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Abstract: A time-lock puzzle encapsulates a secret message such that the receiver needs to perform a
sequential computation, which takes a specified amount of time, to recover the message. Time-lock
puzzles can be used in various scenarios, such as sealed-bid auctions, fair contract signing, and so
on. The time required to generate a time-lock puzzle and the time needed to solve it are asymmetric,
making the verification of a time-lock puzzle crucial. Before solving the puzzle, the solver needs to
verify the validity of the puzzle to avoid computing invalid time-lock puzzles. After the puzzle has
been solved, it is essential for a third party to confirm the correctness of the solution. This paper
proposes a framework for time-lock puzzles, providing both pre-verification and post-verification
functionalities, and outlines the security requirements of this framework. Furthermore, we present
a practical construction based on iterated squaring in the RSA group and analyze the security of
the specific construction. Finally, we implement this construction in Python and demonstrate its
efficiency in different settings when implemented in practice.
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1. Introduction

The concept of time-lock puzzles was initially proposed by Rivest et al. [1] in 1996.
A time-lock puzzle addresses the challenge of sending a secret message to the future,
ensuring that the receiver cannot access the message until a predetermined amount of time
has passed. This challenge was first identified by May [2] in the Cyberpunks community,
where a solution using trusted agents as third parties to preserve secret messages was
proposed. Time-lock puzzles are proposed as an alternative approach to address this
problem without relying on a trusted third party. Loosely speaking, in a time-lock puzzle
scheme, the sender encapsulates a secret message within a time-lock puzzle that requires
the receiver to engage in a sequential computation to reveal the secret message. The
evaluation time of this sequential computation is determined by a time parameter in the
time-lock puzzle. Even with substantial parallel processing capabilities, the receiver cannot
significantly reduce the required time.

Time-lock puzzles have a wide range of applications, including sealed-bid auctions [3–6],
fair contract signing [7–9], electronic voting [10,11], zero-knowledge argument [12], and
non-malleable commitment [13]. For instance, a sealed-bid auction consists of two phases.
In the bidding phase, all bidders submit their encapsulated bids, which cannot be accessed
by other bidders. In the opening phase, all bidders reveal their bids. However, the robust-
ness of the protocol can be compromised if a bidder refuses or fails to reveal its bid during
the opening phase. Time-lock puzzle provides a method to handle this problem [14,15].
During the bidding phase, bidders encapsulate their bids into time-lock puzzles, which
guarantees the confidentiality of these bids since the puzzles cannot be solved before the
specified time. In the subsequent opening phase, bidders are required to reveal their bids. If
a malicious bidder refuses to do so, its bid can still be revealed by solving the corresponding
time-lock puzzle.
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We categorize the verification process of the time-lock puzzle scheme into two stages,
depending on when it occurs: pre-verification and post-verification. Pre-verification takes
place before the protocol’s execution. For instance, before a message is used in the protocol
execution, the message receiver can authenticate the identity of the sender using a signature
scheme. On the other hand, post-verification is executed after the execution of the protocol.
It involves the capacity of the verifier to verify the execution outcome. For example, the
verifier confirms that the obtained output is accurately evaluated by the protocol and
satisfies the claimed properties.

This paper focuses on the verifiability of time-lock puzzle schemes, which is essential
to ensure that the protocol behaves as intended and maintains its expected properties,
particularly in the presence of potential adversarial activities. In time-lock puzzle schemes,
there is an asymmetry between the time required to generate the puzzle and the time
needed to solve it. The generation of the time-lock puzzle is efficient, whereas solving it
is time-consuming. Consequently, the adversary may exploit this by transmitting invalid
time-lock puzzles, thereby depleting the computational resources of the receiver.

1.1. Our Contributions

The initial construction of the time-lock puzzle [1] lacks a verification algorithm,
resulting in a lack of verifiability. The verifiability of a time-lock puzzle is important when
applied in sealed-bid auctions. When a time-lock puzzle is used in sealed-bid auctions, it is
necessary for the receiver to verify the legitimacy of a time-lock puzzle once a bidder has
encapsulated its bid. This verification process is essential to detect malicious behavior that
would prevent the time-lock puzzles from being opened correctly in the opening phase.
On the other hand, after the time-lock puzzle is solved, the revealed bid must be publicly
verifiable, ensuring that everyone can verify the correctness of this bid.

A typical method of providing pre-verification for the time-lock puzzle is to sign the
puzzle. The receiver can verify the identity of the sender by checking the signature. After
solving the puzzle, the receiver needs to generate a proof to convince a third party that the
solution is correct. However, the validity of the puzzle itself should be verified, since a
malicious puzzle generator could send invalid time-lock puzzles to the receiver. Moreover,
generating a proof for post-verification brings an additional cost for the receiver.

In this paper, we propose a framework that addresses the two challenges outlined
above. Since the receiver needs to check the identity of the sender, a signature scheme is
required in the time-lock puzzle (implicitly). In our framework, rather than signing the
puzzle itself, the sender signs the commitment of the secret value within the time-lock
puzzle. This commitment can be used to provide pre-verification of the puzzle, since they
are related to the same value. After solving the puzzle, a proof is necessary to help a third
party to verify the correctness of the solution. In our framework, the signed commitment
serves as this proof, as it is authenticated by the sender. Formally, for a secret message,
m, the puzzle generator encapsulates it into a time-lock puzzle, z. It also generates a
commitment value, x, for the message, m, and then signs it to produce the signature, σ.
The generator sends the puzzle, z, the commitment value, x, and the signature, σ, to the
receiver. If the puzzle generator is honest, then the commitment value, x, and the puzzle, z,
will correspond to the same message. Consequently, the receiver can verify the validity of
the puzzle before it starts solving the puzzle. Once the puzzle passes the pre-verification,
the receiver solves it by spending a certain amount of sequential computation. For the
secret message, m, revealed from the puzzle, a third party can verify its correctness using
the commitment value, x, eliminating the need for the receiver to generate additional proof.

In simple terms, the framework should satisfy the following properties:

• Correctness: For all correctly generated time-lock puzzles, they can pass pre-verification
and can be resolved to the corresponding secret message.

• Sequentiality: All receivers need to spend a certain amount of time to solve the time-lock
puzzle, even with substantial parallel processing capabilities.



Symmetry 2024, 16, 1347 3 of 17

• Unforgeability: The probability that the adversary can generate a forged time-lock
puzzle (or a forged solution) that can pass the pre-verification (or post-verification)
is negligible.

• Verifiability: The validity of the time-lock puzzle and the solution should be verifiable
before and after solving the puzzle, respectively.

A widely used method to construct a time-lock puzzle is based on iterated squaring.
So, according to our proposed framework, we present a specific construction based on
iterated squaring on an RSA group. In our framework, the signature scheme is used to sign
on the commitment of the secret value within the time-lock puzzle. This signature provides
the identity of the sender, ensuring that the message has not been modified during the
transformation. In our framework, we do not restrict the specific signature scheme. A hash-
then-sign structure signature can be used in our framework. In addition, we demonstrate
that the construction satisfies the desired properties and analyze its efficiency theoretically.
Furthermore, we implement the time-lock puzzle construction in Python and analyze its
performance in different settings. We will demonstrate that the solving time of the puzzle
increases as the time parameter increases, while the generation time of the puzzle, the
verification time of the puzzle, and the verification time of the solution remain relatively
unchanged. Additionally, the solving time of the puzzle is significantly larger than the
other times. For example, when the security parameter is 2048 and the time parameter is
221, the receiver needs 21.7 s to solve the puzzle, while it takes 1.25 s to verify the validity
of the puzzle.

1.2. Related Works
1.2.1. Timed Commitments

In a timed commitment scheme, the committer publishes a timed commitment, which
can be forced open if the committer refuses to open the commitment. The receiver should
be able to verify the “well-formedness” of the message before it starts a time-consuming
algorithm. This problem was first considered in timed commitment [7] and following
works [16,17]. In a timed commitment scheme, the committer generates a commitment
string c and a time-related element, u. The commitment string, c, can be revealed by the
receiver without the help of the committer. The receiver can calculate a string from a time-
related element, u, and use the string to reveal the commitment. The committer generates
a proof, π, to prove that the time-related element, u, is correctly generated and sends the
tuple, (c, u, π), to the receiver. The receiver checks that, u, is exactly the value declared by
the proof, π. However, the relationship between c and u is not verified, an attacker can
change c to another value, c′, while keeping the elements u, π as the same as the correct
one. This faked tuple (c′, u, π) can also pass the verification, but the commitment has
already been changed. Hence, this verification is insufficient to convince the receiver before
executing the forced open algorithm. In EuroS&P 2022, Manevich et al. [18] considered
the construction of attribute verifiable timed commitment. It requires the committer to
generate an interactive proof to convince the receiver that the committed value satisfies
some attributes.

1.2.2. Homomorphic Time-Lock Puzzle

In ESORICS 2022, Liu et al. [19] considered the pre-verification for homomorphic time-
lock puzzles. The puzzle generator provides a zero-knowledge proof to show the existence
of a solution for the puzzle. It requires a trusted setup to generate the public parameters.
The relationship between the time-related elements in public parameters is implicitly
considered in their construction. However, this construction becomes insecure when
considering the scenario in which the puzzle generator generates these public parameters.
A malicious generator may generate the wrong elements to defraud the receiver. So, it
is imperative to verify the correctness of the public parameters explicitly by the puzzle
receiver. In PKC 2023, Srinivasan et al. [20] considers batchable time-lock puzzle to improve
scalability when there are a large number of time-lock puzzles that need to be solved.
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1.2.3. Verifiable Timed Signatures

In ACM CCS 2020, Thyagarajan et al. [21] proposed verifiable timed signature and
utilized a cut-and-choose mechanism to provide verifiability. The signature is sent to the
receiver using a k-out-of-n secret sharing scheme, with each share encapsulated within a
time-lock puzzle. Subsequently, the receiver requires the generator to open k− 1 randomly
selected time-lock puzzles to show that these shares are correctly encapsulated. If all k− 1
puzzles pass verification, then the receiver proceeds to solve the remaining n− k + 1 time-
lock puzzles to retrieve the signature based on k or more shares. However, this protocol
suffers a security-efficiency trade-off. A potential threat arises from a malicious sender
generating k− 1 correct shares, while the remaining shares are incorrect. The protocol’s
vulnerability lies in the small probability that the receiver selects all k − 1 pieces as the
correctly generated ones, resulting in successful verification but an incorrect signature
retrieval. Consequently, it requires a large n to improve the security bound, resulting in a
long time verification. In ESORICS 2022, Thyagarajan et al. [22] proposed a verifiable timed
linkable ring signature. This construction can be used to hide a linkable ring signature for a
predetermined amount of time in a verifiable way. This is a special time signature and can
be used to enhance the privacy in cryptocurrency.

1.2.4. Verifiable Delay Functions

In verifiable delay functions (VDFs) [23–26], the output is evaluated from the input
after computation for a certain amount of time. After the evaluation, the evaluator has
obtained the output and a proof. A verifier can use the proof to efficiently verify that
the output is correctly generated. The verifiable delay functions can be used to provide
post-verification for a time-lock puzzle scheme. The post-verification for a time-lock
puzzle scheme means that a third party not solving the puzzle should be able to verify the
correctness of the solution. A naive method of verifying the correctness is to repeat the
solving process; this is an inefficient approach. So, the running time for the post-verification
should be much less than the evaluation time. This property is considered in [27–29] as
public verifiability. The constructions of publicly verifiable time-lock puzzles utilize the
VDFs: the puzzle-solving process can be regarded as the execution of a VDF. So, aside from
the solution of the puzzle, the puzzle solver can generate an additional proof to prove the
correctness of the solution.

2. Preliminaries

In this section, we provide the necessary cryptographic foundations and formal defini-
tions that utilized in our work.

2.1. Time-Lock Puzzle

A time-lock puzzle [1,20,27,29–34] is used to encapsulate a message such that nobody
can obtain it before spending computation for a certain amount of time. For conceptual
simplicity, we consider schemes with binary messages. Specifically, a time-lock puzzle
scheme, Puz, contains the following algorithms.

• z ← Encaps(s, t) : For a message, s ∈ {0, 1}, and time parameter, t, the puzzle
generator runs this randomized encapsulation algorithm to encapsulate s into a time-
lock puzzle, z.

• m← Sol(z) : The receiver runs this deterministic puzzle-solving algorithm to solve the
puzzle, z, and obtain the message, s.

Definition 1. (Correctness) For all security parameter λ, all polynomials t in λ and all messages
s ∈ {0, 1}, it holds that Sol(Encaps(s, t)) = s.

Definition 2. (Security) A time-lock puzzle is sequential with gap ε < 1, if there exists a polynomial
T̂ (·). For all polynomial T (·) ≥ T̂ (·) and for all polynomial time adversaryA with running times
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of less than T ε(λ), there exists a negligible function negl(·) such that for all security parameters, λ,
it holds that:

Pr[b← A(z) : z← Encaps(b, t)] ≤ 1/2 + negl(λ). (1)

Definition 3. (Efficiency) For all messages s ∈ {0, 1}, the encapsulation algorithm Encaps(s, t)
can be computed in time poly(log t, λ), while the puzzle-solving algorithm, Sol(z), can be computed
in time t · poly(λ).

2.2. Signature Scheme

A signature scheme [35] consists of the following three probabilistic polynomial
time (PPT) algorithms: KGen,Sign,Verify:

• (vk, sk) ← KGen(1λ) : The randomized key generation algorithm takes the security
parameter 1λ as input and outputs the verification key and signing key pairs (vk, sk).
The message space is denoted asM.

• σ ← Sign(sk, m) : The signing algorithm takes the signing key, sk, and a message
m ∈ M as input, and outputs the signature σ.

• 0/1← Verify(vk, m, σ) : This deterministic verification algorithm takes the verification
key, vk, the message, m ∈ M, and the signature, σ, as input. If σ is the valid signature
on m, then the verification algorithm outputs 1; otherwise, it outputs 0.

Definition 4. (Correctness) For all 1λ, all (vk, sk) generated by KGen(1λ) and all message m ∈ M,
it holds that Verify(vk, m,Sign(sk, m)) = 1.

Definition 5. (Existentially unforgeable under a chosen-message attack (EUF-CMA)) All PPT ad-
versaries,A, can query messages {m1, m2, . . . }, obtaining the corresponding signatures {σ1, σ2, . . . }.
Denote Q as the set of messages queried by A; here, there exists a negligible function, negl(·),
such that:

Pr[1← Verify(vk, m, σ) ∧m ̸∈ Q : (m, σ)← A({mi, σi}i=1,2,...)] ≤ negl(1λ). (2)

2.3. Non-Interactive Zero-Knowledge Proofs of Discrete Logarithm Knowledge

Given four group elements g, ĝ, h, ĥ, a zero-knowledge proof EQLOG(g, ĝ, h, ĥ) is used
to demonstrate the knowledge of a secret value α, such that ĝ = gα and ĥ = hα without
revealing any secret information about α. Chaum and Pedersen presented an interactive
proof construction in [36]; this can be transformed into a non-interactive version as follows:

• The prover selects a random value β, and sends g1 = gβ and h1 = hβ to the verifier.
• The prover computes e = He(g, ĝ, h, ĥ, g1, h1) by a hash function He and sends

z = β− αe to the verifier.
• If both g1 = gz ĝe and h1 = hz ĥe hold, then the verifier accepts this proof.

2.4. Non-Interactive Proofs of Sequential Computation

In a sequential computation, the evaluator needs to generate a sequential proof
Π(x, y, t) to prove that the output value y is exactly evaluated based on the input x by
t sequential computations. Boneh et al. [7] proposed a construction of non-interactive
sequential proof Π(x, y, t) for iterated squaring based on an RSA group Z∗N when the time
parameter t = 2τ for a positive integer τ. That is, N = pq for two distinct primes, p, q and

y = x22τ

mod N.

Denote bi = g22i
mod N; the prover generates a vector W = ⟨b0, b1, . . . , bτ⟩. For

each i = 0, . . . , τ − 1, the prover shows that the tuple (g, bi, bi+1) satisfy the relationship
(g, ga, ga2

) for some a by a NIZK proof EQLOG(g, ga, ga, ga2
). By verifying that the last

element in w is bτ = y, the verifier is assured that y is exactly x22τ

mod N. These τ proofs
can be generated by the prover in parallel, and the length of the total proof Π(x, y, t) is
O(log t) for the time parameter, t.
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2.5. Sequential Squaring Assumption

The sequentiality of iterated squaring on an RSA group is based on the following
assumption:

Definition 6. (Sequential Squaring Assumption [32]) Let N be a uniform strong RSA integer,
g be a generator of JN , and T (·) be a polynomial. Then, there exists some 0 < ε < 1, such that,
for every polynomial-size adversary A = {Aλ}λ∈N whose depth is bounded from above by T ε(λ),
there exists a negligible function negl(·):

Pr

b← A(N, g, T (λ), x, y) :

x $←− JN ; b $←− {0, 1}

if b = 0 then y $←− JN

if b = 1 then y = x2T (λ)

 ≤ 1/2 + negl(λ). (3)

Note that the restriction of x and y to JN is to avoid trivial attack where the adversary
computes the Jacobi symbol of the group elements.

3. The Framework

As introduced in Section 1, when a time-lock puzzle scheme is implemented in practice,
it is imperative to perform verification both before and after the execution of the puzzle
solution. Before solving the puzzle, the pre-verification prevents the solver from spending
time-consuming operations on invalid time-lock puzzles. After solving the puzzle, the
post-verification can convince a third party of the correctness of the solution.

In this section, we present an overview and the syntax of our framework, which is
designed to perform verification both before and after solving a time-lock puzzle. Addition-
ally, we discuss the adversary model and the properties that the framework should satisfy.

3.1. Overview of the Framework

The framework is given in Figure 1. A time-lock puzzle is executed between two
participants: the sender S and the receiverR. The sender is the generator of the puzzle, it
encapsulates the secret message into the time-lock puzzle. The receiver is also the solver of
the puzzle, it first checks the validity of the puzzle and solves the valid puzzle by spending
computation for a certain amount of time. As shown in Figure 1, the encapsulation for
the message is denoted as a time-related relationship, Ft(·). Here, t is the time parameter
which determines that the receiver must spend at least time t to solve the puzzle. F(·) is
a commitment scheme and the signing algorithm is denoted as Signsk(·), where sk is the
signing key of the sender S .

m

z

x

x′

Ft

F

F′t

F′

σ
Signsk

Figure 1. The framework.

For a secret message m, the time-lock puzzle is generated as z = Ft(m). The sender
evaluates the commitment scheme F on the message to obtain the value x = F(m), and then
signs on x by its signing key, sk, to produce the signature σ = Signsk(x). After receiving the
tuple (z, x, σ) from the sender, the receiver verifies the validity of the tuple.

Since the sender does not sign on the puzzle, z, directly, the receiver cannot verify the
validity of the puzzle by verifying the signature. This signature can ensure the validity
of the commitment value, x. The dotted line in Figure 1 shows the design idea of our
framework: F′(·) is a function related to F(·) that maps the time-lock puzzle, z, to an
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intermediate value, x′. If the puzzle, z, is correctly generated, then the two values x and x′

should satisfy a corresponding relationship, F′t (·), which can be verified by the receiver. If
the puzzle passes the verification, then the receiver is convinced that the time-lock puzzle,
z, is correctly generated.

After a solution, m′, is revealed by the receiver from the puzzle, z, a third party can
verify the correctness of this solution, m′, by verifying the relationship between the message,
m′, and the commitment value, x. The validity of x is guaranteed by the signature, σ, and a
third party verifies whether x is the commitment to the message m′.

3.2. The Syntax

This section presents the syntax of the framework. The main idea of the framework is
that the receiver generates an intermediate value x′ based on the puzzle, z, and verifies the
relationship between x and x′. For a smooth reading experience, the table of variables is
presented in Table A1. Formally, the framework contains the following algorithms:

• (pk, sk) ← Setup(1λ) : The randomized setup algorithm takes the security parameter
1λ as input, and outputs the public verification key, pk, and the private signing key,
sk, for the sender. By convenience, the security parameter specifies the message
space,M.

• x ← Commit(m) : The commitment algorithm takes the message m ∈ M in the
message space as input and outputs a commitment value, x.

• σ ← Sign(sk, x) : The signing algorithm takes the signing key of the sender, sk, and
the commitment value, x, as inputs, and outputs the signature, σ.

• z← Encaps(m, t) : The randomized encapsulation algorithm is used to encapsulate the
message into a time-lock puzzle. It takes the message, m, and the time parameter, t, as
inputs, and outputs the time-lock puzzle, z. The running time of the encapsulation
algorithm should be much less than t.

• π ← ProofGen(m, x, z, σ) : The proof generation algorithm is used to output a non-
interactive proof, π, which can help the receiver efficiently verify the validity of the
puzzle, z. It takes the secret message, m, the commitment value, x, the puzzle, z, and
the signature, σ, as inputs, and outputs a proof, π. The output π can be represented as
an empty string NULL if no such proof is required.

• 0/1← PuzVerify(pk, z, x, σ, π) : The deterministic puzzle verification algorithm takes
the puzzle, z, the commitment value, x, the signature, σ, and proof π as inputs. It
outputs 1 if z is a valid time-lock puzzle and outputs 0 otherwise. The running time of
this puzzle verification algorithm should be much less than t.

• m′ ← Solve(z) : If the puzzle verification algorithm outputs 1, then the receiver runs
this puzzle-solving algorithm to reveal the message from the puzzle. The puzzle-
solving algorithm takes the time-lock puzzle, z, as input and outputs a solution m′. It
requires at least time t for the receiver to run this puzzle-solving algorithm.

• 0/1 ← SolVerify(pk, m′, z, x, σ, π) : The deterministic solution verification takes the
public verification key, pk, the solution, m′, the commitment value, x′, the puzzle, z,
the signature, σ, and the proof, π, as inputs. It outputs 1 if the solution, m′, is exactly
the message encapsulated in the puzzle, z, and outputs 0 otherwise. The running time
of this solution verification algorithm should be much less than t.

3.3. Property Requirements

The goal of an adversary is to deviate the protocol from its security requirements. For
example, after obtaining a valid tuple of outputs, a passive adversary may want to solve
the puzzle faster than the required time, and an active adversary may try to forge a puzzle.
The active adversary tries to generate a forged puzzle, such that it can pass the verification
of the verifier but cannot be revealed as the correct message. In this paper, we assume that
all adversaries are probabilistic polynomial time, which means that the adversary cannot
break the underlying cryptographic primitive.
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Definition 7. (Correctness) For all security parameters 1λ, all key pairs (pk, sk) generated by
Setup(1λ), all messages, m, and all time parameters, t, if the signature is σ← Sign(sk,Commit(m)),
the puzzle is z ← Encaps(m, t), and the proof is π ← ProofGen(m,Commit(m), z, σ), then it
holds that PuzVerify(z,Commit(m), σ, π) = 1, m← Solve(z) and 1← SolVerify(pk, m, z, σ).

Definition 8. (Sequentiality) For all security parameters, 1λ, all time parameters, t, all mes-
sages, m, and all tuples, (z, x, σ, π), generated by the sender, if the puzzle verification algorithm
PuzVerify(pk, z, x, σ, π) outputs 1, then, for 0 < ε < 1 and the running time of an adversary A
which is less than ε · t, there exists a negligible function negl(·), such that

Pr

[
m′ = m :

z← Encaps(m, t)

m′ ← A(z, x, σ, π)

]
≤ negl(1λ). (4)

Definition 9. (Unforgeability of puzzle) For any probabilistic polynomial time adversary A, it can
query the set of messages {mi}i=1,2,... and obtains the corresponding set of tuples
T = {(zi, xi, σi, πi)}i=1,2,.... Denote the set of all required puzzles as Z , there exists a negli-
gible function negl(·), such that:

Pr

[
1← PuzVerify(z′, x′, σ′, π′)

z′ ̸∈ Z
: (z′, x′, σ′, π′)← A(T )

]
≤ negl(1λ). (5)

In Definition 9, an active adversary wants to forge a tuple (z′, x′, σ′, π′) that can pass
the puzzle verification algorithm but cannot be correctly solved by the receiver. The puzzle
z′ in the faked tuple should be different from the correct one, z, otherwise, the receiver can
still retrieve the message encapsulated in the puzzle. So, it requires that the puzzle z′ has
not been queried before.

Definition 10. (Unforgeability of solution) For all security parameters, 1λ, all time parameters,
t, and all messages, m, if the tuples (z, x, σ, π) are generated correctly, then, for all probabilistic
polynomial time adversaries A, there exists a negligible function negl(·), such that:

Pr

[
m′ ̸= m

1← SolVerify(pk, m′, z, x, σ, π)
:

z← Encaps(m, t)

m′ ← A(z, x, σ, π)

]
≤ negl(1λ). (6)

Definition 11. (Verifiability of puzzle) After receiving the tuple (z, x, σ, π) from the sender, the
receiver should be able to verify the validity of the time-lock puzzle, z, by the puzzle verification
algorithm, PuzVerify(z, x, σ, π). The running time of the puzzle verification algorithm should be
much less than time t.

Definition 12. (Public verifiability of solution) After the receiver reveals its solution, m′, on the
time-lock puzzle, z, everyone can verify the correctness of the solution by the solution verification
algorithm SolVerify(pk, m′, z, σ). The running time of the solution verification algorithm should be
much less than time t.

Note that the verification for the puzzle is not required to be performed publicly,
since only the receiver needs to verify the validity of the puzzle before spending a large
amount of sequential computation. The verifiability of the solution should be public so that
everyone can verify the correctness of the result.

4. Iterated-Squaring-Based Construction

According to the framework presented in Section 3, we give a specific construction
based on iterated squaring on an RSA group and discuss its properties in this section.



Symmetry 2024, 16, 1347 9 of 17

4.1. The Construction

The sender randomly chooses two distinct safe primes, p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes, and then it computes N = pq and chooses a random
generator, g ∈ Z∗N . (A zero-knowledge proof πN can be generated to prove that N is the
product of two safe primes [37]). The time-lock puzzle is constructed on Z∗N : for a large
time parameter, t, the sender computes h = g2t

mod N efficiently by the trapdoor φ(N); it
first computes e = 2t mod φ(N) and computes h = ge mod N, which is used as a mask
to encapsulate the message, m. The time-lock puzzle is generated as z = m · h mod N.
After receiving the puzzle, z, the receiver computes h based on the element, g, and the time
parameter, t. Since the receiver does not know the trapdoor, φ(N), it must compute h by t
sequential computations. The receiver can reveal the message, m, from the puzzle, z, as
m = z · h−1 mod N.

Based on the above time-lock puzzle construction, we combine it with the framework
in Section 3 to verify the secret message. To facilitate the generation of the proof, we
require that the time parameter, t, can be presented as t = 2τ for a positive integer τ. For a
secret message, m ∈ Z∗N , the time-lock puzzle, z, is generated as the protocol in the above
section. The sender chooses a random value a ∈ Z∗

φ(N) and computes x = ma mod N. It
signs on x to obtain the signature σ. Additionally, the sender generates a sequential proof
πt = Π(ga, (ga)2t

, t) to help the receiver check the validity of the puzzle efficiently. The
receiver is given the values x, a, the proof, πt, and the signature, σ.

As a summary, the process of the sender is present in Algorithm 1. For simplicity, we
denote all values except the time-lock puzzle sent by the sender as auxiliary information.

Algorithm 1: The sender’s process based on iterated squaring
Setup: The RSA number, N, the group, Z∗N , the public verification key, pk, and the
secret signing key, sk;

Input: A secret message m ∈ Z∗N ;
Choose a random element g ∈ Z∗N ;
Generate the puzzle as z = m · g2t

mod N;
// The sender can compute g2t

mod N efficiently as g2t mod φ(N) mod N
Choose a random value a ∈ Z∗

φ(N);

Compute the commitment of the message as x = ma mod N;
Generate the sequential proof πt = Π(ga, (ga)2t

mod N, t);
Sign on x: σ = Sign(sk, x);
Output: The time-lock puzzle, z, and auxiliary information g, a, x, σ, πt.

After receiving the outputs from the sender, the receiver first checks the validity of
the signature, σ, to make sure that x is correctly generated by the sender, then the receiver
needs to verify the relationship between z and x. The receiver computes x′ = za mod N
and computes x′′ = x′ · x−1 mod N. Then, it verifies the time relationship between ga and
x′′ by the proof πt. If the value x′′ passes the verification, then the receiver is convinced
that it has obtained a value x′′ = (g2t

)a mod N. Since the operation to obtain the value x′′

is the exponent on the puzzle, z, the receiver is convinced that the puzzle is m · g2t
, and the

revealed value m is already committed by the sender.
The algorithm of the receiver is shown in Algorithm 2:
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Algorithm 2: The receiver’s process based on iterated squaring

Input: The time-lock puzzle, z, and auxiliary information g, a, x, σ, πt;
// Check the validity of the signature σ
if Verify(pk, x, σ) = 0 then

Output ⊥
end
Compute x′ = za mod N and x′′ = x′ · x−1 mod N;
if x′′ ̸= (ga)2t

mod N then
Output ⊥

end
// This verification can be performed by the sequential proof πt

Compute h′ = g2t
mod N;

// The receiver needs to compute h′ by iterated squaring
Compute m′ = z · h′−1 mod N;
Output: A message m′ ∈ Z∗N .

The security of the RSA group is based on the assumption that the adversary cannot
find the factorization of the RSA number efficiently. Another group used in iterated
squaring is the class group of an imaginary quadratic field [38,39]. This group has a
property that there is no efficient algorithm to compute the order of such group.

An alternative method for constructing a time-lock puzzle is based on modular square
roots. For a prime, p, and a quadratic residue a modulo p, a sequential time O(log p) is
required to compute the square roots of a. In this method, the time of sequential evaluation
is fixed for a given prime, p. In contract, with an iterated-squaring-based construction, the
time can be easily adjusted by changing the number of iterations.

4.2. Security Analysis

As outlined in Section 3, the construction should satisfy the following properties.

Correctness

The correctness requires that if the outputs of the sender are correctly generated,
then the time-lock puzzle must pass the verification of the receiver, and the puzzle can be
revealed as the same message encapsulated by the sender.

Theorem 1. For a secret message m, if the sender follows the protocol and sends the time-lock
puzzle, z, and auxiliary information g, a, x, σ, πt to the receiver, then the puzzle, z, can pass the
puzzle verification algorithm and be revealed as the secret message, m, by the receiver.

Proof. If the sender and the receiver both follow the protocol, the sender uses
h = g2t mod φ(N) mod N to encapsulate the secret message, h, and the receiver computes
h′ = g2t

mod N by iterated squaring. Since the order of Z∗N is φ(N), there is h′ = h. Hence,
the time-lock puzzle can be correctly solved by the receiver.

Additionally, if the time-lock puzzle and auxiliary information are generated correctly,
it holds that x = ma mod N, z = m · g2t

mod N, and πt = Π(ga, (ga)2t
, t). The receiver

computes x′′ = za · x−1 mod N and can use the sequential proof πt = Π(ga, x′′, t) to verify
that x′′ is exactly (g2t

)a mod N. So, the receiver can be convinced that the puzzle is correctly
generated as z = m · g2t

mod N. After verifying the validity of the puzzle, z, the receiver
can solve the puzzle as m = z · (g2t

)−1 mod N.

Sequentiality

The sequentiality requires all probabilistic polynomial time adversaries to spend a
certain amount of time to solve the puzzle.
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Theorem 2. In the construction in Section 4, for 0 < ε < 1 and any adversary A with a running
time less than ε · t, there exists a negligible function negl(·), such that the probability that the receiver
can solve the puzzle faster than time ε · t after receiving the puzzle, z, from the sender is negl(λ).

Proof. The sequentiality of the time-lock puzzle is based on Definition 6. For any proba-
bilistic polynomial time adversary A, it does not know the factorization of N; hence, A
cannot compute h′ = g2t

mod N faster than time t.
Except for the time-lock puzzle, z, A is also given x, which is also related to the secret

message, m. The secret message, m, can be computed from x as m = x1/a mod N. Since A
does not know the factorization of N, the probability of success for A is negl(λ).

Additionally, the proof πt is related to the sequential computation and the adversary
wants to compute h′ = g2t

mod N faster from πt. The specific construction of πt is given

in Section 2, the values given in πt can be presented as bi = g22i ·a mod N for i = 1, 2, . . . , τ,
where t = 2τ . The closest value to h′ is bτ−1 = g2t/2·a mod N. Since a ∈ Z∗

φ(N), there is

a < 2λ. Hence, it requires at least t/2− λ times iterated squaring for the adversary to
compute h′ from bτ−1. In practice, t is chosen as 230 and λ = 210, so λ≪ t/2.

Hence, after receiving the puzzle, z, from the sender, the receiver should spend at least
time ε · t to solve the puzzle, where ε < 1/2.

Unforgeability

The unforgeability of the puzzle requires that, for any probabilistic polynomial time
adversary, the probability that it can generate a forged puzzle that can pass the puzzle
verification algorithm is negligible.

Theorem 3. In the construction in Section 4, for any probabilistic polynomial time adversary A, it
can query the message it chooses and obtain the corresponding outputs of the sender. There exists a
negligible function, negl(·), and the probability that the adversary can forge a new puzzle that can
pass the verification of the receiver is negl(λ).

Proof. The adversary A can query the set of messages {mi}i=1,2,... and obtains the corre-
sponding set of tuples T = {(zi, xi, σi, πi)}i=1,2,.... Denote the set of all obtained puzzles as
Z . If A can forge a new puzzle z′ ̸∈ Z and passes the pre-verification, then it must satisfy
one of the following two situations.

The first situation is that the adversary generates a tuple by choosing a new message
m′, and generate the puzzle z′, the commitment value x′ by itself. It then tries to forge
the signature σ′, on the commitment value x′. The unforgeability of the signature scheme
ensures that the probability of A can forge a signature on a new commitment value x′

successfully is negl(λ).
Another situation is to bypass the forgery of the signature scheme. The adversary A

reuses the commitment value xi of some tuple that has been queried before. In this case, if
the adversary wants to generate another puzzle z′i ̸= zi, then it tries to find another message
m′i ̸= mi but F(m′i) = F(mi). The construction in Section 4 sets F(·) as F(x) = xa mod N
for a random a ∈ Z∗

φ(N), since a is coprime with φ(N), the function F is a permutation on
Z∗N . Hence, the adversary cannot find such m′i.

In summary, the probability that a PPT adversary can forge a valid puzzle that can
pass the pre-verification is negligible.

The unforgeability of solution requires that the probability that a receiver can forge a
solution that can pass the solution verification is negligible.

Theorem 4. In the construction in Section 4, for any secret message, m, after receiving the
corresponding valid tuple z, x, σ, π from the sender, there exists a negligible function, negl(·),
and the probability that the adversary can forge a solution, m′ ̸= m, that can pass the solution
verification is negl(λ).
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Proof. After obtaining the solution, m′, from the receiver, the third party first checks
whether σ is the signature of the value, x, by the public key of the puzzle generator, and
then verifies whether x is the commitment on m′. If the receiver can succeed forge a solution
m′ ̸= m that can pass the verification of the third party, it must satisfy one of the following
two situations.

The first situation is that the receiver generates a commitment x′ on the forged solution,
m′, and then forges the signature σ′, on x′. The unforgeability of the signature scheme
guarantees that the probability that this situation happens is negligible. Another situation
requires the commitment x can be revealed as the forged solution, m′. The probability of
this situation is negligible according to the binding property of the commitment scheme.

In summary, the probability that a receiver can forge a solution, m′ ̸= m, and pass the
post-verification step, is negligible.

4.3. Efficiency Analysis

According to Algorithm 1, in order to generate the time-lock puzzle, the sender
first computes e = 2t mod φ(N) and then computes h = ge mod N. These are two
modular exponentiation operations, which require O(log t) + O(λ) multiplications over
Z∗N . In the puzzle verification algorithm, the receiver needs to compute x′ = za mod N,
x′′ = x′ · x−1 mod N and verify that x′′ is exactly (g2t

)a mod N by the proof πt. The proof
πt contains log t small proofs which can be verified in parallel. The verification time com-
plexity of each small proof is O(λ). So the time complexity of this verification process is
O(λ). For the solution verification algorithm, a third party checks the correctness of the
solution by verifying the signature and the commitment, which results in a time complexity
of O(λ). As proved in Theorem 2, the time complexity of solving the time-lock puzzle for
all receiver is O(t).

In practice, the time parameter t is a polynomial of the security parameter λ. This indi-
cates that the generation and the verification of the time-lock puzzle are much faster than
solving the puzzle. Hence, the pre-verification and the post-verification are both efficient.

4.4. Construction for Long Messages

In the above construction, it requires that the message, m, lies in the group Z∗N . In
practice, N is chosen as a 2048 bits number; hence, the length of m is at most 2048 bits,
which is shorter than the length of message in a real network. A long message can still be
treated as a group element in the protocol, as in the case of a short message. In this method,
a group with the same length as the message needs to be generated during the setup phase
of the protocol. This will increase the evaluation time of each group operation, resulting in
the poor efficiency of the protocol. Additionally, this method is not flexible if the length
of the message changes. A new group must be generated for a longer message, which is
inconvenient in practice implementation.

A common approach to handle a long message is to segment the message into short
consecutive blocks: m = m1||m2|| . . . ||mn. Here, || represents the concatenation of two
strings, and each block mi is κ bits. Here, κ is a parameter related to the security parameter
λ. For example, κ = λ− 1. This ensures that each block mi can be represented as a group
element in Z∗N with overwhelming probability. If the last block mn is less than κ bits, a
padding scheme can be used to fill the last block.

The element h = g2t
mod N we used to encapsulate a short message is a group element

in Z∗N , which is at most λ bits. It can be used to encapsulate only one block each time. A
naive idea is to compute different hi = g2t

i mod N to mask different blocks, i.e., the puzzle
is generated as z = h1 ·m1||h2 ·m2||...||hn ·mn. In this case, the verification for each block
is the same as the short message case, and the receiver needs to solve n different short
time-lock puzzles to reveal the message. Another method to generate the puzzle uses only
one time-delay element. The sender computes h = g2t

mod N and generates the puzzle as
z = h ·m1||h2 ·m2||...||h2n−1 ·mn. In this case, the receiver needs to solve one short time-lock
puzzle to reveal the message.
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5. Experiment and Analysis

This section presents the efficiency of our construction. When implemented in practice,
it is necessary to require that the verification time of the receiver to check the validity of the
time-lock puzzle is much less than solving the time-lock puzzle. Additionally, a third party
should be able to verify the correctness of the solution efficiently. We analyze the efficiency
of the protocol from both theoretical and practical aspects. Moreover, we implement the
construction in Python and emulate the running time in different settings.

5.1. Experiment Setup

We implement our construction in Python and use cryptography libraries for funda-
mental cryptographic and arithmetic operations. Since we do not care about the specific
communication method between the sender and the receiver, we implement the sender
and the receiver in one laptop.

The experimental environment is presented in the following table (Table 1).

Table 1. The experiment setup.

Component Description

CPU Intel Core i5-10210U (1.60 GHz)
Number of threads 1
RAM 16 GB
System Ubuntu 22.04 LTS

5.2. Comparison of Solving Time and Verification Time

In the following experiment, the security parameter is 2048, i.e., N is a 2048-bit number.
First, we investigate how the running time of solving a time-lock puzzle relates to the time
parameter, t, by conducting experiments with t ranging from 216 to 221, while maintaining
the other conditions the same. The results are depicted in Figure 2 using logarithmic
coordinates, indicating linear correlations between the average running time to solve a
time-lock puzzle and the time parameter, t. As a comparison, the verification time for the
receiver to perform the pre-verification and a third party to perform the post-verification
are given in Table 2.

To minimize single measurement errors, each of the above values is the average of
ten measurements taken with the same settings. The experimental data indicate that the
running time for the sender to generate the time-lock puzzle and the verification time for
the receiver to check the validity of the time-lock puzzle are on the order of milliseconds
and increase slowly with the time parameter. For example, when the time parameter is 221,
the time it takes for the receiver to verify the validity of the puzzle is about 1/17 of the time
it takes to solve the puzzle. Hence, it implicates the efficiency of our construction.
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Figure 2. Average solving time under different time parameters.
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Table 2. Average running time under different time parameters.

Time Para. Puzzle Gen. (ms) Puzzle Verif. (Sequential) (ms) Puzzle Verif. (Parallel) (ms) Solution Verif. (ms)

216 26.6 975.2 61.0 27.6
217 27.3 1037.9 61.0 28.3
218 27.9 1090.3 60.6 28.2
219 29.3 1141.8 60.1 27.0
220 34.8 1236.7 61.8 27.8
221 40.0 1257.9 59.9 27.8

We compare our experimental results with those in [18] in Table 3. The verification
time of their construction is 38 ms and it takes 21.725 s for the receiver to solve the puzzle.
A third party takes 8.673 ms to verify the solution. Their implementation also shows that
the verification time is in the order of milliseconds and is much smaller than the time to
solve the puzzle.

Table 3. Comparison with related work.

Puzzle Gen. (ms) Puzzle Verif. (ms) Solution Verif. (ms) Puzzle Sol. (s)

[18] 37.98 38 8.673 21.725
Our work 40 59.9 27.8 21.7

5.3. Communication Cost

In our implementation, the sender sends the time-lock puzzle, the signature, the
commitment, and the proof to the receiver. When the security parameter is 2048, both the
puzzle and the commitment are 256 bytes in length. The length of the signature depends on
the specific signature scheme. We use ECDSA with secp256r1 as the underlying signature
scheme; the length of the signature is 64 bytes. The length of the proof is related to the time
parameter, when the time parameter is 220, the proof length is 15 KB.

5.4. Discussion about Solving Time

The difference in computational power between different solvers always exists when
a time-lock puzzle is implemented in practice [40]. It is an inherent issue since adversaries
can always gain a time advantage if they possess more sequential computational power
than honest nodes. This difference in computation power brings different solving times
for the same time-lock puzzle. According to the performance data given by Intel [41], the
difference between updated server-grade and updated custom-grade chips is approximately
10. Hardware performance also doubles roughly every four years, as indicated by the
performance growth rate given in [42].

Generating a time-lock puzzle is much more efficient than solving the puzzle, so
the differences in hardware do not significantly affect puzzle generation. However, if
adversaries were to use updated server-grade chips while honest nodes employed four-
year-old custom-grade chips, then the adversaries would be able to solve the time-lock
puzzle 20 times faster than the honest nodes. Consequently, when a time-lock puzzle
protocol is used in practice, honest nodes should periodically upgrade their hardware to
make sure that the disparity of computation power remains within a reasonable range. This
represents a trade-off between the security and the hardware requirements of honest nodes.

6. Conclusions and Discussion

This paper considers the verifiability of a time-lock puzzle scheme, which is an im-
portant property of a time-lock puzzle scheme when implemented in practice. Before the
receiver starts solving the time-lock puzzle, it should be able to verify the validity of the
puzzle to avoid invalid computation. After the puzzle is solved, a third party should verify
the correctness of the solution without resolving the puzzle.
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In this paper, we propose a framework of time-lock puzzles to provide both pre-
verification and post-verification by combining a signature scheme. In this framework,
the receiver of the time-lock puzzle can verify the validity of the puzzle before it starts
solving the puzzle. After receiving the puzzle from the puzzle generator, the receiver
computes an intermediate value based on the values it receives and checks the validity
of the puzzle. It can be convinced that the secret value behind the time-lock puzzle has
already been signed by the puzzle generator if the puzzle passes the verification. After the
time-lock puzzle is solved, a third party can also verify the correctness of the solution by
the signature efficiently.

Based on the framework, we present a specific construction based on iterated squaring
over the RSA group and give security proofs for these constructions. We have also imple-
mented the construction in Python. The experimental results show the efficiency of the
construction. The running time for the generation of the time-lock puzzle, the verification
of the validityof this approach, and the solution of the time-lock puzzle are all in the order
of milliseconds, while the running time for the solver is in the order of seconds when
the construction is implemented in practice. Consequently, the pre-verification and the
post-verification for the time-lock puzzles are both efficient.

Our construction becomes insecure when considering quantum attack, since it is based
on iterated squaring on an RSA group. There exists an efficient algorithm to find the
factorization of an RSA number on quantum computers. There are four methods used to
design post-quantum protocols: lattice-based, code-based, hash-based, and multivariate
polynomial. In CRYPTO 2024, Agrawalr et al. [34] present a time-lock puzzle construc-
tion from lattice. Hence, it remains a future work to extend our construction with their
construction or design a verifiable time-lock puzzle using the other three methods.

In this paper, we only consider the implementation when the time-lock puzzle is
used on a small scale. When the time-lock puzzle is used in electronic voting protocol
with a large number of voters, it requires a lot of calculations to open each encapsulated
vote individually, which effects the efficiency of the protocol. There are two methods to
improve the scalability of the time-lock puzzle when it is implemented. One method is
using the same time-delay element to generate several time-lock puzzles. In this method,
the receiver only needs to solve one time-lock puzzle to obtain the time-delay element
and then use this value to solve other time-lock puzzles. Another method is using a
homomorphic technique. The receiver only needs to solve one homomorphic time-lock
puzzle to obtain the evaluation results of the solution to these puzzles. Moreover, it is a
challenge to design scalable quantum-resistance verifiable time-lock puzzles when we both
consider the scalability problem and quantum attack.
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Appendix A. Table of Variables

Table A1. The table of variables.

Variable Meaning

λ security parameter
(pk, sk) public/private key pairs
m message to be encapsulated
x commitment to the message
σ signature on the commitment
t time parameter
z time-lock puzzle on the message
π proof used in pre-verification
x′ intermediate value computed by the receiver
m′ solved message
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