n)∥ = lim
n→∞

∥qφ(n) − yφ(n)∥ = lim
n→∞

∥xφ(n)+1 − xφ(n)∥ = 0,

and
lim sup

n→∞
⟨F(x∗)− x∗, xφ(n)+1 − x∗⟩ ≤ 0.

In what follows, using (31) one obtains

γφ(n)(1 − κ)Φφ(n) ≤ Φφ(n) − Φφ(n)+1 + γφ(n)(1 − κ){ ∥xφ(n)−1−xφ(n)∥θφ(n)
γφ(n)

· M2
1−κ

+
∥xφ(n)−1−yφ(n)∥δφ(n)

γφ(n)
· M3

1−κ + 2
1−κ ⟨F(x∗)− x∗, xφ(n)+1 − x∗⟩},

which hence arrives at

lim sup
n→∞

Φφ(n) ≤ lim sup
n→∞

{ θφ(n)∥xφ(n)−xφ(n)−1∥
γφ(n)

· M2
1−κ

+
δφ(n)∥yφ(n)−xφ(n)−1∥

γφ(n)
· M3

1−κ + 2
1−κ ⟨F(x∗)− x∗, xφ(n)+1 − x∗⟩} ≤ 0.

Thus, limn→∞ Φφ(n) = 0. Also, it is easily known that

Φφ(n)+1 − Φφ(n)
= −2⟨xφ(n) − xφ(n)+1, xφ(n) − x∗⟩+ ∥xφ(n) − xφ(n)+1∥2

≤ 2∥xφ(n) − xφ(n)+1∥∥xφ(n) − x∗∥+ ∥xφ(n) − xφ(n)+1∥2.
(42)

Thanks to Φn ≤ Φφ(n)+1, we obtain

Φn ≤ Φφ(n)+1

≤ Φφ(n) + 2∥xφ(n) − xφ(n)+1∥
√

Φφ(n) + ∥xφ(n) − xφ(n)+1∥2 → 0 (n → ∞).

As a result, Φn → 0 (n → ∞).

In the forthcoming discussion, we let H = Rn and introduce specific assumptions
regarding the mappings f , g, and ω, that are pertinent to problem (3)–(4).

(B1) f , g : Rn → (−∞, ∞) are proper convex l.s.c. functions, with ∇ f being uniformly
continuous;

(B2) ω : Rn → (−∞, ∞) is of strong convexity possessing parameter σ, where the
gradient of ω is Lω-Lipschitzian, and s ∈ (0, 2

Lω+σ ).
Based on the stated assumptions, we propose the modified double inertial extragradient-

like algorithm with Linesearch C (Algorithm 4) to solve problem (4)–(4) with VIP and
CFPP constraints.

Algorithm 4. Initial Step: Let {µn}, {ρn}, {βn}, {γn}, {τn} ⊂ R+ be bounded sequences.
Choose x1, x0 ∈ Rn, σ, λ1 > 0, 0 < δ < 1

8 and 0 < θ, µ < 1.
Iterative Steps: For any n, reckon xn+1 below.

Step 1. Reckon wn = xn − θn(xn−1 − xn) with θn =

{
min{µn, γnτn

∥xn−1−xn∥} if xn−1 ̸= xn,
µn otherwise.

Step 2. Reckon zn = proxαng(I − αn∇ f )wn and yn = proxαng(I − αn∇ f )zn, with

αn=Linesearch C (wn, σ, θ, δ).

Step 3. Reckon qn = Tnyn + δn(Tnyn − Tnxn−1) with

δn =

{
min{ρn, γnτn

∥yn−xn−1∥
} if yn ̸= xn−1,

ρn otherwise.
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Step 4. Reckon un = PC(qn − λn Aqn) and vn = PCn(qn − λn Aun), with

Cn := {v ∈ H : ⟨qn − λn Aqn − un, v − un⟩ ≤ 0}.

Step 5. Reckon xn+1 = γn(I − s∇ω)(xn) + βnxn + (1 − βn − γn)vn, and update

λn+1 :=

{
min{λn, µ

∥qn−un∥2+∥vn−un∥2

2⟨Aqn−Aun ,vn−un⟩ } if ⟨Aqn − Aun, vn − un⟩ > 0,
λn otherwise.

Set n := n + 1 and go to Step 1.
We provide a lemma, which is vital to our forthcoming results.

Lemma 13 ([26]). Suppose ω : Rn → (−∞, ∞) is of strong convexity with σ > 0 and the
gradient of ω is Lipschitzian with constant Lω. Choose s ∈ (0, 2

σ+Lω
) arbitrarily. Then, the

mapping Ss = I − s∇ω is a contractive map s.t.

∥(I − s∇ω)u − (I − s∇ω)v∥ ≤

√
1 − 2sσLω

σ + Lω
∥u − v∥ ∀u, v ∈ Rn.

Theorem 2. Suppose {xn} is fabricated in Algorithm 4 and let ℧ be the solution set of problem
(3)–(4) with VIP and CFPP constraints and x∗ = PΩ(I − s∇ω)(x∗). Then {xn} converges
strongly to x∗ ∈ ℧ provided all conditions in Theorem 1 are fulfilled.

Proof. Consider F = I − s∇ω. According to Lemma 13, F acts as a contractive map. Using
Theorem 1, we conclude that xn → x∗ ∈ Ω, where x∗ = PΩF(x∗). Therefore, for each
v ∈ Ω, one has

0 ≥ ⟨F(x∗)− x∗, v − x∗⟩ = ⟨x∗ − s∇ω(x∗)− x∗, v − x∗⟩ = ⟨−s∇ω(x∗), v − x∗⟩.

This immediately yields
⟨∇ω(x∗), v − x∗⟩ ≥ 0 ∀v ∈ Ω.

As a result, x∗ ∈ ℧. Therefore, we obtain xn → x∗ ∈ ℧ by Theorem 1.

4. An Application

In this section, our Algorithm 4 is applied to find a solution to the LASSO problem
with constraints of fractional programming and fixed-point problems. Since the accurate
solution of this problem is unknown, one employs ∥xn − xn+1∥ to estimate the error of
the n-th iterate, which shows the utility of verifying whether the suggested algorithm
converges to the solution as well or not.

First, recall some preliminaries. We set a mapping

Γ(x) := Mx + q,

that is found in [27] and was discussed by numerous scholars for applicable examples (see,
e.g., [28]), with

M = BBT + D + G and B, D, G ∈ Rm×m

where D is skew-symmetric and G is diagonal matrix, for which diagonal entries are
nonnegative (hence M is positive semidefinite), and q is an element in Rm. The feasible
C ⊂ Rm is of both closedness and convexity, and formulated below

C := {x ∈ Rm : Hx ≤ d},

with H ∈ Rl×m and the vector d being nonnegative. It is not hard to find that Γ is of
both β-(strong) monotonicity and L-Lipschitz continuity with β = min{eig(M)} and
L = max{eig(M)}.
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As far as we know, image reconstruction implicates invoking varied matters to melio-
rate the quality of images. This encompasses tasks, e.g., image deblurring or deconvolution,
which aim to repair any blurriness emerging in an image and rehabilitate it to a clearer
and more visually appealing status. The attempt to reconstruct the image comes back
to the 1950s and has been exploited in different areas, e.g., consumer photography, im-
age/video decoding, and scientific exploration [29,30]. From mathematical viewpoint,
image reconstruction is usually formulated below:

v = Ax + b̆, (43)

where v ∈ Rm represents the observed image, A ∈ Rm×n denotes the blurring matrix,
x ∈ Rn denotes the original image, and b̆ is noise. To attain our aim of rehabilitating the
optimal valid image x̄ ∈ Rn that meets (43), we are devoted to tackling the least squares
problem (44) while minimizing the impact of b̆. Via doing so, we can make sure that our
technique is efficient and superior for acquiring the desired outcomes. This technique seeks
to minimize the squared discrepancy between v and Ax with the goal of ameliorating the
reconstruction procedure and strengthening the image quality

min
x

∥v −Ax∥2
2, (44)

where ∥ · ∥2 is the spectral norm. Varied iterative processes can be utilized to evaluate the
solution shown in (44). It is noteworthy that (44) causes a challenge because it lies in the
category of ill-posed problems. In the case when the number of unknown variables goes
over the number of observations, it commonly arrives at an unstable norm. This is a vital
issue that can pose varied problems. This issue has been broadly explored and recorded in
varied research, e.g., [31,32]. Regularization approaches have been suggested to resolve
the challenge of improving the least squares problem. In particular, Tikhonov regularizing
technique becomes a crucial method that ameliorates the accuracy and stableness of solu-
tions. Via this approach, we can attain our goal of resolving problems in the most effective
and superior way possible

min
x

{∥v −Ax∥2
2 + ζ∥Lx∥2}, (45)

where ζ > 0 is a constant, which is termed the regularization parameter, and ∥ · ∥2 is the
spectral norm. Besides, the Tikhonov matrix is represented by L ∈ Rm×n with a default
configuration viewing L as the identity matrix. The least absolute shrinkage and selection
operator (LASSO), invented in Tibshirani [33], is a prominent way to tackle (43). Denoting
by S∗ the solution set of the minimization problem below

min
x

{∥v −Ax∥2
2 + ζ∥x∥1}, (46)

we aim at seeking a point x∗ ∈ S∗ s.t.

x∗ = arg min
x∈S∗

1
2
∥x∥2

2. (47)

Next, in our illustrative instance, we explore and apply Algorithm 4 for tackling
the CBOP with constraints of fractional programming and fixed point problems. We set
ω(x) = 1

2∥x∥2
2, f (x) = ∥v −Ax∥2

2 and g(x) = ζ∥x∥1 with ζ = 5 × 10−5. In this case, the
observed images under consideration are blurred ones.

For convenience, let m = n = l = 4. We give the operator A. Consider the following
fractional programming problem:

min g(x) = xT Qx+aT x+a0
bT x+b0

,
subject to x ∈ X := {x ∈ R4 : bTx + b0 > 0},
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where

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

, a =


1
−2
−2
1

, b =


2
1
1
0

, a0 = −2, b0 = 4.

It is easy to verify that Q is symmetric and positive definite in R4 and consequently g is
pseudoconvex on X = {x ∈ R4 : bTx + b0 > 0}. Then,

Ax := ∇g(x) =
(bTx + b0)(2Qx + a)− b(xTQx + aTx + a0)

(bTx + b0)2 .

It is easily known that A is pseudomonotone (see [34] for more details). Now, we give a
nonexpansive mapping T1 : R4 → C defined by T1x = PCx ∀x ∈ R4.

Let starting points x1, x0 be randomly selected in R4. Take F(x) = (I − 0.01∇ω)x,
µ = 0.3, γn = τn = 1

n+1 , µn = ρn = 0.1, βn = 1
3 , σ = 2, θ = 0.9, δ = 0.1,

θn =

{
min{0.1, 1/(n+1)2

∥xn−1−xn∥} if xn−1 ̸= xn,
0.1 otherwise,

αn = Linesearch C (wn, 2, 0.9, 0.1), and

δn =

{
min{0.1, 1/(n+1)2

∥xn−1−yn∥} if xn−1 ̸= yn,
0.1 otherwise.

As a result, Algorithm 4 is rephrased as follows:

wn = xn − θn(xn−1 − xn),
zn = proxαng(I − αn∇ f )wn,
yn = proxαng(I − αn∇ f )zn,
qn = T1yn − δn(T1xn−1 − T1yn),
un = PC(qn − λn Aqn),
vn = PCn(qn − λn Aun),
xn+1 = 1

n+1 · 99
100 xn +

1
3 xn + ( n

n+1 I − 1
3 I)vn ∀n ≥ 1,

in which λn and Cn are selected as in Algorithm 4 for every n. Therefore, Theorem 2 guarantees
that {xn} is convergent to a solution of the LASSO problem with constraints of the fractional
programming problem and the fixed-point problem of T1.

In the end, it is worth mentioning that, there have been many works that deal with
the problem of designing an algorithm to solve (46) see, e.g., [35,36] and the references
wherein. Moreover, some of them are able to solve globally the problem using non-
convexity assumptions.

5. Conclusions

This article is focused on designing and analyzing iterative algorithms to tackle convex
bilevel optimization problem (CBOP) with CFPP and VIP constraints, with the CFPP and
VIP representing a common fixed point problem and a variational inequality problem,
respectively. Here, the CFPP implicates finite nonexpansive mappings and the VIP involves
a Lipschitzian pseudomonotone mapping in a real Hilbert space.

To the best of our awareness, the CBOP reveals a prominent role in the decision-
making process under the hierarchical setting, when image reconstruction exhibits a vital
effect on signal processing and computer vision. With the help of the subgradient extragra-
dient and forward-backward viscosity methods, we have designed a novel double inertial
extragradient-like approach with Linesearch C for tackling the CBOP with the CFPP and
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VIP constraints. Under certain appropriate conditions, we have proved that the sequence
fabricated by the proposed algorithm is strongly convergent to a solution of the CBOP with
CFPP and VIP constraints, where the proposed algorithm consists of both sections which
possess a mutual symmetry structure to a certain extent. As an application, our proposed
algorithm is exploited for treating the image restoration problem, i.e., the LASSO problem
with the constraints of fractional programming and fixed-point problems. The illustrative
instance highlights the specific advantages and potential influence of our proposed algo-
rithm over the existing algorithms in the literature, particularly in the domain of image
restoration. Finally, it is worth mentioning that a section of our subsequent investigation
is concentrated on establishing the strong convergence outcome for the modification of
our devised method with quasi-inertial Tseng’s extragradient steps (see [13]) and adaptive
step sizes.
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