
Citation: Haleema, S.; Gopinath, C.;

Kallingathodi, Z.; Thomas, G.;

Polavarapu, P.L. Medicinally

Significant Enantiopure Compounds

from Garcinia Acid Isolated from

Garcinia gummi-gutta. Symmetry 2024,

16, 1331. https://doi.org/10.3390/

sym16101331

Academic Editor: György Keglevich

Received: 6 September 2024

Revised: 29 September 2024

Accepted: 3 October 2024

Published: 9 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Review

Medicinally Significant Enantiopure Compounds from Garcinia
Acid Isolated from Garcinia gummi-gutta
Simimole Haleema 1,* , Chithra Gopinath 1,†, Zabeera Kallingathodi 2,†, Grace Thomas 3,†

and Prasad L. Polavarapu 4,*

1 T. K. M. College of Arts and Science, Kollam 691005, Kerala, India; jkchithra@gmail.com
2 M. E. S Mampad College, Mampad 676542, Kerala, India; zabimongam@gmail.com
3 Sacred Heart College (Autonomous), Thevara, Kochi 682013, Kerala, India; grace@shcollege.ac.in
4 Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
* Correspondence: siminoor@tkmcas.ac.in (S.H.); prasad.l.polavarapu@vanderbilt.edu (P.L.P.)
† These authors contributed equally to this work.

Abstract: Garcinia gummi-gutta, commonly known as Garcinia cambogia (syn.), is a popular traditional
herbal medicine known for its role in treating obesity, and has been incorporated into several nutraceu-
ticals globally for this purpose. The fruit rind is also used as a food preservative and a condiment
because of its high content of hydroxycitric acid, which imparts a sharp, sour flavour. This review
highlights the major bioactive compounds present in the tree Garcinia gummi-gutta, with particular em-
phasis on (2S, 3S)-tetrahydro-3-hydroxy-5-oxo-2,3-furan dicarboxylic acid, commonly referred to as
garcinia acid. This acid can be isolated in large amounts through a simple procedure. Additionally, it
explores the synthetic transformations of garcinia acid into biologically potent and functionally useful
enantiopure compounds, a relatively under-documented area in the literature. This acid, with its six-
carbon skeleton, a γ-butyrolactone moiety, and two chiral centres bearing chemically amenable func-
tional groups, offers a versatile framework as a chiron for the construction of diverse molecules of both
natural and synthetic origin. The synthesis of chiral 3-substituted and 3,4-disubstituted pyrrolidine-
2,5-diones, analogues of the Quararibea metabolite—a chiral enolic-γ-lactone; the concave bislactone
skeletons of fungal metabolites (+)-avenaciolide and (−)-canadensolide; the structural skeletons of the
furo[2,3-b]furanol part of the anti-HIV drug Darunavir; (−)-tetrahydropyrrolo[2,1-a]isoquinolinones,
an analogue of (−)-crispine A; (−)-hexahydroindolizino[8,7-b]indolones, an analogue of the naturally
occurring (−)-harmicine; and furo[2,3-b]pyrroles are presented here.

Keywords: garcinia acid; chiral enolic lactone; furo[2,3-b]furanol; (−)-crispine A; (−)-harmicine;
bislactone

1. Introduction

Natural products comprise secondary metabolites produced by both terrestrial and
marine organisms, including plants, animals, fungi, and bacteria [1–3]. From a medical
perspective, the majority of these natural products provide a rich source of bioactive agents
including anti-tumour, immunosuppressive, anti-insecticidal, anti-bacterial, as well as
various clinically significant activities. This traditional knowledge about the biological
and pharmacological activities of these compounds has significantly influenced modern
scientific endeavours in both synthetic and semi-synthetic drug discovery and development
efforts. Plant-derived molecules continue to be indispensable in healthcare; with their
utilization across diverse cultures were extensively documented [4,5]. According to the
World Health Organization (WHO), approximately 65% of the global population relies
predominantly on plant-derived traditional medicines for primary healthcare. These
plant products also play a significant, albeit more indirect, role in healthcare systems in
developed countries [6]. These secondary metabolites can also serve as starting materials
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for synthesizing structurally and stereochemically related molecules that are beneficial
to humanity.

Garcinia gummi-gutta (synonym of Garcinia cambogia Desr.), is a member of the Clusi-
aceae family and is closely related to several other Garcinia species [7]. More commonly
known as Malabar tamarind, it is an economically significant spice tree valued for its sun-
dried, smoked rind, which imparts a tart flavour. This spice is widely used as a flavouring
condiment in various dishes. The small fruit resembles a pumpkin and is heavily marketed
as a weight loss supplement.

2. Traditional Uses of Garcinia gummi-gutta Extracts

Ancient Indian tribes utilized various parts of the Garcinia gummi-gutta plant for
diverse medicinal purposes, as documented in Sanskrit texts foundational to Indian tradi-
tional medicine. Charaka samhita, a key text in Ayurveda, mentions the dried fruit of the tree
combined with curd as a remedy for piles and haemorrhoids. Vagbhata’s Ashtanga Hridaya,
which frequently references the earlier classical work Charakasamhitha, further discusses the
medicinal properties of the fruit, highlighting it as an excellent remedy for gastrointestinal
problems. Vaidyamanorama, another classical text of Ayurveda also discusses the medicinal
properties of the fruit as the remedy for gulma disease. The text presents an ayurvedic
formulation in which the dried fruit is mixed with rock salt as a decoction to treat this
condition. Traditional tribes from Kerala use the fruit extract as a remedy for uterus related
issues. Typically, after 60 days of delivery, women in the tribe consume the fruit extract
once a day as part of their traditional healing practices [6]. Additionally, the plant extract is
considered an antidote for venomous bites, including cobra bites and scorpion stings, and
is known for its wound-healing properties. It can also be included in the diet of patients
undergoing treatment for skin conditions. In this respect, it contrasts with conventional
tamarind, which is typically avoided in the dietary regimen of sick patients. Various formu-
lations derived from the plant have been traditionally used in many Asian countries to treat
a range of ailments, including constipation, rheumatism, oedema, irregular menstruation,
and intestinal parasites. These remedies reflect the plant’s long-standing role in traditional
medicine across the region [8–11]. It was also used in veterinary medicine to address mouth
diseases in cattle [7], and served as a tonic for heart-related issues [7,10].

The fruit of the tree is renowned for its acidic flavour and has been extensively used in
preparing a wide range of dishes. The fruit is also used in curing fish, a practice famously
known as Colombo fish curing. Extensive culinary research and experimentation have
demonstrated that the fruit rind and its extracts play a significant role as a curry condiment
in India, adding a tangy element to various traditional recipes.

3. Plant Constituents of Garcinia gummi-gutta

The sour taste of the fruit is attributed to the presence of high amount of (−)-hydroxycitric
acid [(−)-HCA, 1a]. Earlier reports suggested that the fruit contains additional organic acids
such as tartaric and citric acids. However, modern analytical research established that 1a and
its lactone form garcinia acid (1) are the major organic acids present in the fruit [12].

The major chemical constituents isolated from different parts of the plant includes, the
organic acids such as 1a, the lactone 1, benzophenones and polyisoprenylated benzophe-
nones, such as garcinol (2), isogarcinol (3), and guttiferones (4–6), [7,8,10,11], as well as
xanthone-type compounds like garbogiol (7), rheediaxanthone A (8), oxy-guttiferone I (9),
oxy-guttiferone K (10), oxy-guttiferone M (11), and oxy-guttiferone K2 (12) [12–14]. The
major compounds, 1 to 12, isolated from different parts of the plant are presented in Table 1.
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Table 1. Chemical compounds isolated from different parts of the plant Garcinia gummi-gutta.

Structure & Name Plant Part Biological Activity

Major organic acids
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4. Medicinal Properties

Various extracts and pure compounds isolated from the plant possess a wide range of
biological activities, including anti-obesity, anti-inflammatory, anti-diabetic, anti-oxidant,
anti-cancer, and others. Extensive studies are being conducted regarding the anti-obesity
activity of the phytochemical constituents. Numerous nutraceuticals are being marketed as
anti-obesity agents based on the various extracts of Garcinia gummi-gutta [6,7,9].

Acids 1a and 1 are recognised for potential anti-obesity or weight-reducing properties
due to their ability to inhibit the enzyme ATP citrate lyase. This enzyme is responsible for
catalysing the extra-mitochondrial cleavage of citrate to oxaloacetate and acetyl coenzyme A
(acetyl-CoA). Acetyl-CoA is the key precursor in the synthesis of fatty acids. Consequently,
the energy that would be used for fatty acid synthesis is diverted to the production of
muscle and liver glycogen [15–17].

While there have been promising findings regarding the effectiveness of the acid 1a,
concerns about its dosage and administration exist. It is generally advised that individuals
diagnosed with diabetes mellitus, pregnant women, and lactating women should avoid
taking the plant extract due to potential risks. This caution stems from the inhibition of
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acetyl-CoA, which subsequently affects the production of malonyl-CoA. Malonyl-CoA
plays a crucial role in insulin signalling, potentially impacting insulin sensitivity.

The derivatives of 1a such as calcium, potassium, and sodium salts, along with other
ingredients, have been incorporated into various pharmaceutical combinations aimed at
enhancing weight loss and correcting lipid abnormalities. These formulations are designed
to leverage the potential benefits of acid 1a while addressing safety concerns and optimizing
therapeutic outcomes.

5. Toxicity Studies

Although compounds isolated from Garcinia gummi-gutta and its extracts have found
various applications in the medicinal and food additives industry, concerns about the safety
of Garcinia gummi-gutta extracts have been raised in some reports [14,18–22].

The majority of these reports indicate that Garcinia gummi-gutta extracts or its active
principle 1a itself may not have significant toxic effects. However, a few clinical toxicity
reports have raised concerns about formulations that include Garcinia gummi-gutta extracts
or 1a as active ingredients, showing potential toxicity toward spermatogenesis [23]. Despite
these concerns, studies examining the effects of 1a on human sex hormones have found no
significant changes in serum hormone levels. Other reports have also indicated that both
1a and 1, are safe based on biochemical and histopathological analyses [22]. A majority
of adverse reports have been associated with multi-ingredient formulations, making it
challenging to attribute negative effects to a specific component. Some reports suggest a
potential interaction between medications that increase serotonin levels, such as Selective
Serotonin Reuptake Inhibitors, and 1a, which is known to also elevate serotonin levels. This
underscores the importance of pre-marketing safety assessments [23].

6. Hydroxycitric Acids

HCA, also known as 1,2-dihydroxypropane-1,2,3-tricarboxylic acid, is a six-carbon or-
ganic acid featuring two adjacent chiral centres. (−)-HCA is widely utilised as a significant
component in pharmaceuticals and food additives, highlighting its versatile applications
in both medicinal and culinary industries. However, the natural occurrence of these chi-
ral organic acids is limited. In 1833, Lippmann first reported the natural existence of
HCA [24]. Of the four isomers of HCA, 1, 13, 14, and 15 (Figure 1), garcinia acid (1), or
(2S,3S)-3-hydroxy-5-oxo-tetrahydrofuran-2,3-dicarboxylic acid, and hibiscus acid (13), or
(2S,3R)-3-hydroxy-5-oxo-tetrahydrofuran-2,3-dicarboxylic acid, are naturally available. The
natural existence of the other two stereoisomers has not yet been reported. However, all
these isomers have been synthesised from trans-aconitic acid by Martius [25]. The presence
of hydroxycitric acid in the fruit of Garcinia gummi-gutta was first reported by Lewis and
Neelakantan in 1965 [26]. Since then, various attempts have been made to isolate 1 in its
enantiopure form.

In 1969, Boll et al. determined the absolute configurations of the two asymmetric
centres of the acid. The same group also reported the pKa values of both carboxylic
acids as 1.82 and 3.75 from a potentiometric titration method [27]. In 1971, Gluskar et al.
published the X-ray crystal structure of the dicalcium salt of 1 and determined its absolute
configuration [28]. Additionally, Jayaprakash and coworkers reported the HPLC profile of
organic acids present in the fruit extract and estimated the (-)-HCA content to be between
16% and 30% in the fruit [29].

Various attempts have been made to determine whether (−)-HCA exists in the fruit
as an open chain or in a lactone form. This is due to the presence of a hydroxyl group at
the gamma position, which is prone to lactonization and forms a cyclic γ-butyrolactone
moiety (Figure 2). The systematic study conducted by Ibnusaud et al. using capillary
electrophoresis confirmed the presence of both open-chain and lactonized forms of the acid
in the plant [30].
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7. Garcinia Acid as Chiral Building Block: A Value Addition to India’s
Natural Resources

It is interesting to note that mineral and biological resources of India, including its flora
and fauna, have not been extensively explored for value addition. According to a report
by the Department of Science and Technology, Government of India, Indian researchers
have not yet fully tapped into the potential of the country’s rich biodiversity. Only a small
fraction, around 5%, of India’s plant materials have undergone systematic investigation.
This highlights a significant opportunity for further research and development to unlock
the potential benefits and applications of these resources.

There is a growing interest in identifying, isolating, and utilising natural products
for semi-synthetic approaches to produce desired chiral compounds. This approach not
only aims to streamline synthetic processes but also leverages natural resources more sus-
tainably, aligning with global trends towards eco-friendly and efficient chemical synthetic
methods. Hence, considerable effort and creativity have focused on using enantiopure and
inexpensive compounds, such as terpenes, carbohydrates, hydroxy acids, and amino acids
obtained directly from the chiral pool for target-oriented syntheses [31,32].

Among these compounds, naturally occurring α-hydroxy acids, 1, 13, 16 to 27 (Figure 3)
have been extensively used as a renewable source of enantiomerically pure compounds for
various aspects of chirality. However, there has been little exploration into the synthetic
potential of the closely related but lesser-known acid 1, which is abundantly distributed
in nature.
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7.1. Synthesis of Bislactones

Several enantiomerically pure lactones and related bislatones have been the focus of
recent research to develop a variety of compounds with biological significance. Compounds
like paraconic acids, mescaline isocitrimide lactone, avenaciolide, whisky lactones, cinatrins,
methylenolactocins etc. have distinct structural frameworks that do not align with tartaric
acid. Additionally, the known methods for synthesising certain concave bislactones such
as (+)-avenaciolide (73), (+)-isoavenaciolide (74), ethisolide (75), (−)-canadensolide (76),
xylobovide (77), sporothriolide (78), and dihydrocandensolide (79) are often described
as tedious and time-consuming [58–68]. Interestingly, 1 appears to be the most suitable
chiron for minimising synthetic steps and maximising the synthetic efficiency of these
lactones/bislactones (Figure 4) [35].
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Figure 4. Naturally occurring compounds having bislactone moiety.

In this respect, a quick semi-synthetic method for constructing these challenging
and fascinating bislactones (81 and 85) has been developed by Ibnusaud et al. from
readily available acid 1 [35]. This method can be further tuned for a variety of natural
molecules. After protecting the geminal hydroxyl and carboxylic acid group at the C-
3 position of acid 1 with trichloroacetaldehyde (Scheme 1), the selective reduction of
the carboxylic group at the C-2 position was conducted using borane dimethyl sulphide
in tetrahydrofuran (BMS/THF) [69]. The chromatographic purification over silica gel
furnished the bis-lactone 81, a derivative of the fungal metabolite (−)-candensolide. The
structure of 81 was confirmed based on IR, 1H and 13C NMR spectroscopy, X-ray diffraction
studies (CCDC 667543), and mass spectrum. Additionally, an alternative route was reported
for the synthesis of bislactone 81 by employing borane dimethyl sulphide in tetrahydrofuran
(BMS/THF) for the selective reduction of anhydride 82 (Scheme 1).
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Scheme 1. Synthesis of chiral bislactone 81, an analogue of (−)-candensolide [35].

The tertiary hydroxyl group at C-3 position of 83a, the dimethyl ester of 1, was
utilised to facilitate a regio-selective reduction using borane dimethyl sulfide (BMS) in
tetrahydrofuran and catalytic NaBH4 [70]. This reduction furnished the bislactone 85, the
core skeleton of the fungal metabolite (+)-avenaciolide, as a sharp melting solid upon
chromatographic purification over silica gel (Scheme 2) [35,71]. The structure of 85 was
confirmed based on IR, 1H and 13C NMR spectroscopy, X-ray diffraction studies (CCDC
667542), and mass spectrum.
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Scheme 2. Synthesis of chiral bislactone 85, an analogue of (+)-avenaciolide [35].

Vicinal diol 84a was isomerised to hydroxy ester 86, a lactone motif present in many
natural products [56,57] via acid-catalysed trans-lactonization. A plausible mechanism for
the transformation is depicted in Scheme 3 [72].
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The subsequent hydrolysis of 86 in an alkaline medium furnished the acid 87 (Scheme 4).
Treatment of 86 with benzylamine in methanol under reflux resulted in the formation of
amide 88 [72], a valuable intermediate for the synthesis of iminosugars [73].
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7.2. Synthesis of Analogues of the Quararibea Metabolite Chiral Enolic-γ-Lactones

Chiral butenolide sub-structures are estimated to serve as building blocks for the
synthesis of approximately 13,000 natural products, including molecules like (-) funebrine
(89) and angelica lactone (90), with 2(5H)-furanone subunits (Figure 5). These structural
motifs are found in various compounds such as pheromones, the antibiotic strobilin,
penicillanic acid, pulvinones, and several secondary metabolites of fungal and marine
origin, as well as sesquiterpenoid lactones. Often, chiral butenolides are obtained from
sources like carbohydrates, α-keto acids, glutamic acid, or acyclic systems such as acetylenic
compounds, pyruvic acid derivatives, and cyanohydrins of conjugated aldehydes, typically
involving multi-step procedures [51,74,75].
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Figure 5. Naturally occurring Quararibea metabolite chiral enolic-γ-lactones.

It was reported that minor functional group modification on the acid 1 yields the chiral
enolic lactone [36]. The dialkylesters of acid 1 were used to synthesize analogues of the
Quararibea metabolite chiral enolic-γ-lactones. Methyl ethers of chiral enolic -γ-lactone
(91) were isolated by reacting dimethyl or diethyl esters of 1 with POCl3 in pyridine and
then reacting the mixture with diazomethane (Scheme 5). However, when the reaction
was conducted using 83b, the diisopropyl ester of 1, a simple dehydration product (92),
was obtained. Irrespective of the substitution, when methane sulfonyl chloride in triethyl
amine reacted with the dialkylesters of acid 1, aromatic dialkyl-5-[(methyl-sulfonyl)oxy]-
2,3-furandicarboxylates 93a and 93b were isolated.
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A plausible mechanism for the formation of compounds 91a–b and 93a–b is proposed
(Figures 6 and 7).
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7.3. Synthesis of 3-Substituted and 3,4-Disubstituted Pyrrolidine-2-5-Diones

Syntheses of pyrrolidines, pyrrolizidine alkaloids, amino acids, and other compounds
have been achieved starting from hydroxy acids such as tartaric or malic acids, which
involve intermediates like pyrrolidine-2,5-diones. Hence, a great deal of research has
been focused on the synthesis of 2,5-disubstituted pyrrolidines [32]. Ibnusaud et al. have
reported the synthesis of 3 and 3,4-disubstituted chiral pyrrolidines by the judicious con-
version of 1 since various natural compounds include pyrrolidine skeletons with 3 and
3,4-disubstitution.

They have developed two distinct strategies to synthesize chiral pyrrolidine-2,5-diones.
By using acetyl chloride, the acid 1 is converted to the corresponding anhydride 82 in
the first approach. Several primary amines were refluxed with the resulting acetylated
anhydride to produce the appropriate bicyclic pyrrolidine-2,5-diones (33a–g). Subse-
quently, the acetylated anhydride was deacetylated to obtain the final compounds (34a–f)
(Scheme 6) [34,38,39,53,76].

The anhydride-based pyrrolidine-2,5-diones are limited to the HCA variants (2S,3S)
and (2R,3R) because the cis orientation of carboxylic acid groups is necessary to achieve
five-membered ring fusion. However, pyrrolidine-2,5-diones derived from the (2S,3S)
isomer of HCA are the only compounds known, as the (2R,3R) isomer of HCA has not yet
been reported in natural sources.
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In the second strategy, diesters of 1 were employed as starting compounds. These
diesters were refluxed with one equivalent of a primary amine in toluene leading to
the formation of cyclic imides for the subsequent conversion of pyrrolidine-2,5-diones
(Scheme 7). Thus, a novel class of 3-substituted pyrrolidine-2,5-diones (35a–l) with yields
varying from 71% to 90% was obtained by utilizing a variety of primary amines. The
diversity in substituents bonded to the imide nitrogen contributed to the inherent diversity
of this library of 3-substituted pyrrolidine-2,5-diones.

Furthermore, these pyrrolidine-2,5-diones possess an improved coupling motif that
enables the one-pot generation of a wide range of skeletally diverse and bio-relevant
compounds [53]. By considering the imide carbonyl as a shared coupling point in the
pairing phase, it has been reported that monocyclic precursors can be folded to form two
distinct types of polycyclic ring systems.
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7.4. Synthesis of Tetrahydropyrrolo[2,1-a] Isoquinolinone, Hexahydroindolizino[8,7-b] Indolones
and Furo[2,3-b]pyrroles

N-heterocyclic scaffolds based on pyrrolo[2,1-a]isoquinoline are the fundamental
structural component of many synthetic and biologically active compounds. It is well
known that there are several natural compounds containing a pyrrolo[2,1-a]isoquinoline
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structure (Table 3, Nos. 60–67). Although naturally occurring simple, tricyclic, non-
annulated pyrrolo[2,1-a]isoquinolines have existed since 1963, their significance has recently
increased. There is ample documentation on the synthesis and characteristics of pyrrolo[2,1-
a] isoquinolines [37,76].

Many compounds with the ring structures of pyrroloisoquinolin [53,77–79] and in-
dolizinoindolone [77,80–82] are commonly found in tropical and sub-tropical folk
medicines [76,81]. The most promising technique for synthesizing these fused heterocyclic
complexes is N-acyliminium ion cyclization [80,83,84]. This synthetic strategy involves
the reduction of chiral unsymmetrical pyrrolidine-2,5-diones (94). These intermediates
then undergo diastereoselective N-acyliminium cyclization leading to the formation of
tetrahydropyrrolo[2,1-a]isoquinoline (95), and hexahydroindolizino[8,7-b]indolone ring
systems. The reduction of chiral pyrrolidine-2,5-diones exhibits regioselectivity at the more
substituted carbonyl group [85]. The nucleophilic aryl ring on the least hindered side of
the acyliminium ion is known to be attacked in a diastereospecific manner during the
N-acyliminium cyclization process, yielding only one diastereomer and therefore 96 is not
formed (Scheme 8) [79].
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In this background, tetrahydropyrrolo[2,1-a]isoquinone derivatives (36) were prepared
in an enantiomerically pure form from chiral 3-substituted pyrrolidine-2,5-diones (35),
in good yield (Scheme 9). The proximal hydroxy groups facilitated the regioselective
reductions. The reduction products from 35 could be folded to obtain either five- or six-
membered polycyclic ring systems, depending on the workup conditions and electronic
status of the aromatic ring (Schemes 9 and 10). The scope of this work has been extended
to include pyrrolidine-2,5-diones with different electronic characteristics.

After reducing the pyrrolidine-2,5-diones 35i or 35k with three equivalents of NaBH4,
followed by workup under acidic conditions (5M HCl) (Path A), tetrahydropyrrolo[2,1-
a]isoquinone (36) were obtained, through a 6-endo-trig cyclization process that involved the
aromatic ring as the nucleophilic entity (Scheme 9) [53]. Similarly, reduction of pyrrolidine-
2,5-dione 35l led to the formation of hexahydroindolizino[8,7-b]indolone (37) (Scheme 10).

When the reduction of 35i, or 35k and 35l was performed with an excess of NaBH4 (ten
equivalents) followed by quenching with excess methanol (Path B), the furo[2,3-b]pyrroles
(38a,b,j) were obtained diastereospecifically. This transformation proceeded via a 5-exo-
trig cyclization involving the hydroxyl group of the reduced ester as the nucleophilic
entity. The alkaline reaction mixture generated by the excess NaBH4 allowed the isolation
of furo[2,3-b]pyrroles as O-N acetals, which were stable under the isolation conditions
(Schemes 9 and 10).
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Accordingly, compounds 36, an analogue of naturally occurring (−)-crispine A (Scheme 9)
and 37, an analogue of naturally occurring (−)-harmicine (Scheme 10), were synthesized from
35k and 35l respectively as single diastereomers. The structure and stereochemistry of these
molecules were established with all spectroscopic data including the single crystal XRD (for 36,
CCDC 1852021, and for 37, CCDC 1852024) as well as chiroptical spectroscopy. The absolute
configurations of the final molecules were determined by relating them to the known absolute
configurations of the starting compound. The diastereoselective outcome can be explained
based on the favoured conformation of the intermediate so that intramolecular cyclisation of
35k’ leads to 36 via a re-face attack of the aryl group. Further, the diastereoselective attack of
the nucleophilic aryl ring occurs at the least hindered side of the acyliminium ion [53].

When the pyrrolidine-2,5-dione 35i or 35k was used, a 5-exo-trig cyclisation was
triggered in the acyliminium ion, using ten equivalent NaBH4 in ethanol, followed by
quenching with excess methanol, resulting in the exclusive formation of furo[2,3-b]pyrrole
38 [29,52]. However, when the aryl ring bears electron-donating groups, it competes
with the hydroxyl group acting as the nucleophile for the acyliminium cyclisation. Thus,
the pyrrolidine-2,5-dione 35 furnished tetrahydropyrrolo[2,1-a]isoquinolinones (36) via
a 6-endo-trig Pictet-Spengler cyclisation with excellent yield. By judiciously tuning the
electron density on aryl ring of the pyrrolidinediones, cyclisation can be switched to either
furopyrroles or pyrroloisoquinolines [53].
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7.4.1. Synthesis of Furopyrroles

Enantiopure furo[2,3-b]pyrroles, a rare class of concave cis-fused bicyclic nitrogen and
oxygen heterocycles, are found as subunits in complex natural products like millingtonine
A (Figure 8), madindoline (Table 3, No. 69), as well as in several synthetic drugs [86]. A
practical approach to the synthesis of this rare class of nitrogen–oxygen heterocycles was
disclosed by Ibnusaud et al. (Scheme 11) [52,53].
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7.4.2. Synthesis of Pyrroloisoquinolinone from Bicyclic Anhydride

The reaction of compound 34e with excess NaBH4 (ten equivalents), followed by
acidic workup, led to the formation of 2,3-disubstituted pyrrolo[2,1-a]isoquinolinone 39
(Scheme 12). Similar to the case with pyrrolidine-2,5-diones, the proximal hydroxy group
of 34e directs the reducing agent to selectively reduce the C-2 carbonyl group. The resulting
N-acyliminium ion undergoes Pictet-Spengler cyclisation to furnish compound 39 instead
of the anticipated 98. A plausible mechanistic pathway for the formation of 39 involves
the formation of epoxide 39b via an intra-molecular substitution of the tertiary hydroxyl
group of 39a, followed by an intramolecular hydride transfer in an SN2 fashion through a
six-membered borohydride intermediate 39c (Scheme 13). The structure and configuration
of 39 were established with spectroscopic data and X-ray crystallography (CCDC 1852026).
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7.4.3. Synthesis of Furo[2,3-b]furanol Skeletons

The bis-tetrahydrofuran (bis-THF) alcohol moiety plays a crucial role in the structure
of HIV protease inhibitors (PIs) like Darunavir, Brecanavir, GS-9005, and SPI-256 [55,87–90].
This moiety constitutes a substantial portion of the manufacturing cost of the active pharma-
ceutical ingredient. Various synthetic routes for preparing the bis-THF moiety, particularly
for compounds like Darunavir, often start with the synthesis of the racemic form of bis-THF.
This racemic mixture is then subjected to enzymatic resolution methods to obtain the
desired enantiomerically pure form [91].
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The strategic conversion of anhydride 82 into the monoester (41) through a regioselec-
tive ring-opening reaction with ethanol followed by condensation with N,O-dimethylhydrox
ylamine yields monoamide 42 in one pot. Subsequent reduction of the monoamide 42
with LiAlH4 (four equivalent), followed by the cyclisation of the hemiaminal (42a) using
2M sulfuric acid, results in the formation of the bis-THF diol 43 as a single stereoisomer,
which was isolated as a viscous liquid (Scheme 14). The absolute configuration of 43 was
assigned relatively, with the chiral integrity of the tertiary carbon atom bearing hydroxyl
group maintained throughout the reaction process. The formation of the concave bis-furan
structure is achieved only in the cis fashion, highlighting the stereochemical constraints
and preferences in the synthesis of such ring systems.
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8. Conclusions

This review highlights the traditional uses and medicinally important chemical com-
pounds isolated from Garcinia gummi-gutta, a valuable spice tree known for its sun-dried,
smoked fruit rind that imparts a distinctive tart flavour. The biological properties of extracts
from various parts of the plant are mediated by several phytochemicals, with the major-
ity of the effects attributed to its hydroxycitric acid content. Despite being synthetically
underutilized, this naturally occurring acid, or its lactone form, has demonstrated the
ability to facilitate the construction of a wide range of enantiomerically pure molecules
with promising biological and functional applications. This includes the synthesis of
concave bislactone skeletons present in naturally occurring secondary metabolites, such
as (+)-avenaciolide and (−)-canadensolide, both recognized for their potent biological
activities, including antifungal properties. Additionally, the synthesis of analogues of
the quararibea metabolite—a chiral enolic-γ-lactone, serve as key building blocks for the
synthesis of natural products including pheromones, the antibiotic strobilin, pencillianic
acid, pulvinones, are described. Furthermore, the structure and stereochemistry of garcinia
acid make it an ideal precursor for preparing chiral 3-substituted and 3,4-disubstituted
pyrrolidine-2,5-diones, which are common structural subunits found in a variety of natural
and synthetic bioactive products. The acid also enables the synthesis of the structural
skeletons of the furo[2,3-b]furanol moiety, found in the anti-HIV drug Darunavir, as well
as (−)-tetrahydropyrrolo[2,1-a]isoquinolinones, an analogue of the anti-tumour alkaloid
(−)-crispine A, and (−)-hexahydroindolizino[8,7-b]indolones, an analogue of the natu-
rally occurring (−)-harmicine, known for its antileishmanial and antinociceptive activities.
Moreover, the syntheses of furo[2,3-b]pyrroles are also demonstrated. These syntheses
are promising and pave the way for utilizing garcinia acid as a chiral building block
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for synthesising biologically significant compounds, with the potential to develop new
drugs. This approach also encourages more sustainable and environmentally friendly
synthetic methods.
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Abbreviations

Acetyl-CoA Acetyl coenzyme A
BnNH2 Benzyl amine
bis-THF bis-tetrahydrofuran
BMS Borane dimethyl sulphide
CH3COCl Acetyl chloride
CH2N2 Diazomethane
(COCl)2 Oxalyl chloride
DCM Dichloromethane
DMF N,N-Dimethylformamide
EtOH Ethanol
HCA Hydroxycitric acid
HCl Hydrochloric acid
HIV Human immunodeficiency virus
HPLC High-performance liquid chromatography
H3PO3 Orthophosphorous acid
H2SO4 Sulphuric acid
LiAlH4 Lithium aluminum hydride
MeOH Methanol
MsCl Methane sulfonyl chloride
NaBH4 Sodium borohydride
NaOH Sodium hydroxide
ORTEP Oak Ridge Thermal-Ellipsoid Plot Program
POCl3 Phosphorus oxychloride
THF Tetrahydrofuran
TEA Triethyl amine
p-TSA p-Toluene sulfonic acid
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