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Abstract: The fuzzy C-means (FCM) clustering algorithm is a widely used unsupervised learning
method known for its ability to identify natural groupings within datasets. While effective in many
cases, FCM faces challenges such as sensitivity to initial cluster assignments, slow convergence, and
difficulty in handling non-linear and overlapping clusters. Aimed at these limitations, this paper
introduces a novel fractional fuzzy C-means (Frac-FCM) algorithm, which incorporates fractional
derivatives into the FCM framework. By capturing non-local dependencies and long memory effects,
fractional derivatives offer a more flexible and precise representation of data relationships, making
the method more suitable for complex datasets. Additionally, a genetic algorithm (GA) is employed to
optimize a new least-squares objective function that emphasizes the geometric properties of clusters,
particularly focusing on the Fukuyama–Sugeno and Xie–Beni indices, thereby enhancing the balance
between cluster compactness and separation. Furthermore, the Frac-FCM algorithm is evaluated
on several benchmark datasets, including Iris, Seed, and Statlog, and compared against traditional
methods like K-means, SOM, GMM, and FCM. The results indicate that Frac-FCM consistently
outperforms these methods in terms of the Silhouette and Dunn indices. For instance, Frac-FCM
achieves higher Silhouette scores of most cases, indicating more distinct and well-separated clusters.
Dunn’s index further shows that Frac-FCM generates clusters that are better separated, surpassing the
performance of traditional methods. These findings highlight the robustness and superior clustering
performance of Frac-FCM. The Friedman test was employed to enhance and validate the effectiveness
of Frac-FCM.

Keywords: fuzzy C-means; fractional derivative; genetic algorithm

1. Introduction

Clustering is an unsupervised learning technique commonly applied in dynamic data
analysis across various domains. Its main objective is to uncover inherent groups within a
dataset, where each group or cluster represents data points sharing similar characteristics.
These newly formed clusters are valuable, with their evaluation typically being focused on
internal metrics. Clustering has broad applications, such as anomaly detection [1], image
segmentation [2], market segmentation [3], and recommendation systems [4].

Clustering techniques can be broadly categorized into two types: hard and fuzzy.
Hard clustering methods assign each data point exclusively to one cluster, whereas fuzzy
clustering allows data points to belong to multiple clusters with different degrees of
membership. Since Zadeh introduced fuzzy sets theory [5], various fuzzy clustering
techniques have been presented. The fuzzy C-means (FCM) method is one of the most used
approaches. Unlike traditional clustering [6], the FCM method is particularly useful when
dealing with uncertainty, as it permits overlapping cluster membership, thus providing a
more flexible and realistic representation of data relationships. However, FCM has notable
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drawbacks: (a) its performance is heavily influenced by the initial cluster center positions;
(b) it lacks a guarantee of reaching the global optimum, particularly with larger datasets;
and (c) it often exhibits slow convergence when distinguishing between clusters [7].

Aiming to address the above-described defects, several extensions have been proposed
in recent years. This study focuses on integrating fractional derivatives (FDs) into the FCM
framework. Unlike integer order derivatives, fractional derivatives offer a more flexible
and refined way to describe dynamic systems by capturing non-local dependencies and
long memory effects [8]. These features are particularly useful for clustering complex
datasets, where relationships between data points may span multiple clusters over time,
providing a more accurate representation of real-world dynamical systems. This approach
addresses some of FCM’s key drawbacks, such as slow convergence and a sensitivity
to initialization, while also enhancing its ability to manage non-linear and overlapping
cluster structures.

A significant challenge in clustering is determining the optimal data partitioning,
particularly in partition-based algorithms like k-means and FCM. This process requires
selecting the correct number of clusters, a critical factor in ensuring meaningful and re-
liable results. Various clustering validity indices (CVIs) have been proposed to evaluate
the quality of clustering outcomes and help determine the optimal number of clusters.
CVIs can be classified into three categories: external, relative, and internal [9,10]. Ex-
ternal indices, such as purity and entropy, assess clustering by comparing results to ex-
ternal benchmarks when available [11]. Relative indices compare clustering outcomes
generated by the same algorithm under different parameter settings [12]. Internal in-
dices, which are the most commonly used, focus on the dataset’s geometric structure
and evaluate clusters based on factors like compactness, separation, and connectivity [13].
Among these, popular measures like the Dunn index, Silhouette score, Davies–Bouldin
index, Xie–Beni (XB) index, and Fukuyama–Sugeno (FS) index are frequently used to
assess clustering quality by balancing intra-cluster compactness and inter-cluster sepa-
ration. Fuzzy clustering techniques, however, face challenges in dealing with complex,
overlapping, or irregular structures. The traditional centroid-based calculations may not
effectively differentiate the underlying geometry of clusters. This issue can be addressed
more effectively through an overlap-separation measure, which utilizes fuzzy member-
ship degrees to provide a more refined evaluation of cluster quality. Building on this
concept, we propose minimizing a new least-squares objective function that incorporates
these measures.

In this paper, we present a novel clustering technique that incorporates fractional
derivatives into the fuzzy C-means framework, referred to as fractional fuzzy C-means
(Frac-FCM). This approach aims to improve the optimization of data partitioning by mini-
mizing the least-squares objective function, focusing on the role of membership degrees. By
utilizing fractional differentiation of order α, Frac-FCM integrates infinite memory effects,
enhancing the regularity of the model and providing a more accurate representation of real
dynamical systems. The core objective of this work is to advance a new fuzzy clustering
model through the incorporation of a fractional derivative of order α and fuzzy logic. We
achieve this by redefining the update rules for cluster centers and membership degrees,
employing the particular Grünwald–Letnikov fractional derivative definition in the range
α ∈ (0, 1). This methodological innovation captures non-local interactions that conven-
tional derivatives are unable to represent effectively. The calculation from centroid-based
measures often falls short in differentiating the geometric structures of clusters, as they
primarily focus on compactness and separation. This limitation is best addressed by the
overlap-separation measure, which employs an aggregate operation of fuzzy membership
degrees, providing a more nuanced assessment of cluster quality. Additionally, a genetic
algorithm (GA) has been proposed to optimize fuzzy partitions, enhancing criteria based
on geometric cluster structures with particular emphasis on the Fukuyama–Sugeno and
Xie–Beni indices. For another key consideration, to identify appropriate fuzzy clusters with-
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out prior knowledge of the fractional derivative order, fuzziness, or the number of clusters,
we propose an optimization model designed to enhance the performance of Frac-FCM.

The rest of the document is organized as follows: Section 2 details related work.
Section 3 presents the main theoretical elements required to develop our method. Section 4
describes our model. Section 5 introduces the optimization method. Section 6 provides
experimental results. Section 7 outlines some conclusions and prospects.

2. Related Works and Contributions

Clustering is a fundamental technique in unsupervised learning, widely applied across
various domains. Among the many clustering algorithms developed, the fuzzy C-means
algorithm stands out due to its ability to handle uncertainty in datasets. Developed as a
fuzzy extension of the K-means algorithm by Dunn and refined over the years by Bezdek,
FCM minimizes a fuzzy version of the least squares error criterion, allowing each data point
to belong to multiple clusters with varying degrees of membership [14]. This flexibility
enables FCM to perform better than K-means, especially in overlapping clusters [15].
However, FCM also inherits some of the drawbacks of K-means, such as sensitivity to noise
and the tendency to converge to local minima, which can lead to sub-optimal clustering
results [16].

To address these limitations, several variants of FCM have been proposed over the
years. Notable among these is possibilistic C-means (PCM) [17], which introduces a de-
gree of membership independent of the cluster centers [18]. Numerous attempts have
been made to improve results by combining FCM with the possibilistic approach [19–21],
recognizing the need to apply membership and typicality values simultaneously [22]. Ad-
ditionally, the generalized fuzzy C-means (GFCM) method extends the basic FCM model
to accommodate a wider range of data distributions [23]. A new kernel-based fuzzy clus-
tering method was proposed to address arbitrary cluster shapes and extract expressive
features [24]. This approach reduces challenges of high-dimensional data clustering. multi-
ple kernel fuzzy clustering (MKFC) expanded the fuzzy C-means algorithm with multiple
kernel-learning settings [25], offering better resistance to useless features and kernels [26].
These adaptations have significantly improved the robustness and applicability of FCM in
various contexts.

Despite these advancements, the challenge of avoiding local minima remains a critical
issue in FCM and other clustering algorithms. To overcome this, researchers have turned to
evolutionary algorithms (EAs). EAs, including genetic algorithms (GAs), particle swarm
optimization (PSO), and ant colony optimization (ACO), are particularly advantageous in
FCM clustering due to their ability to escape local minima and find global optima. The
adaptability and exploratory nature of EAs make them a powerful complement to FCM,
enhancing its performance in complex and multidimensional datasets.

One of the most prominent EAs applied to clustering is particle swarm optimization,
proposed by Kennedy and Eberhart [27]. Its versatility and simplicity have made it a
valuable tool in numerous applications [28]. Silva et al. combined FCM with an advanced
version of PSO, which dynamically adjusts PSO parameters during execution to achieve a
better balance between exploration and exploitation [29]. Similarly, ant colony optimization
has been effectively combined with FCM to address challenges like sensitivity to initializa-
tion and local minima [30]. Kernelized FCM was integrated with hybrid ACO to improve
clustering in ECG data classification [31]. A dynamic fuzzy clustering approach combines
ACO with a genetic algorithm, improving convergence and precision, particularly in image
segmentation tasks [32]. The artificial bee colony algorithm, introduced by Karaboga [33],
has been applied to a wide range of optimization problems, including data clustering,
where it has shown promise in handling high-dimensional and noisy datasets. FCM was
embedded into the scout bee phase of the ABC algorithm, which significantly improves the
quality of clustering results [34]. A novel hybrid method, IABCFCM, merges an advanced
ABC with FCM, aiding the clustering process in avoiding local minima and delivering
superior outcomes on established datasets [35]. Furthermore, the SFCM-MeanABC tech-
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nique leverages spatial information in fuzzy clustering, particularly for medical image
segmentation [36].

Another well-studied evolutionary approach is the genetic algorithm, which has been
extensively applied to FCM clustering to address its inherent limitations. One optimiza-
tion method involved the parameters of a subtractive clustering algorithm through an
iterative search, combined with GA, to determine the optimal number of clusters and the
appropriate weighting exponent for FCM. It results in improved clustering accuracy [37].
However, while subtractive clustering provides a good estimate of the number of clusters,
it may struggle with complex or overlapping cluster shapes, and its performance is highly
dependent on parameters like the radius for excluding points near cluster centers. A
multi-objective genetic algorithm approach optimizes fuzzy partitions by simultaneously
targeting the overlap-separation measure and the fuzzy JM index. This method represents
cluster centers as real-coded values and varies the number of clusters, enabling the GA
to identify optimal solutions for different cluster shapes [38]. Yet, optimizing multiple
objective functions at once results in trade-offs between goals, which adds complexity that
may make it difficult to interpret. Furthermore, the kernel-based fuzzy C-means (KFCM)
algorithm was optimized through a hybrid approach that combines improved genetic
algorithms with kernel techniques, resulting in the GAKFCM algorithm. Despite the fact
that GAs are used to improve the initial clustering centers, poor initialization strategies
within the GA can still affect the clustering performance, potentially leading to sub-optimal
solutions [39].

The primary contribution of this paper is the introduction of an innovative method
for addressing the fuzzy clustering problem by utilizing fractional derivatives. These
derivatives differ from conventional ones by taking advantage of non-local features and
the “infinite memory” effect, offering a more precise representation of real system dy-
namics. Additionally, we propose a genetic algorithm that optimizes fuzzy partitions
by concurrently improving criteria based on geometric cluster structures, particularly us-
ing Fukuyama–Sugeno and Xi–Beni indices. This method is designed to yield superior
results by: (i) improving search space exploration through the GA, (ii) adapting multi-
ple variables with the aid of fractional derivatives to better reflect the system’s behavior,
and (iii) determining optimal clustering solutions that can accommodate diverse cluster
shapes, including well-separated, hyper-spherical, and overlapping clusters. Initially,
we developed the fractional fuzzy C-means (Frac-FCM) algorithm, which incorporates a
fractional derivative into the FCM minimization process, specifically using the Grünwald–
Letnikov definition with an order of α ∈ (0, 1). This captures small variations in the
data structure and models complicated relationships within the data to better differenti-
ate between clusters that overlap and address non-linear boundaries. Following this, a
genetic algorithm is employed to optimize the order α along with other key parameters,
guided by clustering quality measures in a newly formulated objective function. Its ca-
pacity to investigate several solutions simultaneously enhances global search efficiency,
minimizes the risk of local optima, and speeds up convergence. This optimization sub-
stantially enhances the effectiveness of the proposed Frac-FCM method. To assess the
performance of our genetic algorithm optimization, we tested it on various academic
datasets. We focused on identifying optimal values and evaluating performance through
several metrics, including the XB and FS indices. These metrics offered a thorough assess-
ment of the algorithm’s effectiveness. Additionally, we evaluated the Frac-FCM method
with other well-known clustering techniques such as K-means [40], self-organizing maps
(SOMs) [41], FCM [6], and Gaussian mixture models (GMMs) [42]. The comparison utilized
the Silhouette and Dunn indices to analyze the performance of the Frac-FCM algorithm
against these established methods. This detailed evaluation aimed to provide a clear
understanding of how the Frac-FCM method performs relative to other popular cluster-
ing approaches. Friedman tests were performed on the cluster evaluation findings to
determine the statistical significance of Frac-FCM’s quality improvement. The Friedman
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test results show that Frac-FCM produces much better quality clusters than the other
existing approaches.

3. Preliminaries

In this section, we give the main tools that we combine in next sections to build
our original model, namely fractional fuzzy C-means (Frac-FCM). In this regard, we give
the classical fuzzy C-means, the fractional calculus, and the kernel version of the used
genetic algorithm.

3.1. Fuzzy C-Means

The fuzzy mean square clustering algorithm, known as fuzzy C-means, allows one
sample of data to belong to each cluster with different degrees; this method is frequently
used in pattern recognition [43]. The objective function of the FCM method consists of
minimizing the following error:

Jm(u, c) =
N

∑
i=1

Nclus

∑
j=1

um
ij ∥xi − cj∥2. (1)

where the real value m determines the fuzziness of the generated clusters (m > 1), N is
the data size, Nclus is the number of clusters, uij is the degree of membership of sample xi
to the cluster j, cj is the d-dimensional center of cluster j, and ∥ · ∥ represents any norm
denoting the similarity between each measured datum and the centers.

An iterative optimization process is employed to achieve fuzzy partitioning by min-
imizing the objective function presented above. This objective function quantifies the
distance between each data point and its corresponding cluster center, with the distance
being weighted by the data point’s membership in the cluster [44]. The updates of member-
ship uij and the cluster centers cj are given by:

uij =
1

∑Nclus
k=1

( ∥xi−cj∥
∥xi−ck∥

) 2
m−1

; cj =
∑N

i=1 um
ij xi

∑N
i=1 um

ij
(2)

This iteration will stop when maxij{|u
(k+1)
ij − u(k)

ij |} < ε, where ε is a termination
criterion ranging between 0 and 1, whereas instances of k are the iteration steps. This
procedure converges to a local minimum or a saddle point of Jm [45].

3.2. Fractional Calculus (FC)

Fractional calculus (FC), an extension of classical mathematics, deals with the determi-
nation of derivatives where the order is fractional. Initially introduced by mathematicians
like Euler, Laplace, and Fourier, it gained significance for its ability to accommodate a
wide range of values. FC has found applications across various fields, including eco-
nomics [46], physics [47], and chemistry [48]. It is particularly useful in analyzing non-
local continuum models with power-law non-locality as it operates with both fractional
derivatives and integrals. Known for its ability to describe anomalous diffusion, long
memory processes, and similar phenomena [49], fractional calculus enhances traditional
models by incorporating memory effects into functions, offering a natural extension beyond
ordinary derivatives.

Since its inception, extending the concept of derivatives to non-integer orders α has
led to numerous approaches. As a result, several alternative definitions of fractional
derivatives have emerged in the literature. Among the most commonly used are the
Grünwald–Letnikov, Riemann–Liouville, and Caputo definitions in fractional calculus [50].
Among the three definitions, the more generally applied derivative and the most straight-
forward is clearly the method based on the Grünwald–Letnikov fractional derivative [51],
which is derived from the limit of the integer order difference, involving taking a weighted
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sum of function values at equally spaced points, with the weights being determined by
the order of the derivative and the spacing between the points. It significantly impacts
the numerical calculation. Utilizing the idea of short memory is very helpful in the in-
vestigation of non-local events in physics and engineering. It also has applications in
the disciplines of signal processing, economics, and biology and becomes part of the
FC application.

The Grünwald–Letnikov fractional derivatives extend the concept of the standard
differentiation of functions f (x) with non-integer order n in both forward and backward
forms, where the fractional derivative at a point x is defined as a limit of a sum involving
the function values at nearby points. Given a step size h and a centered at the point x, the
forward and backward finite differences of f (x) of order n are, respectively, expressed as:

∆n
h f (x) =

n

∑
k=0

(−1)k
(

n
k

)
f (x + (n − k)h),

∇n
h f (x) =

n

∑
k=0

(−1)k
(

n
k

)
f (x − kh).

These formulas involve a sum over an infinite number of terms, but in practice, a
finite number of terms are used to approximate the derivative. The binomial coefficient(

n
k

)
shows the number of different options there are to select k items from a set of n

items. The choice of n defines the derivative’s order, and non-integer values of n allow for
fractional differentiation.

Notice that:
∆n

h f (x) = (−1)n∇n
−h f (x)

The infinite series yields the following results in determining the difference of a
fractional order α > 0:

∇α
h f (x) =

∞

∑
k=0

(−1)k
(

α
k

)
f (x − kh), (3)

where the definition of the binomial coefficients is:(
α
k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α − k + 1)

and Γ(x) is the Euler gamma function

Γ(x) =
∫ ∞

0
tx−1e−t dt,

an essential function in fractional calculus, as it expands the factorial to real inputs. It is
feasible to confirm that Γ(x + 1) = xΓ(x); therefore, considering Γ(1) = 1, it follows that:

Γ(n + 1) = n! for any n ∈ N.

For h > 0, the differential in (3) is referred to as the left-sided fractional difference, while
for h < 0, it is known as the right-sided fractional difference. Given any bounded function
f (x) and α > 0, the series in (3) is guaranteed to converge absolutely and uniformly.

• Grünwald–Letnikov Fractional Derivative

To define the Grünwald–Letnikov fractional derivatives, the forward and backward
finite differences mentioned earlier are extended by replacing n with a fractional order
α > 0. Consequently, hn becomes hα, and the finite-order difference ∇n

h is substituted by
the fractional-order difference ∇α

h .
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The left- and right-sided Grünwald–Letnikov derivatives of order α > 0 are defined
as follows:

GLDα
x± f (x) = lim

h→0+

∇α
±h f (x)
|h|α . (4)

The Grünwald–Letnikov derivatives for integer orders α = n ∈ N is presented as
follows:

GLDn
x± f (x) = (−1)nDn

x

• Grünwald–Letnikov Fractional Integral

Notably, the Equation (3) can be applied for α < 0 [52], and Equation (4) establishes
the Grünwald–Letnikov fractional integral under the condition:

| f (x)| < c(1 + |x|)−u, u > |α|.

Essentially, the Grünwald–Letnikov fractional integral provides a unified definition of
both fractional derivatives and integrals, which enables a unified approach to the integral
elasticity and the fractional gradient.

In conclusion, we may provide the definition of Grünwald–Letnikov, where h is the
time increment by:

GLDα f (x) = lim
h→0

[
1
hα

+∞

∑
k=0

(−1)kΓ(α + 1) f (x − kh)
Γ(k + 1)Γ(α − k + 1)

]
(5)

This expression exposes a crucial fact that the fractional derivatives require an infinite
number of terms that carry an implicit memory of all previous occurrences and possess
inherent memory capacity.

The set of functions that take into account the Grünwald–Letnikov definition of the
fractional derivative is very constrained as it only includes functions that are (m + 1)
continuously differentiable. Nevertheless, the majority of real-world problems in fields
like continuous physical, chemical, and additional systems involve very smooth functions,
which fall within this restricted class. Despite this, the Grünwald–Letnikov fractional
derivative, which is defined as a limit of a backward difference of fractional order, is not
convenient to manipulate.

To obtain an elegant and straightforward statement expression, it is preferable if the
integral is present in it:

GLDα f (x) =


1

Γ(m−α)
dn

dxm

∫ ∞
x tm−α−1 f (t) dt m − 1 ≤ α < m

dm f (t)
dtm α = m

This equation, often known as the Riemann–Liouville definition, is one of the most
well-known definitions, which is equivalent to the Grünwald–Letnikov definition (3) assum-
ing we take into account a class of functions f (t) that have (m + 1) continuous derivatives
for t > 0 [53].

Expression (5) is often approximated by the following discrete time implementa-
tions equation:

GLDα f (x) =
1

N−α

m

∑
k=0

(−1)kΓ(α + 1) f (x − kh)
Γ(k + 1)Γ(α − k + 1)

(6)

where N is the sampling period and m is the truncation order.
Depending on the Grünwald–Letnikov definition [54], the discrete approximation of

the fractional derivative has been designed and adopted to solve the fractional advection-
dispersion issues [55]. Likewise, under this formula, the finite difference method was
developed and is commonly utilized to solve a variety of fractional differential equa-
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tions [56–58]. By slightly altering this definition, the periodicity of the fractional derivative
of a non-constant periodic function can be maintained [59]. Due to its built-in memory,
mathematics has used this powerful tool to solve some problems that could not be solved
in the traditional sense. Additionally, the Grünwald–Letnikov fractional derivative was
used in every application that preprocessed with a real fractional derivative. The Grünwald
method achieves a good balance between precision and computing time, whereas the
integrator method is faster and has medium precision.

3.3. Genetic Algorithm

Genetic algorithms are among the most prominent population-based optimization
techniques, renowned for their effectiveness in solving complex combinatorial optimization
problems [60]. By drawing inspiration from natural selection and genetic principles, GAs
offer robust solutions that often outperform traditional optimization methods. These
algorithms evolve populations through iterative processes, applying genetic operators such
as selection, mutation, recombination, and crossover. The adaptive nature of GAs allows
them to modify search strategies dynamically, using crossover and mutation probabilities
to converge on optimal solutions. Their ability to encode, evaluate, and generate multiple
potential solutions rapidly enhances their global search capabilities, reducing the risk of
getting trapped in local optima.

The GA procedure operates on a population of potential solutions, evolving them
over successive generations to identify the optimal solution. Figure 1 illustrates the cycle
of a genetic algorithm, showcasing its key phases and processes. In genetic algorithms, a
“chromosome” represents a candidate solution encoded as an array of parameter values.
For a problem with N dimensions, the chromosome is an N-element array ([p1, p2, . . . , pN ],
where pi represents the value of the i-th parameter). The core components and operations
of a genetic algorithm include:

• Population initialization: The genetic algorithm starts by randomly initializing a
population of potential solutions, called chromosomes. This initial population is
denoted as P0 = {x1, x2, . . . , xps}, where ps represents the population size. Each
chromosome is then evaluated by a fitness function to assess its effectiveness in
solving the problem.

• Fitness function: Each solution xi is assessed with a fitness function f (xi), which
measures how well the solution performs or meets the desired criteria. This function
is essential for directing the evolutionary process towards finding optimal solutions:

f (xi) = ObjectiveFunction(xi)

The selection process favors individuals with higher fitness values for reproduction.
• Selection: This involves choosing individuals from the current population for re-

production based on their fitness and a defined probability distribution (selection
function). This process creates a mating pool for the next generation. There are various
methods of selection: for example:
Roulette wheel selection: the likelihood of selecting an individual xi is proportional to
its fitness f (xi):

P(xi) =
f (xi)

∑j f (xj)

Tournament selection: a random subset of individuals is selected, and the fittest
individual within this subset is chosen for reproduction.

• Crossover (recombination): This involves merging genetic material from two parent
individuals to create offspring. This process is controlled by a crossover probability pc.
For example, in a single-point crossover:

Offspring1 = Parent1[1 : k] + Parent2[k + 1 : N]
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Offspring2 = Parent2[1 : k] + Parent1[k + 1 : N]

where k denotes the crossover point and N represents the chromosome length. This
technique blends genetic traits from both parents, aiming to combine beneficial fea-
tures and produce high-quality offspring.

• Mutation: This introduces random changes to the offspring to preserve genetic diver-
sity and prevent premature convergence. This process is controlled by a mutation
probability pm. In the case of binary-encoded solutions, mutation typically involves
flipping a bit (changing a 0 to a 1, or vice versa).

x′i =

{
flip(xi[j]), if random < pm

xi[j], otherwise

where xi[j] denotes the j-th gene of the individual xi.
After crossover and mutation, the fitness of the offspring is evaluated using the fitness
function. The population is then updated by replacing some or all individuals with
the new offspring, ensuring that the population evolves towards better solutions. This
iterative process continues until specific convergence criteria are met.

• Convergence criteria: These define when the genetic algorithm is considered to have
reached an optimal solution. Typically, convergence is achieved when either the maxi-
mum number of generations is reached (generation t ≥ Mgnr) or when a predefined
fitness threshold is met (max( f (xi)) ≥ fthreshold).

Fine-tuning parameters like population size ps, mutation probability pm, and crossover
probability pc is essential for optimizing GAs for specific problem domains. Convergence
analysis further aids in understanding the effectiveness of GAs by assessing metrics like
convergence speed and quality. GAs are versatile and find applications across diverse
fields, including engineering design [61], scheduling [62], financial modeling [63], and
bioinformatics [64], making them valuable tools for continuous and discrete optimiza-
tion challenges.

Figure 1. Genetic algorithm cycle.
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4. Frac-FCM: The Proposed Fractional Fuzzy C-Means Model

This section introduces the proposed fractional fuzzy C-means (Frac-FCM) method,
a novel clustering model that integrates fractional derivatives into the fuzzy C-means
minimization step. By leveraging fractional calculus, the Frac-FCM method can capture
long-term dependencies and provide smoother variations, enhancing clustering perfor-
mance, particularly in scenarios involving overlapping clusters and memory effects. The
approach is inspired by the established concept of using a fractional derivative of order
α ∈ (0, 1), specifically the Grünwald–Letnikov fractional derivative, to replace the first-
order derivative. This substitution improves the algorithm’s computational efficiency and
benefits from memory effects. Due to their non-local nature and the “infinite memory”
effect, fractional-order systems have demonstrated superior accuracy in modeling the
behavior of real-world dynamic systems compared with traditional approaches. Addi-
tionally, a genetic algorithm is employed to optimize the fractional derivative order α
along with other key parameters, further advancing the effectiveness of the proposed
Frac-FCM model.

In the fuzzy C-means algorithm, ensuring a robust assignment of membership for
the sample indexed by i to a single cluster involves incorporating a set of linear con-
straints that guide the membership values. Specifically, for all i = 1, . . . , N, we define the
following constraint:

Hi(u) =
Nclus

∑
j=1

uij − 1 = 0; (7)

After constraining the non-linear optimization procedure, we arrive at the following:

(P) :


min Jm(u, c) = ∑N

i=1 ∑Nclus
j=1 um

ij ∥xi − cj∥2

Subject to: ∑Nclus
j=1 uij = 1, ∀i = 1, . . . , N

uij ≥ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , Nclus

We reformulated the update process by adding a novel fractional derivative. First, we
applied gradient descent and projected gradient descent [65] to update the center variable
and the membership, respectively, expressing the right-hand side with two sequential
terms. Then, we incorporated the Grünwald–Letnikov definition into both the center and
membership update formulas.

4.1. Centers Tuning Rule

As previously mentioned, the update procedure incorporates the Grünwald–Letnikov
derivative. To perform the center update for each training example xi, we begin by com-
puting the gradient descent concerning the center ck−1

j (at the (k − 1)-th iteration). The
resulting equation for the center vector is as follows:

ck
j = ck−1

j + 2β
N

∑
i=1

(uk−1
ij )m(xi − ck−1

j ).

This expression can be rewritten as:

ck
j − ck−1

j = 2β
N

∑
i=1

(uk−1
ij )m(xi − ck−1

j ).

The left side ck
j − ck−1

j is the discrete version of the derivation of order α = 1 in (6) if
we assume that N = 1. This results in the next expression:

GLDα[ck
j ] = 2β

N

∑
i=1

(uk−1
ij )m(xi − ck−1

j ), (8)
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where the derivative’s order can be extended to a real number 0 ≤ α ≤ 1, resulting in a
smoother variation and longer memory effects. Therefore, Equation (8) can be solved by
considering the first three terms of the derivative as:

ck
j − αck−1

j +
1
2

α(α − 1)ck−2
j − 1

6
α(α − 1)(α − 2)ck−3

j = 2β
N

∑
i=1

(uk−1
ij )m(xi − ck−1

j )

Accordingly, the center update of the Frac-FCM at the (k)-th iteration is given by:

ck
j = αck−1

j − 1
2

α(1 − α)ck−2
j +

1
6

α(1 − α)(2 − α)ck−3
j + 2β

N

∑
i=1

(uk−1
ij )m(xi − ck−1

j ) (9)

4.2. Memberships Tuning Rule

Repeatedly, to update the membership matrix for each training example, the Grünwald–
Letnikov definition is implemented in the process. We start by using the projected gradient
descent to deal with the linear constraints Hi(u), and the projected descent algorithm is
described below:

• Define the feasible set: the feasible set is determined by the constraint; in our case, the
feasible set is defined as the set of uij values that satisfy the constraint Hi;

F = {uij : uij ≥ 0, and
Nclus

∑
j=1

uij = 1; ∀i = 1, . . . , N, ∀j = 1, . . . , Nclus}.

• Define the projection operator (P) by taking the current values of uij and project them
onto the feasible set (F). Projecting uij to satisfy the constraint directly may not be
straightforward; one way to accomplish this is to use a projection method that enforces
the constraint indirectly as

PF(uij) = max

0,
uij

∑Nclus
j=1 uij

. (10)

This projection formula ensures that the updated membership values uij for each data
point i meet both the sum-to-one and non-negativity constraints, thereby maintaining
the validity of the membership values throughout the optimization process.

First, project the existing solution back onto the constraint set after applying a gradient
descent on it. This can be stated as:

uk
ij = uk−1

ij − λ.m(uk−1
ij )m−1∥xi − ck−1

j ∥2.

This expression can be rewritten as:

uk
ij − uk−1

ij = −λ.m(uk−1
ij )m−1∥xi − ck−1

j ∥2. (11)

Likewise, by assuming N = 1, the left side uk
ij − uk−1

ij is the discrete version of the
derivation of order α = 1 in (11). It provides the expression below:

GLDα[uk
ij] = −λ.m(uk−1

ij )m−1∥xi − ck−1
j ∥2.

Considering the first m = 3 terms of differential derivative, yielding

uk
ij − αuk−1

ij +
1
2

α(α − 1)uk−2
ij − 1

6
α(α − 1)(α − 2)uk−3

ij = −λ.m(uk−1
ij )m−1∥xi − ck−1

j ∥2,
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where α is a constant in the interval [0, 1], uk
ij represents the membership at iteration k, uk−1

ij
is that at iteration k − 1, and so on. From the last equation, the membership update is
given below:

uk
ij = αuk−1

ij − 1
2

α(1 − α)uk−2
ij +

1
6

α(1 − α)(2 − α)uk−3
ij − λ.m(uk−1

ij )m−1∥xi − ck−1
j ∥2. (12)

Apply the projection operator PF to the obtained uk
ij as uk

ij = PF(uk
ij).

5. Optimized Fractional Fuzzy C-Means Method

The suggested fractional fuzzy C-means (Frac-FCM) clustering algorithm extends the
FCM algorithm by allowing data points to be assigned to multiple clusters with varying
degrees of membership. The update rules for cluster centers cj and membership values uij
rely on five different variables: derivative order α, gradient descent rates β and λ, fuzziness
m, and number of clusters Nclus. Controlling these factors is necessary to increase Frac-
FCM’s performance. This method is beneficial for handling overlapping clusters, including
uncertainty in cluster allocations, and for avoiding local optima.

The optimized method aims to determine the optimal variables ω = (α, β, λ, m, Nclus)
to advance the Frac-FCM model by formulating an objective function that incorporates
clustering validity indices. The objective function utilized in the optimization process is
based on minimizing the cost to identify suitable variables ω∗ = (α∗, β∗, λ∗, m∗, N∗

clus). This
function relies on clustering quality measures optimized through the genetic algorithm.
To enhance performance, we evaluate metrics such as the Xie–Beni (XB) index and the
Fukuyama–Sugeno (FS) index. These indices assess the compactness and separation of
clusters: the XB index emphasizes the compactness within clusters and the separation
between them, while the FS index offers a geometric perspective by considering the overall
centroid. By combining these measures, we leverage their strengths to ensure a more robust
evaluation of clustering validity.

5.1. GA-Frac-FCM: Mathematical Model

In this section, we give the mathematical basis of the proposed method. It is an
optimization model for which we indicate the variables, the constraints, and the objec-
tive function.

• Variables

The variables of the optimized method are as follows:

· α: The derivative order.
· β, λ: The gradient descent rates.
· m: The fuzziness.
· Nclus: The number of clusters.

• Objective function

The objective function of the optimized method builds upon the combination of the
FS index with the XB index. The function is defined as follows:

E(α, β, λ, m, Nclus) = VFS + VXB.

Therefore:

E(α, β, λ, m, Nclus) =

(
1 +

1
N · θp,q

) N

∑
i=1

Nclus

∑
j=1

um
ij ∥xi − cj∥2 −

N

∑
i=1

Nclus

∑
j=1

um
ij ∥cj − ĉ∥2 (13)

where: θp,q = min1≤p ̸=q≤Nclus
∥cp − cq∥2 and ĉ = 1

Nclus
∑Nclus

j=1 cj.
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• Constraints

The constraints involve determining the lower and upper bounds for each variable.
The derivative order of the Grünwald–Letnikov definition is between 0 and 1. Thus, we
have the following constraint:

0 ≤ α ≤ 1. (14)

The gradient descent rates are positive real values, generally in the range of [0.01, 1].
Therefore:

0 < β ≤ 1, and 0 < λ ≤ 1. (15)

The real value m determines the fuzziness of the generated clusters (m > 1). The lower
bound ensures that the clustering remains soft clustering. To strike a balance between
the interpretability of clusters and the level of fuzziness, we choose the upper bound as
mub = 2+ N

Nclus
to increase it with higher dimensionality and decrease it with more clusters,

preserving a balance between data complexity and distinctness of clusters. This leads to
the following constraint:

1 < m ≤ 2 +
N

Nclus
. (16)

The number of clusters in a dataset must be greater than one and less than or equal to
N (the data size). This research imposes the following constraint:

1 ≤ Nclus ≤ N. (17)

• Recap

Finally, the mixed optimization problem that gives the optimal decision is as follows:

(P′) :



min E(α, β, λ, m, Nclus) =
(

1 + 1
N·θi,j

)
∑N

i=1 ∑Nclus
j=1 um

ij ∥xi − cj∥2 − ∑N
i=1 ∑Nclus

j=1 um
ij ∥cj − ĉ∥2

Subject to:
0 ≤ α ≤ 1

0 < β ≤ 1

0 < λ ≤ 1

1 < m ≤ 2 +
N

Nclus

1 ≤ Nclus ≤ N

α, β, λ, m ∈ R+ and Nclus ∈ N

The traditional FCM clustering approach, which relies on the Lagrange coefficient
method for optimizing cluster centers and data assignments, often struggles with sub-
optimal solutions due to poor initialization and slow convergence, especially in large
problem spaces. To overcome these limitations, evolutionary algorithms, such as the genetic
algorithm (GA), offer a more robust solution by intelligently and randomly exploring the
problem space [66]. In our study, the genetic algorithm is employed to optimize the
mathematical model (P′), utilizing specific operators to ensure the discovery of the optimal
solution. By integrating the genetic algorithm with clustering quality measures, we not
only enhance the evaluation criteria but also introduce a novel method for determining
the optimal parameters for our proposed model. The next algorithm section outlines the
implementation of this process to achieve the optimal solution in the proposed approach.
The diagram in Figure 2 illustrates this new technique.
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Figure 2. Methodology utilized in this paper to develop the Frac-FCM model.

5.2. GA-Frac-FCM: Algorithms

Algorithm 1 illustrates the genetic procedure proposed in this research to identify
the most effective variables for developing the innovative Frac-FCM clustering model.
This model integrates an objective function based on the FS and XB indices. To initi-
ate the optimization process, Algorithm 1 generates a random population of parameters
(α, β, λ, m, and Nclus) that meet the model’s criteria (P′). The genetic algorithm system-
atically refines these populations through iterative processes to determine the optimal
parameters and the corresponding cluster cost function for the Frac-FCM method. This
involves evaluating fitness, selecting promising candidates, performing genetic operations,
and updating the population accordingly. It is important to note that Algorithms 2 and 3
are integral components utilized within Algorithm 1.

Algorithm 2 represents the fitness function, which computes the fitness value corre-
sponding to the given parameter values by evaluating the objective function. This function,
utilizing the FS and XB metrics, plays a critical role in the optimization process, providing
essential feedback to identify the optimal solutions.

Finally, Algorithm 3 describes the novel Frac-FCM approach; it employs a sequential
update process. At each phase, this process computes new parameter values based on obser-
vations from the previous three iterations. During the initial iterations (k = 0, 1, and 2), the
parameters are initialized using the standard fuzzy C-means method. In our approach, the
first three iterations mark the initialization phase, due to utilizing the Grünwald–Letnikov
fractional derivative. This methodological shift enables a more refined initialization process
by leveraging the information gathered from the clustering step, leading to a more effective
parameter initialization.
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Algorithm 1: Pseudo Code for GA-Frac-FCM Optimization
Input: Input data A, maximum number of generations Mgnr, population size ps.
Output: Optimal parameters ω∗ = (α∗, β∗, λ∗, m∗, N∗

clus) for each dataset;
Optimal cluster cost function for dataset E∗ = V∗

FS + V∗
XB.

Begin
Initialize:
Define suitable bounds for parameters: Lb, Ub;
Number of variables = 5;
iter = 0; set the initial population P0 randomly;

for iter = 1 to Mgnr do
Fitness (Piter);
Selection ();
Crossover ();
Mutation ();
Update (Piter);

end
ω∗ = the optimal ω that minimize PMgnr ;
E∗ = Frac − FCM(ω∗).

Algorithm 2: Fitness Function
Input: Derivative order α, gradient descent rates β, λ, fuzziness m, and number of

cluster Nclus.
Output: Fitness E(α, β, λ, m, Nclus).
Begin

Frac − FCM(α, β, λ, m, Nclus);
Calculate the fitness function E correspond to Equation (13);

Return E(α, β, λ, m, Nclus).

Algorithm 3: Frac-FCM Pseudo code
Input: Input data A, maximum number of iterations Niter, derivative order α,

gradient descent rates β, λ, fuzziness m, and number of cluster Nclus
Output: Center matrix c, membership matrix u.
Begin

Initialize:
k = 0, k = 1, and k = 2; set the initial parameters c and membership u using
the standard FCM ;

for k = 3 to Niter do
for i = 1 to N do

for j = 1 to Ncls do
Calculate the remaining parameters ck

j , uk
ij correspond to Equations (9),

(12) respectively.
Apply the projection operator PF to the new uk

ij corresponding to
Equation (10).

end
end

end
Return ck

j , uk
ij.

6. Experimental Results and Discussion

In this study, we utilized a variety of academic datasets to analyze the genetic algorithm
optimization results, focusing on the optimal values and performance across several metrics,
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including the Xie–Beni index and Fukuyama–Sugeno index. These metrics provided a
comprehensive evaluation of the algorithm’s effectiveness. Additionally, we compared our
proposed Frac-FCM method with other popular clustering techniques, such as K-means,
self-organizing maps, fuzzy C-means, and Gaussian mixture models, using the Silhouette
and Dunn indices for performance comparison purposes. Also, we employed the Friedman
test to assess the performance of various techniques. This extensive evaluation aimed
to offer a deeper understanding of the Frac-FCM algorithm’s performance relative to
established clustering approaches.

6.1. Description of Datasets

To evaluate and enhance the performance of the proposed methods, we conducted
experiments on a variety of datasets from different domains, each offering distinct charac-
teristics. Specifically, we utilized several academic datasets, including Abalone, Haberman,
and Pima, among others. These datasets were chosen for their unique properties, which are
summarized in Table 1, which provides an overview of their specific attributes and features.

Table 1. Description of the experimental datasets.

Dataset Features Samples Domain Area

Abalone 8 4177 Marine Biology
Balance 4 625 Cognitive Psychology

Concrete Compressive Strength 8 1030 Physics, Chemistry
Ecoli 7 336 Biology

Haberman 3 306 Medical
Iris 4 150 Botany

Libra 90 360 Physics
Liver 6 345 Medical

Pageblock 10 5473 Document Processing
Pima 8 768 Medical
Seed 7 210 Agriculture

Segment 16 2310 Image Processing
Statlog (Australian Credit

Approval) 14 690 Business

Wine 13 178 Chemistry

6.2. Clustering Validity Measurement Indexes

Evaluating clustering results is crucial for determining the effectiveness and quality
of clusters. Various indices serve to assess cluster homogeneity and separation, providing
insights into the performance of clustering algorithms. Metrics such as the FS index [67] and
XB index [68], featured in the clustering validity index based on the geometric information
of the dataset and membership degree, are essential for measuring clustering quality,
including aspects like compactness and cohesion.

• Fukuyama and Sugeno index (FS)

The FS index, introduced by Fukuyama and Sugeno, evaluates clustering validity by
considering both membership degrees and the geometric distribution of the data. This
index is expressed in summation form, where Jm(u, c) represents the similarity measure,
and Km(u, c) indicates the separation measure, which should be maximized. Therefore,
a lower FS index value signifies better clustering quality. The FS index is calculated as
follows in Equation (18).

VFS = Jm(u, c)− Km(u, c) =
N

∑
i=1

Nclus

∑
j=1

um
ij ∥xi − cj∥2 −

N

∑
i=1

Nclus

∑
j=1

um
ij ∥cj − ĉ∥2. (18)

where ĉ = 1
Nclus

∑Nclus
j=1 cj.
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• Xie and Beni index (XB)

The XB index, proposed by Xie and Beni, is a widely used clustering validity measure.
It is defined as the ratio of the compactness within clusters to the minimum separation
between cluster centers. A lower XB index value indicates better clustering results. The XB
index can be computed as follows:

VXB =
∑N

i=1 ∑Nclus
j=1 um

ij ∥xi − cj∥2

N × minp ̸=q ∥cp − cq∥2 . (19)

• Silhouette index

The Silhouette index evaluates clustering quality by comparing cluster cohesion with
cluster separation [69]. The Silhouette ratios are stated as follows:

S(i) =
1
n

n

∑
i=1

(
b(i)− a(i)

max{a(i), b(i)}

)
, (20)

where:

- a(i) denotes the average distance from sample i to all other samples within the
same cluster.

- b(i) represents the smallest average distance from sample i to any other cluster. The
Silhouette coefficient ranges from −1 to 1, where:

- A value of −1 indicates that the sample is likely assigned to the wrong cluster;
- A value of 0 suggests overlapping clusters;
- A value of 1 indicates that the sample is in a well-separated, compact cluster.

• Dunn index

The Dunn index is another metric used to evaluate clustering by considering the
separation between clusters and the compactness within clusters [70]. It is defined as:

DI =
mini ̸=j

{
min∀xk∈ci ,∀xk′∈cj

∥∥∥x(i)k − x(j)
k′

∥∥∥
2

}
maxr=1,...,c

{
maxk ̸=k′

∥∥∥x(r)k − x(r)k′

∥∥∥
2

} . (21)

where dmin is the smallest distance between data points in different clusters and dmax
represents the largest intra-cluster distance. A higher Dunn index indicates better clustering,
as it reflects well-separated and compact clusters, implying superior clustering quality.

6.3. Genetic Algorithm: Analyzing Performance and Results

The genetic algorithm is instrumental in enhancing the optimized Frac-FCM method by
optimizing five distinct parameters to achieve superior clustering accuracy. By employing
evolutionary principles, the GA systematically explores the solution space to identify
parameter values that minimize the fitness function associated with the given optimization
problem (P′). Table 2 details the parameter settings utilized in the GA. To ensure effective
convergence and computational efficiency, two stopping criteria are employed: a maximum
of generations (Mgnr) and a function tolerance criterion, which terminates the algorithm
when it reaches a specified performance threshold. These criteria are designed to balance
computational resource constraints with the need for accurate and reliable solutions.
The genetic algorithm’s performance is visualized through several key curves that track its
progress and behavior. The functions used in this work include:

• Best fitness: shows the best and mean fitness values across generations.
• Best individuals: monitors the fitness of the best individual in each generation.
• Distance average: displays the distances between individuals, indicating population

diversity.
• Genealogy: visualizes the relationships between parents and offspring.
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• Score diversity: represents the diversity of fitness scores within the population.
• Score: shows the distribution of fitness scores across generations.

Table 2. Genetic algorithm configuration.

GA Option Values

Initialization Random uniform
Population size ps 50 < ps < 200
Selection function Stochastic uniform

Crossover function Scattered crossover
Crossover probability pc pc = 0.8

Mutation function Gaussian mutation
Max generations Mgnr = 100

Constraint tolerance 1 × 10−3

Function tolerance 1 × 10−6

Nonlinear constraint algorithm Augmented Lagrangian

This section presents the optimization results and provides a comprehensive analysis
of the genetic algorithm’s performance. By examining the outcomes, we aim to gain insights
into how the GA adapts the optimized Frac-FCM technique to the unique characteristics of
the dataset. The fitness function ranks potential solutions, determining which ones will
advance to the next generation. It evaluates the overall performance of the Optimized
Frac-FCM model by combining FS and XB indices, focusing on the model’s collective
efficiency rather than individual parameters. Furthermore, the final scores include penalty
values for population members that the evolutionary algorithm minimizes. This ensures
that solutions not only perform optimally but also satisfy the imposed constraints. The
process guides optimization by efficiently exploring the solution space while adhering to
the given limitations.

In this part, we examine the behavior of our genetic algorithm by visualizing the
evolution of the fitness function, which serves as the objective function for problem (P′).
For each dataset, we present various performance indicators, including best and mean
fitness values (top-left subplot), the most optimal individuals (top-right subplot), average
distance (left-middle subplot), genealogy (right-middle subplot), score diversity histogram
(left-bottom subplot), and score values (right-bottom subplot). These metrics are illustrated
in Figures 3–6.

The figures offer a clear visualization of the genetic algorithm’s performance during
the optimization of the fractional fuzzy C-means (Frac-FCM) method. The best fitness
value is achieved early and remains stable throughout the generations, indicating the
algorithm quickly finds a near-optimal solution. However, the mean fitness of the pop-
ulation remains higher than the best fitness, highlighting a disparity between the best
individual and the population as a whole. Additionally, the average distance between
individuals decreases steadily across generations, signifying population convergence and
reduced diversity, which is expected in later stages of optimization but may also suggest
premature convergence. Furthermore, the score histogram and individual fitness show
that while many individuals approach optimal fitness, some variability remains, reflecting
ongoing exploration of the search space. The population history reveals that while the best
individual remains stable, the other individuals fluctuate significantly, demonstrating the
algorithm’s exploratory capabilities. Overall, the genetic algorithm shows strong optimiza-
tion performance, consistently finding effective solutions while exploring the search space
to ensure well-tuned Frac-FCM parameters.
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Figure 3. Genetic algorithm performance indicators for Haberman dataset optimization.

Figure 4. Genetic algorithm performance indicators for Libra dataset optimization.

Figure 5. Genetic algorithm performance indicators for Wine dataset optimization.
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Figure 6. Genetic algorithm performance indicators for Pima dataset optimization.

The analysis focuses on optimizing fuzzy partitions based on geometric criteria, in-
cluding model complexity and cluster separation, to enhance clustering performance across
generations. Frac-FCM refines its quality by selecting the optimal fractional derivative
order (α), gradient descent rates (β, λ), fuzziness parameter (m), and number of clusters
(Nclus), as shown in Table 3. Additionally, it includes performance metrics such as the XB
index (VXB), which measures the compactness and separation of clusters, and the FS index
(VFS), indicating cluster validity. Across the datasets, the parameters vary significantly,
reflecting the adaptive nature of the Frac-FCM approach to different data characteristics.
The performance metrics show consistent improvements in clustering quality, as evidenced
by low VXB values, especially in datasets like Wine and Pageblock, which have minimal
inter-cluster overlap and high intra-cluster cohesion.

In summary, the genetic algorithm efficiently determines the optimal parameters for
Frac-FCM without requiring a large number of generations. The stability of the GA-Frac-
FCM system is highlighted by the absence of fluctuations in the fitness curves, indicating
consistent and reliable performance.

Table 3. Optimal parameters for the optimized Frac-FCM method along with associated performance
metrics across various datasets.

Data Set α∗ β∗ λ∗ m∗ N∗
clus VXB VFS

Abalone 0.8347 0.55588 0.46174 2.5917 22 1.8869 × 10−4 1.0014
Balance 0.99012 0.58211 0.62506 4.9998 50 0.0071 0.0212

Concrete Compressive Strength 0.95369 0.13018 0.88148 1.7576 181 0.32236 0.77474
Ecoli 0.74087 0.81775 0.83244 4.7027 224 0.28282 0.73210

Haberman 0.9508 0.86634 0.93594 2.8985 11 6.0193 × 10−5 1.0418
Iris 0.991 0.92502 0.75972 3.7868 17 0.6414 0.94329

Libra 0.3125 0.71263 0.36938 3.2398 17 1.1736 × 10−5 1.0134
Liver 0.40721 0.45748 0.97339 4.6291 20 1.0059 1.8658 × 10−2

Pageblock 0.97405 0.42475 0.61145 3.1203 5 3.1426 × 10−9 1.0224
Pima 0.83677 0.13917 0.83677 2.3475 49 1.8048 × 10−4 1.1323
Seed 0.98438 0.75347 0.56306 1.7567 185 0.11035 0.91225

Segment 0.37799 0.061637 0.51809 4.2317 4 0.50740 0.55712
Statlog (Australian Credit

Approval)
0.016843 0.74695 0.57621 3.8614 3 2.6667 × 10−5 1.0002

Wine 0.72374 0.78268 0.67563 1.677 2 2.4298 × 10−11 1.0010

The number of clusters is an important parameter in clustering algorithms as it has a
significant impact on the final clustering outcomes. The proposed technique, like standard
FCM, cannot determine the number of clusters independently. But using a genetic algorithm
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to improve parameters, including the number of clusters, effectively solves this problem.
The GA explores multiple possibilities, and the optimal number of clusters is selected based
on quality measures embedded in the objective function. A well-chosen number of clusters
boosts clustering performance by balancing intra-cluster compactness and inter-cluster
separation. The variation in the number of clusters (Nclus) between datasets emphasizes the
Frac-FCM algorithm’s ability to adapt datasets. For example, some datasets do best with a
small number of clusters, but others require a greater number of clusters. This adaptability
to different datasets is critical for producing high-quality clusters, as seen by improvements
in the XB and FS indices.

The Frac-FCM model introduces a memory effect through the fractional derivative
order α, which influences how previous updates affect current cluster centers and mem-
berships. This parameter balances the impact of short-term and long-term updates, with
higher α values illustrating recent changes for faster convergence, while lower values
incorporate a longer history, capturing non-local dependencies and long memory effects to
enhance robustness [71]. The evolutionary GA optimizes α for each dataset, ensuring that
the method adapts to the specific characteristics of the problem. By adjusting α to match
the complexity of diverse datasets, the Frac-FCM model surpasses traditional methods in
clustering performance.

6.4. Comparison Study

In this section, we perform a comparative evaluation of the Frac-FCM (ω∗) algorithm
against several clustering techniques, including K-means, self-organizing maps, fuzzy C-
means, and Gaussian mixture models, across various datasets. The comparison is based on
both Dunn’s index and the Silhouette index, which assess cluster compactness, separation,
and overall clustering quality.

The Silhouette index assesses how well an object matches its cluster compared with
other clusters, with higher values indicating better-defined and more distinct clusters. FCM
and GMM generally exhibit lower performance in most cases, while SOM and K-means
perform relatively well across various datasets. Notably, Frac-FCM achieves higher Silhou-
ette scores, particularly on datasets like Iris (0.64413 ± 0.02630), Seed (0.52985 ± 0.03334),
and Statlog (0.84676 ± 0.00238). These results suggest that Frac-FCM produces more dis-
tinct and well-separated clusters than traditional methods, enhancing cluster quality and
interoperability. Dunn’s index, which evaluates the compactness and separation of clusters,
demonstrates that Frac-FCM consistently outperforms other methods across most datasets.
This indicates that Frac-FCM generates clusters that are both more compact and better
separated. Although K-means and SOM perform competitively in some cases, FCM and
GMM tend to score lower. The clustering results outlined above are presented in Table 4,
highlighting Silhouette and Dunn’s indices for the evaluated methods across 15 different
datasets. Overall, Frac-FCM demonstrates superior performance, particularly in terms of
cluster separation and compactness, making it a strong option for complex datasets.

To determine whether the differences in the Silhouette and Dunn indices across
datasets are statistically significant, we employed the Friedman test. This non-parametric
test evaluates the performance ranks of each algorithm on each dataset. The null hypothesis
(H0) of the Friedman test states: “All algorithms perform equivalently, and there is no
significant difference in their ranks”.

The Friedman test analyzes the average ranks of the algorithms under the null hy-
pothesis. The test results demonstrate that Frac-FCM significantly outperforms the other
clustering algorithms, indicating its superior performance. With an average rank of 1.533
for the Silhouette index and 2.07 for the Dunn index, Frac-FCM consistently outperformed
the rest algorithms. The closest opponents were SOM and K-means. At a significance
level of 0.05 and with four degrees of freedom, the null hypothesis was rejected due to
the extremely small p-values (2.736 × 10−9 for Silhouette and 1.093 × 10−3 for Dunn),
further confirming the superiority of Frac-FCM. Figures 7 and 8 illustrate the average
clustering performance of the algorithms based on the Silhouette and Dunn indices, respec-
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tively. These figures clearly highlight the superior performance of the Frac-FCM algorithm
compared with the other methods, as evidenced by its consistently higher scores across
the datasets.

Figure 7. Average performance of clustering based on the Silhouette index.

Figure 8. Average clustering performance based on the Dunn index.

The results presented in the table are well-supported by the existing literature, high-
lighting the benefits of using genetic algorithms in clustering approaches. Ref. [72] demon-
strates that optimizing Silhouette indices using genetic algorithms can enhance the clarity of
cluster separation by addressing non-informative variables, leading to improved Silhouette
scores. This aligns with the findings in the table, where the Frac-FCM algorithm achieves
the highest Silhouette indices, indicating clearer group separation. Similarly, ref. [73]
studied the use of genetic algorithms to address K-means challenges, such as random seed
selection and the need to specify the number of clusters in advance. GA also helps avoid
local minima, improving clustering accuracy before fine-tuning the results using K-means.
Furthermore, ref. [74] points out that clustering algorithms are often sensitive to noise
and outliers, but the use of genetic algorithms can mitigate these issues effectively. The
table’s results show a robust performance for GA-based methods, particularly for complex
datasets, where Frac-FCM exhibits enhanced resilience to noise. The optimization of the
FCM algorithm through genetic algorithms leads to improved performance compared with
traditional FCM methods [39].
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Table 4. Evaluation of K-means, FCM, SOM, GMM, and Frac-FCM performance using Silhouette and Dunn indices across multiple datasets.

Dataset K-Means FCM SOM GMM Frac-FCM
Silhouette Dunn Silhouette Dunn Silhouette Dunn Silhouette Dunn Silhouette Dunn

Abalone 0.38636 ± 0.00346 0.01564 ± 0.00092 0.27144 ± 0.00190 0.01316 ± 0.00027 0.36265 ± 0.00053 0.01534 ± 0.00016 0.29536 ± 0.00393 0.01435 ± 0.00047 0.40710 ± 0.00016 0.14147 ± 0.00100

Balance 0.28038 ± 0.00110 0.14224 ± 0.00030 0.25000 ± 0.00422 0.13687 ± 0.00066 0.28543 ± 0.00031 0.14282 ± 0.00008 0.26650 ± 0.00789 0.14253 ± 0.00028 0.34781 ± 0.02031 0.14678 ± 0.00102

Concrete
Compressive

Strength
0.33747 ± 0.00268 0.06122 ± 0.00380 0.26990 ± 0.00153 0.03260 ± 0.00280 0.33902 ± 0.00019 0.04630 ± 0.00022 0.17075 ± 0.00820 0.04049 ± 0.00232 0.30151 ± 0.00711 0.05201 ± 0.00217

Ecoli 0.32003 ± 0.00403 0.05432 ± 0.00235 0.14606 ± 0.00334 0.01594 ± 0.00024 0.33644 ± 0.00192 0.01486 ± 0.00035 0.10528 ± 0.00556 0.03721 ± 0.00192 0.34648 ± 0.00153 0.04458 ± 0.00349

Haberman 0.44908 ± 0.00612 0.03038 ± 0.00247 0.30311 ± 0.00466 0.02026 ± 0.00126 0.43432 ± 0.00151 0.02743 ± 0.00200 0.07845 ± 0.00989 0.02253 ± 0.00057 0.49020 ± 0.00713 0.02893 ± 0.00318

Iris 0.43004 ± 0.00613 0.05338 ± 0.00205 0.43494 ± 0.00433 0.06237 ± 0.00356 0.47320 ± 0.00515 0.05824 ± 0.00097 0.12628 ± 0.01339 0.04829 ± 0.00376 0.64413 ± 0.02630 0.05964 ± 0.00727

Libra 0.27642 ± 0.00362 0.06838 ± 0.00228 0.10037 ± 0.01690 0.05884 ± 0.00363 0.34675 ± 0.00132 0.09306 ± 0.00349 0.24073 ± 0.00488 0.07470 ± 0.00354 0.40913 ± 0.01802 0.08658 ± 0.00969

Liver 0.25858 ± 0.00389 0.04828 ± 0.00254 0.17583 ± 0.00254 0.02289 ± 0.00131 0.25605 ± 0.00396 0.02917 ± 0.00170 0.07958 ± 0.00851 0.04327 ± 0.00095 0.20920 ± 0.00570 0.05392 ± 0.00375

Pageblock 0.41982 ± 0.01017 0.00488 ± 0.00020 0.12146 ± 0.00232 0.00148 ± 0.00005 0.35856 ± 0.00184 0.00438 ± 0.00053 0.02751 ± 0.00381 0.00192 ± 0.00019 0.25191 ± 0.03312 0.22770 ± 0.00144

Pima 0.34238 ± 0.00250 0.02662 ± 0.00134 0.26679 ± 0.00230 0.01500 ± 0.00140 0.38023 ± 0.00161 0.01873 ± 0.00058 −0.41161 ± 0.01702 0.00781 ± 0.00021 0.30758 ± 0.03119 0.04539 ± 0.00139

Segment 0.14660 ± 0.00533 0.16413 ± 0.00707 0.13416 ± 0.00430 0.13784 ± 0.00535 0.14656 ± 0.00319 0.18663 ± 0.00564 0.05638 ± 0.00730 0.16114 ± 0.00502 0.22832 ± 0.00201 0.22770 ± 0.00144

Seeds 0.37685 ± 0.00448 0.07439 ± 0.00332 0.27361 ± 0.00709 0.05824 ± 0.00184 0.40877 ± 0.00233 0.09903 ± 0.00292 0.20063 ± 0.00843 0.03649 ± 0.00133 0.52985 ± 0.03334 0.09142 ± 0.00356

Statlog 0.22353 ± 0.01004 0.05315 ± 0.00436 0.09590 ± 0.01129 0.08007 ± 0.00206 0.18435 ± 0.00462 0.05221 ± 0.00030 0.15568 ± 0.00805 0.02747 ± 0.00277 0.84676 ± 0.00238 0.02747 ± 0.00277

Wine 0.23868 ± 0.00787 0.17824 ± 0.00397 0.10090 ± 0.00524 0.14632 ± 0.00091 0.26251 ± 0.00272 0.19142 ± 0.00540 0.17767 ± 0.00855 0.16556 ± 0.00432 0.38808 ± 0.00607 0.17917 ± 0.00850

Yeast 0.19260 ± 0.00114 0.05970 ± 0.00049 0.12671 ± 0.00436 0.04059 ± 0.00093 0.19699 ± 0.00055 0.03649 ± 0.00133 0.04848 ± 0.00699 0.04059 ± 0.00093 0.22892 ± 0.01705 0.06522 ± 0.00297

Average Rank 2.4 2.53 4.266 4.2 2.133 2.6 4.666 3.6 1.533 2.07



Symmetry 2024, 16, 1353 24 of 27

Moreover, ref. [75] integrates an improved artificial bee colony (IABC) algorithm and
fractional-order modeling with KFCM [39]. This approach enhances the clustering per-
formance by improving parameter estimation, effectively capturing non-linear dynamics,
resulting in faster convergence, and increased robustness against local optima. In addition,
ref. [76] highlights a hybrid model combining fuzzy C-means clustering with fractional-
order methods to improve prediction accuracy, which directly supports the performance of
the fractional clustering methods shown in the table. The high results for the Frac-FCM
method in most datasets demonstrate that fractional-order models lead to better clustering
accuracy and separation, highlighting their benefits in clustering.

The proposed Frac-FCM method may face challenges from the computational complex-
ity of the genetic algorithm and the limitations of fuzzy C-means when dealing with large
datasets. While genetic algorithms improve clustering accuracy, they can be computation-
ally demanding, particularly with high-dimensional data [77]. Additionally, FCM struggles
with large datasets [78], making it less suitable for such cases. These factors underscore the
importance of efficiency and data suitability when applying these techniques.

7. Conclusions

In this paper, we introduced a novel clustering model that combines the fuzzy C-means
(FCM) algorithm with fractional derivatives, resulting in the fractional fuzzy C-means (Frac-
FCM) algorithm. This model effectively addresses the limitations of traditional FCM, which
include its sensitivity to initial cluster assignments, slow convergence, and challenges in
handling non-linear and overlapping clusters. By incorporating fractional derivatives,
Frac-FCM captures non-local dependencies and long memory effects, enabling a more
precise representation of data relationships in complex datasets. The integration of a
genetic algorithm (GA) for optimizing the least squares objective function, with a focus
on geometric cluster properties like the Fukuyama–Sugeno and Xie–Beni indices, further
improves clustering performance by achieving a better balance between compactness and
separation. Experimental evaluations across multiple datasets demonstrate that Frac-FCM
consistently outperforms traditional clustering methods in terms of both the Silhouette
and Dunn indices. These results confirm the robustness and superiority of the Frac-FCM
algorithm, making it a valuable tool for clustering complex data structures more accurately
and efficiently.

Although Frac-FCM shows promising results, there are several areas for further
research. These include exploring hybrid optimization techniques to improve the accuracy
of the model and addressing the scalability of Frac-FCM for large datasets. Additionally,
research could focus on enhancing Frac-FCM’s ability to handle high-dimensional data
and more complex data structures, as well as investigating its performance in real-time
dynamic data environments.
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