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Abstract: The degradation of products is an integral part of their life-cycle, often following predictable
trajectories. However, sudden, unexpected events, termed ’shocks’, can substantially alter these
degradation paths. Shocks can significantly influence the pace of degradation, leading to accelerated
system failure. Moreover, they may initiate changes in degradation patterns, transitioning from
linear to non-linear or random trajectories. To address this challenge, we present a novel multi-state
reliability model for competing failure processes that account for degradation-shock dependencies by
considering the state-varying degradation pattern. The degradation process is divided into s-states,
with each state treated according to its pattern based on the time-transform Wiener process. The
reliability function is derived based on soft failure caused by continuous degradation involving the
s-states, the sudden increase in degradation caused by random shocks, and hard failure due to some
shock processes. Additionally, we performed a sensitivity analysis to determine which parameters
have the most significant impact on product reliability. Due to the complexity of the likelihood
function, we adopted the ABC method to estimate the model parameters. A simulation study and a
practical application with micro-electro-mechanical systems (MEMS) degradation results are used to
demonstrate the efficiency and effectiveness of the proposed approach.

Keywords: degradation-shock processes; state-varying degradation; approximate bayesian computation;
sensitivity analysis

1. Introduction

Over the past few years, there has been a significant increase in the use of degrada-
tion data to assess the reliability of products. These data provide essential insights into a
product’s health and can be obtained through non-destructive and non-invasive methods,
primarily by monitoring sensors [1,2]. This approach is not only cost-effective but also
more convenient than destructive testing. Degradation analysis can reveal underlying
failure mechanisms and assist in forecasting a product’s future performance. Consequently,
degradation analysis has gained widespread acceptance as a means of studying product
reliability such us the failure degradation of lithium battery [3–5], train wheel wear degrada-
tion [6], and so forth. There are various approaches to modeling degradation data, including
the general path method and stochastic process models [7]. However, stochastic process
models have gained popularity in degradation modeling due to their strong mathematical
properties and their ability to accurately represent the stochastic nature of degradation
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data [8,9]. Several widely used models in this domain include the Wiener process [10,11],
Gamma process [12,13], and inverse Gaussian process [14,15], among others.

In many real-world engineering scenarios, the reliability of a product is affected
by various factors such as environmental conditions, wear and tear, and other forms of
degradation. A product may exist in different states of degradation throughout its life
cycle, and each state may have a different level of reliability and performance. Therefore,
multi-state reliability modeling is an effective approach to analyzing complex products
that exhibit multiple degradation states. Random shocks, also known as shock loads, can
significantly contribute to product failures and impact the degradation process. These
shocks can cause stress concentrations and damage to components, leading to accelerated
degradation and ultimately resulting in product failure [16]. It is, therefore, crucial to
consider the correlation between the shock process and the degradation process when
developing effective reliability models for complex engineering products [17]. Typically,
a product can fail due to two failure modes: soft failure from degradation or hard failure
from random shocks. Regardless of the failure mode, it can result in the product’s fail-
ure [18]. Figure 1 illustrates the degradation-shock competing failure process of the product.

Figure 1. Degradation-shock competing failure process.

The development of models for systems experiencing competing failure processes
has long captured the attention of researchers. The foundational work of Lemoine and
Wenocur [19] marked the early exploration of this complex issue. Over the years, numerous
researchers have advanced this field, proposing various models to address multiple failure
processes. For instance, Peng et al. [20] developed reliability models for complex systems
that experience multiple dependent competing failure processes, taking into consideration
the failures caused by degradation and shock loads. Jiang et al. [21] developed reliability
models for complex systems experiencing multiple dependent competing failure processes,
accounting for failures caused by degradation and shock loads, with a dynamic failure
threshold that decreases over time due to shocks. Song et al. [22] developed a reliability
model for complex multi-component systems where each component experiences multiple
dependent failure processes due to degradation and shared shock loads. Fan et al. [23]
developed a reliability model for dependent competing failure processes with degradation-
shock dependence, classifying shocks into damage, fatal, and safety zones. Che et al. [24]
developed a reliability model for systems with mutually dependent degradation and shock
processes. They introduced a facilitation model, a Markov point process, to capture the
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shock process, which cannot be described by traditional Poisson models. Cao and Dong [25]
analyzed the competing and dependent failure processes for multi-state systems suffering
from four typical random shocks. Liang et al. [26] developed a reliability model for a
system subject to both multi-state and continuous degradation processes. In their work,
the degradation process was modeled by a time-homogeneous semi-Markov process on a
finite state space and a time-homogeneous stochastic process on a continuous state space
with independent increments. Feng et al. [27] proposed a degradation-shock-dependent
competing failure process model considering a time-shifting sudden failure threshold for
predicting the RUL of drill bits. Chang et al. [28] proposed a generalized reliability model
for systems with arbitrary structures experiencing both degradation and shock processes.
Shao et al. [29] proposed a hybrid RUL prediction method for a subsea hydraulic control
system that considers degradation-shock dependency, introducing a dependency factor
to model the interaction between shock intensity and degradation stages. Lyu et al. [30]
developed a reliability model for systems subject to dependent competing failure processes,
incorporating the effects of random cycle times, where degradation rates and hard failure
thresholds vary with the number of cycles. Qiu et al. [31] derived the recursive equation
for systems reliability and availability considering the impact of shock in the degradation
process and the catastrophic failure. Jin and Zhang [32] explored cascading failures in cir-
cuit systems by modeling the system as an impedance network. Their research emphasized
the coupling effects of continuous degradation and random shocks, showing how these
interactions can lead to asymmetric failure propagation and unpredictable failure times.
Gan and Tang [33] developed a reliability model that accounts for the degradation shock
process, considering the dynamic nature of failure thresholds. They used a linear Wiener
process to describe performance degradation and introduced a multi-performance degra-
dation model based on copula functions. Xu et al. [34] proposed a multi-stage model that
accounts for the dependencies between degradation and shock processes across different
damage levels.

Notably, most of these mentioned studies considered that, during the soft failure
process, the arrival of shock may result in accelerating the degradation process. However,
it is possible that the arrival of a shock may not only accelerate the degradation process
but also change the degradation pattern. For example, the shock may cause changes
in the distribution of stresses and strains within the material, leading to a shift in the
location and nature of degradation mechanisms [35]. Additionally, the shock may induce
new degradation mechanisms that were not present before, leading to a change in the
degradation pattern. In some cases, a shock may cause a sudden increase in the degradation
rate, followed by a gradual return to the pre-shock degradation pattern [36]. In other cases,
the degradation pattern may permanently shift from linear to non-linear, or from one
type of non-linear behavior to another [37], for example, a mechanical component such
as metal gear that is subjected to cyclic loading. Under normal operating conditions, the
gear undergoes linear fatigue degradation, meaning that the number of cycles until failure
decreases linearly over time. However, if the gear is subjected to an unexpected shock,
such as a sudden increase in the load or a change in the loading direction, the degradation
pattern may change to include non-linear fatigue degradation. In this case, the number of
cycles until failure may decrease at an accelerated rate, exhibiting a more rapid degradation
pattern than the linear fatigue model would predict [38]. Similarly, let us consider an
electrical component, such as a capacitor. Under normal operating conditions, the capacitor
undergoes linear degradation due to electrolyte drying, meaning that the capacitance
decreases linearly over time. However, if the capacitor is subjected to an unexpected shock,
such as a sudden increase in the operating temperature or a change in the applied voltage,
the degradation pattern may change to include non-linear degradation due to dielectric
breakdown. In this case, the capacitance may decrease more rapidly than predicted by the
linear model, exhibiting a more complex degradation pattern [39,40].

It is less common for a shock arrival to change the degradation pattern from non-linear
to linear, as shocks typically introduce additional stress and damage to a component, which
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can lead to more complex degradation mechanisms. However, one scenario where this
could potentially occur is if a component is undergoing a complex degradation process
involving multiple mechanisms, and the shock arrival causes some of the mechanisms to
become temporarily inactive. For example, consider a metal component that is undergoing
wear and corrosion degradation due to exposure to a harsh environment. Under normal
operating conditions, the degradation may occur in a non-linear fashion due to the interplay
of the mechanical and chemical degradation mechanisms. However, if the component
experiences a sudden shock or impact, it could cause the corrosion mechanism to become
temporarily inactive due to the mechanical damage caused by the shock. This could
lead to a more linear degradation pattern dominated by wear, at least until the corrosion
mechanism becomes reactivated. Therefore, it’s essential to consider these dynamic impact
of shocks when developing models for multi-state degradation-shock failure processes.
Figure 2 depicts common degradation-shock processes that often appear in practice.

Figure 2. System failure different for patterns of degradation-shock process. (a) Degradation-shock
process in a linear pattern (b) Degradation-shock in a non-linear pattern. (c) Degradation shock
process with combined linear and non-linear pattern. (d) Shock process.

In terms of parameter estimation, the ABC method is selected due to the complexity of
our likelihood function. This algorithm approximates the posterior distribution π(θ | Xobs)
by first generating parameter samples from the joint distribution of the parameter vector
θ = {θ1, . . . , θn}, then simulating pseudo-data based on these sampled parameters from
the model M(θ), and finally accepting those parameter samples that produce pseudo-data
close to the observed data, satisfying ρ(Xobs, X) ≤ ε. When working with high-dimensional
data, it is more efficient to define the distance measure based on summary statistics of both
the observed and simulated data: ρ(S(Xobs), S(X)) ≤ ε, where ρ(.) is the distance function,
ε is the chosen tolerance level, and S(.) refers to the summary statistics. A smaller ε results
in a better approximation. For further details, refer to [41,42].

The ABC method is highly dependent on the selection of a distance measure to evaluate
the difference between observed and simulated data. Various distance measures, such as
Manhattan [43], Euclidean [44], Canberra [45], and Chebyshev [46], have been commonly
used, but the optimal choice depends on the nature of the data. In this study, the Euclidean
distance was applied due to its simplicity and ease of interpretation. This distance is
often used in ABC to measure differences between the summary statistics of simulated and
observed data rather than comparing entire datasets, especially when dealing with complex,
high-dimensional data. In our work, the mean was chosen as the primary summary statistic,
justified by the Wiener process that underlies our degradation model. Since this process
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involves normally distributed increments, using the mean effectively captures the central
trend of the data, making it an optimal and computationally straightforward choice. To
achieve convergence in the ABC algorithm, careful attention was given to both the summary
statistics and the calibration of the tolerance threshold ε. This threshold was chosen to
strike a balance between the accuracy of parameter estimation and computational efficiency.
If the threshold is too low, the computational cost rises without significant improvement in
accuracy, particularly when the summary statistics do not fully represent the variability
in the data. The ideal threshold depends on factors like data variability and simulation
acceptance rates, ensuring that the algorithm converges effectively to the true parameter
values without overfitting.

In recent years, various sampling algorithms like Markov-chain Monte Carlo (MCMC),
population Monte Carlo, and sequential Monte Carlo have been combined with ABC to
enhance its accuracy and efficiency for parameter estimation. These extended methods
include ABC-MCMC [42,47], ABC-HMC [48], ABC-PMC [49], and ABC-Gibbs [50,51], with
ABC-Gibbs being especially useful for high-dimensional models.

ABC has gained popularity across fields such as population genetics and engineering.
For instance, Rodrigues et al. used ABC-Gibbs to estimate parameters in a high-dimensional
state-space model for Airbnb rental prices, and Muhammad et al. applied it to a complex
degradation model. Based on these successes, we used ABC-Gibbs in our work for parame-
ter estimation. More details on ABC-Gibbs can be found in [50,51]. The main contributions
of this paper can be summarized as follows:

1. We propose a multi-state reliability model that accounts for the degradation-shock
dependency and considers state-varying degradation patterns using a time-transform
Wiener process. Our approach is based on dividing the degradation process into
s-states and treating each state according to its pattern based on the time-transform
Wiener process.

2. We derive the reliability function considering soft failure caused by continuous degra-
dation across multiple states, sudden increases in degradation due to random shocks,
and hard failure from certain shock processes.

3. We adopt approximate Bayesian computation (ABC) for parameter estimation in
complex reliability models, overcoming the limitations posed by highly complex
likelihood functions.

4. We perform a comprehensive sensitivity analysis to identify the most influential
parameters affecting system reliability, providing critical insights for system design
and maintenance.

The remainder of the paper is organized as follows: Section 2 outlines the reliability
analysis framework for systems affected by random shocks and their impact on degradation
trajectories. Section 3 presents a simulation study and a practical application of the model to
micro-electro-mechanical systems (MEMS) degradation data, illustrating the effectiveness
and efficiency of our approach. Finally, Section 4 provides the conclusion of the study.

2. Reliability Modeling of a System Subjected to a Degradation-Shock Process with
Multiple States

This section focuses on the reliability analysis of systems and components considering
the influence of random shocks and the resulting changes in the degradation pattern. Shocks
can accelerate the degradation process and lead to shifts from linear to non-linear or random
degradation trajectories. The objective is to develop precise expressions for the reliability
function, accounting for extreme shocks and the multi-phased nature of degradation.

2.1. Shock Modeling Based on Extreme Shock

Under the extreme shock process, the probability that the system has not failed by time
t can be calculated as the probability that the degradation level remains below the hard
threshold value Xw at that time. Specifically, T denotes the random time of hard failure,
occurring when cumulative shocks exceed the threshold Xw. The expression P(t ≤ T)
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thus calculates the probability of survival, indicating that degradation due to shocks up
to time t remains under the critical level. Assuming that the magnitudes of shocks Wi are
independent and identically distributed random variables following a normal distribution
with mean µw and variance σ2

w, this probability can be expressed as:

P(t ≤ T) = P
(

W1 < Xw, W2 < Xw, . . . , WN(t) < Xw

)
. (1)

The random variable N(t) represents the number of shocks that occur in the time
interval [0, t], and is modeled as a Poisson process with rate λ. The probability of N(t)
shocks occurring in the time interval [0, t] is given by the Poisson distribution:

P(N(t) = s) = e−λt (λt)s

s!
, s = 0, 1, 2, . . . . (2)

Given that N(t) shocks have occurred in the time interval [0, t], the probability of all
shocks having magnitudes less than the threshold value Xw is given by:

P(W1 < Xw, W2 < Xw, . . . , WN(t) < Xw) =

[
Φ
(

Xw − µw

σw

)]N(t)
. (3)

where Wi ≥ 0, µw > 0, σw is assumed to be nearly zero to minimize the occurrence of
negative values, and Φ(·) is the cumulative distribution function of the standard nor-
mal distribution.

2.2. Degradation Modeling Under Soft Failure and Pattern Variation

Degradation processes are ubiquitous in numerous systems, leading to a gradual
decline in their performance over time. Factors such as wear, corrosion, fatigue, and aging,
among others, trigger these degradation processes, ultimately impacting the reliability,
functionality, and safety of the system. Therefore, accurately estimating the lifetime of a
system based on degradation data is essential for effective maintenance, decision making,
and resource allocation [10]. The precision of this life estimate significantly relies on the
degradation model’s ability to capture the complexities of the system’s failure degradation
process. Additionally, random shocks not only accelerate degradation but also alter its
pattern, potentially resulting in soft failure once the soft failure threshold is exceeded. To
incorporate this scenario into the degradation model, the degradation process is divided
into s distinct states, each characterized by its unique degradation pattern. In addition to
that, each state is modeled by the time-transform Wiener process. The “time-transform
Wiener process” refers to a Wiener process where time is transformed using a function
Λs(t) = tbs , allowing for flexible modeling of different degradation rates across states.
More detail regarding the time transform Wiener process can be found in [10,52].

Suppose that the degradation process comprises s states, with each state being initiated
due to shock arrival, lasting within the time interval [ts, ts+1]. The degradation process for
each state can then be expressed as:

X0(t) = xt0 + µ0Λ0(t) + σ0B(Λ0(t)) t0 ≤ t ≤ t1

X1(t) = xt1 + µ1Λ1(t) + σ1B(Λ1(t)) t1 ≤ t ≤ t2

X2(t) = xt2 + µ2Λ2(t) + σ2B(Λ2(t)) t2 ≤ t ≤ t3

...

Xs(t) = xts + µsΛs(t) + σsB(Λs(t)) ts ≤ t ≤ ts+1 (4)

where xt0 is assumed to be zero for simplicity and Xs(t) represents the degradation process
of s-th state, which evolves over time t between ts and ts+1. The initial value of Xs at time
ts is given by xts . The time interval [ts, ts+1] represents the time span during which the
s-th state evolves according to this equation. Note that the upper limit of this interval,
ts+1, is assumed to be the same as the lower limit of the next interval. µs and σs are the
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drift and diffusion coefficients of s-th state and B(Λs(t)) is a standard Brownian motion
process. Λs(t) represents a transformed time scale for the s-th state, defined as Λs(t) = tbs ,
where bs is a parameter determining the nature of the time transformation. If bs = 1, the
transformation is linear, indicating that the degradation progresses at a constant rate over
time. However, if bs ̸= 1 then the process is non-linear; this flexibility allows the model
to capture the varying dynamics of degradation under different conditions, especially in
response to shock arrivals, where each state’s degradation pattern can change significantly.

The shocks cause abrupt jumps of sizes h1, h2, . . . , hN(t), which results in increasing
the degradation process. Let H(t) be the cumulative length of the shock during the time
interval (0, t], then H(t) can be expressed as:

H(t) =

{
∑

N(t)
j=1 hj, if N(t) > 0

0, if N(t) = 0.
(5)

Therefore, the total length of the degradation path can be expressed as

X(t) =
s

∑
i=0

Xi(t) +
N(t)

∑
j=1

hj (6)

where N(t) indicates the number of shocks. Based on the properties of the Wiener process,
Xi(t) follows normal distribution with mean xti + µiΛi(t)) and variance σiΛi(t), i.e Xi(t) ∼
N(xti + µiΛi(t)), σiΛi(t)) for 1 ≤ i ≤ s. If hi is independent and identically distributed
(i.i.d), and follows normal distribution with mean µh and variance σ2

h , i.e hi ∼ N(µh, σ2
h ) for

1 ≤ i ≤ N(t). Then, X(t) follows normal distribution, X(t) ∼ N
(

∑s
i=1(xti + µiΛi(t)) +

µhN(t), ∑s
i=1 σ2

i Λi(t) + N(t)σ2
h

)
.

If we assumed that there exist uncertain errors during the process of data collection,
then the length of the degradation path could be modified as

Xe0(t) = X0(t) + ϵ0

Xe1(t) = X1(t) + ϵ1

Xes(t) = Xs(t) + ϵs

...

Xe(t) =
s

∑
i=0

Xei (t) (7)

where ϵ0, ϵ1, . . . , ϵs, represents independent and identical measurement errors and are as-
sumed to follow a normal distribution with mean zero and standard deviation σϵ, i.e., ϵi ∼

N(0, σ2
ϵ ) . Hence, Xe(t) ∼ N

(
∑s

i=1(xti + µiΛi(t)) + µhN(t), ∑s
i=1 σ2

i Λi(t) + N(t)σ2
h + sσ2

ϵ

)
.

2.3. Reliability Modeling

The product fails when either of the two failure modes occurs—that is, soft failure
or hard failure. To model the reliability under the influence of shock and the degradation
process, we assume that the system experiences a series of shocks at random intervals of
time [ts, ts+1]. We also assume that the degradation state changes from state s to state s + 1
and that, at each state, the degradation pattern is considered changed. X f denotes the
failure threshold of the degradation process, representing the critical level at which the
cumulative degradation is considered sufficient to cause system failure due to soft failure.
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The system is assumed to have failed when the degradation process reaches or exceeds this
threshold. Hence, the probability of the system at state i can be expressed as:

P0 = Pr

(
N(t) = 0, Xe(t) < X f

)
= Pr(N(t) = 0, X0(t) + ϵ0 < Xt)

= Pr(N(t) = 0)Pr(X0(t) + ϵ0 < X f ), (8)

P1 = Pr

(
N(t) = 1, Xe(t) < X f , W1 < Xw

)
= Pr

(
N(t) = 1, X0(t) + X1(t) + h1 + ϵ0 + ϵ1 < X f , W1 < Xw

)
= Pr(N(t) = 1)Pr

(
X0(t) + X1(t) + h1 + ϵ0 + ϵ1 < X f

)
Pr(W1 < Xw), (9)

P2 =Pr

(
N(t) = 2, Xe(t) < X f , W1 < Xw, W2 < Xw

)
=Pr

(
N(t) = 2, X0(t) + X1(t) + X2(t) + h1 + h2 + ϵ0 + ϵ1 + ϵ2 < X f , W1 < Xw, W2 < Xw

)
=Pr(N(t) = 2)Pr

(
X0(t) + X1(t) + X2(t) + h1 + h2 + ϵ0 + ϵ1 + ϵ2 < X f

)
Pr

(W1 < Xw)Pr(W2 < Xw), (10)

Ps =Pr

(
N(t) = s, Xe(t) < X f , W1 < Xw, W2 < Xw, · · · , Ws < Xw

)
= Pr(N(t) = s)

Pr

(
X1(t) + X2(t) + X3(t) + · · ·+ Xs(t) + h1 + h2 + · · ·+ hs + ϵ0 + ϵ1 + · · ·+ ϵi < X f

)
Pr(W1 < Xw)Pr(W2 < Xw) · · · Pr(Wn < Xw)

=Pr(N(t) = s)× Pr

(
s

∑
i=0

Xi(t) +
s

∑
i=1

hi +
s

∑
i=0

ϵi < X f

)
×

s

∏
i=1

Pr(Wi < Xw)

=Pr(N(t) = s)× Pr

(
s

∑
i=0

Xi(t) +
s

∑
i=1

hi +
s

∑
i=0

ϵi < X f

)
[Pr(W1 < Xw)]

s (11)

Therefore, the reliability of the system under extreme shock can be expressed as

Re(t) =
s

∑
i=0

Pi =Φ

 X f − µ0Λ0(t)√
σ2

0 Λ0(t) + σ2
ϵ

 exp(−λt) +
s

∑
i=1

[
Φ
(

Xw − µw

σw

)]i

Φ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + iσ2

ϵ

exp(−λt)(λt)i

i!
.

(12)

2.4. Reliability Sensitivity Analysis

Sensitivity analysis is a valuable tool for assessing the influence of various parameters
and assumptions on the reliability model. By conducting sensitivity analysis, we can gain
insights into which factors have the most significant impact on the reliability function
and better understand the robustness of the model. In this section, we will perform a
sensitivity analysis for the reliability model based on extreme shocks and multi-phased
degradation process.

2.4.1. Sensitivity of Reliability with Respect to Shock Parameters

The sensitivity of the reliability with respect to shock parameters can be determined
by differentiating the reliability function with respect to each parameter. Considering
the shock parameters λ, µw, and σw, the sensitivities of reliability Re(t) can be computed
as follows:
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∂Re(t)
∂λ

= −tΦ

 X f − µ0Λ0(t)√
σ2

0 Λ0(t) + σ2
ε

 exp(−λt)

−
s

∑
i=1

exp(−λt)(λt)i

i!
Φ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

 (13)

∂Re(t)
∂µw

= −
s

∑
i=1

i
[

Φ
(

Xw − µw

σw

)]i−1 1
σw

ϕ

(
Xw − µw

σw

)
(14)

∂Re(t)
∂σw

= −
s

∑
i=1

i
[

Φ
(

Xw − µw

σw

)]i−1(Xw − µw

σ2
w

)
ϕ

(
Xw − µw

σw

)
(15)

The sensitivities to shock parameters, λ, µw, and σw, reveal how changes in these
parameters impact the reliability. The magnitude and sign of these sensitivities indicate the
degree and direction of the change, respectively.

2.4.2. Sensitivity of Reliability with Respect to Degradation Parameters

Similarly, for degradation parameters, such as µi, σi, bi, and µh, σh, the sensitivities of
reliability can be obtained as follows:

∂Re(t)
∂µi

= −exp(−λt)(λt)i

i!
ϕ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

Λi(t) (16)

∂Re(t)
∂σi

= −exp(−λt)(λt)i

i!
ϕ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

Λi(t)
σi

(17)

∂Re(t)
∂bi

= −exp(−λt)(λt)i

i!
ϕ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

(ln(t)Λi(t)(λt)i
)

(18)

∂Re(t)
∂µh

= −exp(−λt)(λt)i

i!
ϕ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

 (19)

∂Re(t)
∂σh

= −exp(−λt)(λt)i

i!
ϕ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑n
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

 iΛi(t)√
∑n

i=1 σ2
i Λi(t) + iσ2

h + σ2
ε

(20)

∂Re(t)
∂σε

= −exp(−λt)(λt)i

i!
ϕ

X f − ∑s
i=1(xti + µiΛi(t)) + iµh√

∑s
i=1 σ2

i Λi(t) + iσ2
h + σ2

ε

 σε√
∑s

i=1 σ2
i Λi(t) + iσ2

h + σ2
ε

(21)

Through the sensitivity analysis, we can identify which parameters play the most
crucial role in system reliability. Those parameters should be the focus of the reliability
improvement efforts, whether through improved design, better maintenance strategies, or
improved quality control.

3. Parameter Estimation Method

The aim of this section is to achieve the parameter estimation of the proposed model.
Consider that the arrival of shock affects the degradation process by not only accelerating
it but also modifying the degradation pattern. Suppose that the degradation process
comprises s states, with each state being initiated due to the shock arrival, lasting within
the time interval [ts, ts+1]. If the degradation process of each state is modeled by the time
transform Wiener process then the degradation path of the s-state can be expressed as:

Xs(t) = xts + µsΛs(t) + σsB(Λs(t)) + ϵ, ts ≤ t ≤ ts+1 (22)
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Here, each state s has a set of degradation observations Xs(t) = {xs,1, xs,2, . . . , xs,ns},
with s = 0, 1, 2, . . . , n and Λs(t) = tbs , and s = 0 denotes the initial state, i.e., the state
before the arrival of shock, and ns represents the total observations for state s prior to
the arrival of the next shock. Hence, the independent increments of the Wiener process
∆Xs = xs,j+1 − xs,j, (where j = 1, . . . , ns − 1) follows a normal distribution with mean
µs∆Λs,j and variance σ2

s ∆Λs,j + σ2
ϵ , where ∆Λs,j = Λs(ts,j+1)− Λs(ts,j) and the likelihood

function for the observations in state s can be expressed as:

Ls(∆Xs|µs, σs, σϵ) =
ns−1

∏
j=1

1√
2π(σ2

s ∆Λs,j + σ2
ϵ )

exp

(
−
[xs,j+1 − xs,j − µs∆Λs,j]

2

2(σ2
s ∆Λs,j + σ2

ϵ )

)
(23)

If the observed shock lengths h = {h1, h2. . . . , hs} and the magnitude of shocks W =
{W1, W2, . . . , Ws} are assumed to follow a normal distribution h ∼ (µh, σh) and W ∼
(µw, σw), respectively, then complete likelihood for the function can be expressed as:

L(∆Xs, W, h, N(t)|µ, σ, µw, σw, µh, σh, σϵ, λ, bi) =

s

∏
i=0

ns−1

∏
j=1

1√
2π(σ2

s ∆Λs,j + σ2
ϵ )

exp

(
−
[xs,j+1 − xs,j − µs∆Λs,j]

2

2(σ2
s ∆Λs,j + σ2

ϵ )

)
×I(i > 0)

[
1

2πσwσh
· exp

(
− (Wi − µw)2

2σ2
w

− (hi − µh)
2

2σ2
h

)]
×
(

e−λt (λt)i

i!

)]

where X = {X0, X1, . . . , Xs}, µ = {µ0, µ1, . . . , µs}, σ = {σ0, σ1, . . . , σs}, and I(·) is an
indicator function.

Considering the complexity of our likelihood function, which involves high-
dimensional parameters, we adopted the ABC-Gibbs algorithm to estimate our model
parameters. The ABC-Gibbs algorithm is a sophisticated variant of the ABC algorithm,
specifically designed to handle challenges posed by complex likelihood functions with
high-dimensional parameters.

The ABC-Gibbs method offers a powerful solution to estimating the parameters
of complex models where the direct computation of the likelihood function is difficult
or computationally intensive. This hybrid technique brings together the strengths of
ABC, which circumvents the need for explicit likelihood calculation, and Gibbs sampling,
a Markov-chain Monte Carlo (MCMC) method that generates samples from the joint
posterior distribution of the parameters [53]. In each iteration of the ABC-Gibbs sampler,
one parameter is selected for potential update. Given the current values of the other
parameters, synthetic data are generated under the model. The similarity between these
synthetic data and the observed data is evaluated using a pre-defined distance metric.
If this distance is below a certain threshold, the proposed parameter value is accepted,
otherwise it is rejected. This procedure is repeated for each parameter in turn, and over
many iterations, it yields samples from the approximate joint posterior distribution of
all parameters.

The ABC-Gibbs sampler allows for the estimation of the posterior distributions of each
model parameter, providing detailed insights into the associated parameter uncertainties.
To describe the ABC-Gibbs algorithm, let us assume that the likelihood function is obtained
based on multiple states (i.e., s = 0, 1, 2). The resulting ABC-Gibbs algorithm is summarized
in Algorithm 1. In this algorithm, P(θi|S(Xobs), θ−i) represents the conditional posterior
distribution of the parameter θi in the s-state process, given the current values of the other
parameters θ−i and the observed data Xobs. The function S(Xobs) computes the summary
statistics of the observed data, which are used to compare with the synthetic data S(X)
generated by the model. The model M(θ) is a function that simulates or generates synthetic
data based on the current set of parameters θ . The distance metric ρ(S(Xobs), S(X)) defines
the measure of dissimilarity between the summary statistics of the observed data S(Xobs)
and those of the synthetic data S(X). The threshold ε determines the maximum allowable
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difference between the summary statistics for accepting or rejecting the proposed parameter
values. For more detail regarding ABC-Gibbs, refer to [10,50,54,55].

Algorithm 1 ABC-Gibbs algorithm for s-state degradation-shock process
Inputs:
i. Observed dataset Xobs,
ii. Summary statistics of the observed data S(Xobs),
iii. Desired number of samples T > 0,
iv. Distance measure ρ(.) = ∥ · ∥,
v. Tolerance threshold ε ≥ 0,

vi. Starting points θ(0) = (θ
(0)
1 , . . . , θ

(0)
D )

Simulation:
1: for t = 1 to T do
2: for i = 1 to D do
3: Update each parameter i for the s-state conditionally on the others:

θ
(t+1)
i ∼ P(θ(t)i |S(Xobs), θ

(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i+1, . . . , θ

(t)
D )

4: end for
5: Set the vector of current parameters:

θ(t+1) = (θ
(t+1)
1 , . . . , θ

(t+1)
D )

6: Generate synthetic data X = M(θ(t+1)) and compute the summary statistics S(X)
7: Calculate the distance ρ(S(Xobs), S(X)) = ∥S(Xobs)− S(X)∥
8: if ρ(S(Xobs), S(X)) ≤ ε then
9: Accept the parameter values

10: else
11: Reject the parameter values
12: end if
13: end for

4. Illustrative Examples

In this section, we introduce both simulation and real data application examples to
illustrate the effectiveness of our parameter estimation approach and the applicability of
our proposed method.

4.1. Simulation Study

Consider a degradation-shock process involving four states, namely s = 0, 1, 2, 3.
The shocks are assumed to arrive at a rate determined by a Poisson process with an
intensity of λ = 0.004. The degradation observations are taken every 2 h until the arrival
of a shock, which marks the beginning of the next state, and the total length of time
of observations is 100 h. Furthermore, both the magnitude W and the sudden jump h
that arise due to a shock’s arrival are treated as independent and identically distributed
(i.i.d.) normal variables. Specifically, the distribution parameters for these variables are
set as µw = 0.150, σw = 0.020 for W, and µh = 0.500, σh = 0.500 for h. The degradation
parameters of each of the four states are denoted by vectors µ = {1.920, 2.200, 5.500, 6.000},
σ = {0.580, 0.530, 2.700, 2.000}, and b = {1.200, 1.560, 3.000, 2.500}; we also incorporate
noise with σϵ = {0.320, 0.380, 0.4, 0.5}. The process is defined as having failed if either
the magnitude of a shock W exceeds Xw = 0.320 or the degradation threshold reaches
X f = 7.400. The objective of this simulation study is to validate our parameter estimation
approach within the context of the proposed model. For this purpose, we utilize the
ABC-Gibbs method, as detailed in Algorithm 1, under four sets of tolerance thresholds



Symmetry 2024, 16, 1364 12 of 21

ε = {0.1000, 0.0500, 0.0050, 0.0001}, for 1.0 × 105 iterations. The priors of the unknown
parameters are assumed to be:

• µw ∼ N(αµw , βµw)
• σw ∼ gamma(ασw , βσw)
• µh ∼ N(αµh , βµh)
• σh ∼ gamma(ασh , βσh)
• µs ∼ N(αµs , βµs)
• σs ∼ gamma(ασs , βσs)
• bs ∼ N(αbs , βbs)
• σϵ ∼ gamma(αϵs , βϵs)

where αµw , βµw , ασw , βσw , αµh , βµh , ασh , βσh , αµs , βµs , ασs , βσs , αbs , βbs , and αϵs , βϵs are known
hyper-parameters. The simulation results for both shock and degradation parameters
are presented in Tables 1 and 2. The plots of the generated samples drawn for each
parameter with respect to the summary statistics and the ABC-Gibbs posterior density of
each parameter are depicted in Figure 3 (for shock) and Figures 4–7 (for degradation).

Upon analyzing the results in Tables 1 and 2, it becomes evident that the parameter
estimates derived through the ABC-Gibbs method closely approximate the true values.
Furthermore, the accuracy of these estimates is significantly impacted by the tolerance
threshold selected within the ABC-Gibbs algorithm. Notably, as the tolerance threshold is
lowered, the estimated values increasingly align with the true values. This highlights the
critical importance of choosing an appropriate tolerance threshold for achieving precise
parameter estimates.

The scatter plots depicted in Figures 3–6 offer a visual representation of the relationship
between the summary statistics and the samples drawn from the conditional posterior
distribution of each parameter. These plots distinguish acceptance and rejection regions
with different colors, as described in the legend. The acceptance region comprises summary
statistics that fulfill the tolerance criteria set by the ABC-Gibbs algorithm, while the rejection
region includes those that do not meet these criteria. A visual inspection of these figures
reveals a clear separation between acceptance and rejection regions, indicating that the
selected summary statistics effectively capture the underlying data-generation process. The
clustering of samples around the accepted summary statistics further supports the validity
and effectiveness of these statistics in representing the key characteristics of the data.
Similarly, the density plots in Figures 3–6 provide a succinct visualization of parameter
distributions using samples generated by the ABC-Gibbs algorithm across various tolerance
thresholds. These plots illustrate a trend where the densities of each parameter converge
toward a normal distribution, consistent with the central limit theorem. According to
this theorem, the sum of a large number of independent and identically distributed (i.i.d.)
random variables tends to converge to a normal distribution, regardless of the initial
distribution of the individual variables [56].

Table 1. Summary of the estimated mean of each shock parameter sample generated using ABC-Gibbs
of the simulated datasets.

Sample Mean

No.Itr ε λ µh σh µw σw

TVs

1.0 × 105

- 4.0000 0.5000 2.0000 0.1500 0.0200
0.1000 3.9720 0.5311 2.0426 0.1679 0.0226
0.0500 3.9717 0.5317 2.0426 0.1652 0.0223
0.0050 3.9760 0.5307 2.0430 0.1642 0.0223
0.0010 3.9625 0.5123 2.0428 0.1595 0.0223

TVs = true values. No.Itrs = number of iterations.
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Figure 3. Samples drawn for shock parameters with respect to the summery statistics and their
corresponding ABC-Gibbs posterior density plots.

Figure 4. Samples drawn for state 0 parameters with respect to the summery statistics and their
corresponding ABC-Gibbs posterior density plots.

Table 2. Summary of the estimated mean of each degradation parameter sample generated using
ABC-Gibbs of the simulated datasets.

Sample Mean

State0 State1

No.Itrs ε µ0 σ0 b0 σϵ0 µ1 σ1 b1 σϵ1

TVs - 1.9200 0.5800 1.2000 0.3200 2.2000 0.5300 1.5600 0.3800
0.1000 1.9724 0.5857 1.2550 0.3056 2.1658 0.5211 1.5931 0.3857

1.0 × 105 0.0500 1.9754 0.5853 1.2513 0.3052 2.1685 0.5217 1.5912 0.3855
0.0050 1.9558 0.5778 1.2428 0.3074 2.1649 0.5231 1.5968 0.3858
0.0001 1.9128 0.5815 1.2154 0.3125 2.1892 0.5282 1.5681 0.3836
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Table 2. Cont.

Sample Mean

State2 State3

No.Itrs ε µ2 σ2 b2 σϵ2 µ3 σ3 b1 σϵ3

TVs - 5.5000 2.7000 0.3000 0.4000 6.0000 2.0000 2.5000 0.5000
0.1000 5.6195 2.7521 0.3799 0.3916 5.8990 1.9596 2.8011 0.5120

1.0 × 105 0.0500 5.6239 2.7510 0.3755 0.3915 5.8988 1.9626 2.8065 0.5119
0.0050 5.6298 2.7580 0.3525 0.3914 5.8630 1.9892 2.6846 0.5133
0.0001 5.5679 2.7421 0.3104 0.3945 5.9845 2.0126 2.5110 0.5082

Figure 5. Samples drawn for state 1 parameters with respect to the summery statistics and their
corresponding ABC-Gibbs posterior density plots.

Figure 6. Samples drawn for state 2 parameters with respect to the summery statistics and their
corresponding ABC-Gibbs posterior density plots.
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Figure 7. Samples drawn for state 3 parameters with respect to the summery statistics and their
corresponding ABC-Gibbs posterior density plots.

4.2. Practical Application

A practical implementation of MEMS, which was performed at Sandia National
Laboratories, is commonly referenced to demonstrate degradation-shock models in the
literature [37,57,58]. Given its prevalent use and illustrative value, this section will also
employ MEMS as a case study to showcase and discuss the effectiveness and applicability
of the proposed model.

MEMS micro-engines are primarily susceptible to two competing failure mechanisms:
(1) soft failure, primarily due to continuous wear and debris accumulation, and (2) hard fail-
ure, typically caused by hub fractures resulting from random shocks. As the micro-engine
degrades, its resistance to random shocks decreases, and wear accelerates, potentially
altering the degradation pattern. In light of this understanding, we apply our proposed
reliability model, which accounts for changes in the degradation pattern. This model
offers an alternative approach for predicting the micro-engine’s lifespan and operational
reliability. All parameter values and their sources are listed in Table 3. It is important to
note that although the parameter values are derived from multiple complex studies, the
failure dataset used is from a single MEMS experiment. The analysis results are presented
in Figures 8–11.

Figure 8. The estimated reliability function.
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Table 3. All parameter values and their sources.

Parameters Values Sources

X f 0.00125 µm3 Tanner et al. [57]
Xw 1.5 Gpa Rafiee et al. [59]
µ0 8.4823 × 10−9 µm3 Peng et al. [60]
σ0 6.00 × 10−10 µm3 Peng et al. [60]
µ1 10.4823 × 10−9 µm3 Assumption
σ1 3.00 × 10−10 µm3 Assumption
µ2 12.4823 × 10−9 µm3 Assumption
σ2 4.00 × 10−10um3 Assumption
xt1 0.00021 µm3 Assumption
xt2 0.00063 µm3 Assumption
µh 1.2 × 10−4 µm3 An and Sun [61]
σh 4.0 × 10−5 µm3 An and Sun [61]
µw 1.2 Gpa An and Sun [61]
σw 0.4 Gpa An and Sun [61]
σϵ 0.14 Gpa Assumption
λ 5 × 10−5 Tanner and Dugger [62]
b1 = b2 = b3 1 Assumption

It can be observed that the reliability function Re(t) depicted in Figure 8 demonstrates
the system’s decreasing reliability over time. Initially, Re(t) is close to 1, indicating a high
likelihood of the system being functional. However, as time progresses, the reliability
function decreases monotonically, eventually approaching zero. This behavior is expected
due to the cumulative effects of both the degradation process and random shocks that
progressively deteriorate the system’s performance. The figure shows a notable change
in the slope of the reliability function; this inflection point suggests a change in the degra-
dation pattern, possibly indicating a shift from a predominantly slow degradation phase
to a phase where degradation accelerates or the influence of random shocks becomes
more pronounced. This change in pattern highlights the importance of considering both
gradual degradation processes and sudden shocks in reliability modeling. Figures 9 and 10
illustrate the sensitivity of the reliability function Re(t) with respect to the degradation-
shock parameters across different states. The results reveal that the sensitivity of reliability
increases progressively with each state transition. Specifically, µ0 and σ0 exhibit lower
sensitivity compared to µ1 and σ1, which in turn are less sensitive than µ2 and σ2. This
trend underscores the impact of shocks on the degradation process: the first state, prior
to any shocks, follows a relatively linear and predictable degradation path, resulting in
lower sensitivity to parameter changes. Following the first shock, the system enters the
second state, where the degradation path becomes more variable and non-linear, increasing
sensitivity to changes in µ1 and σ1. The second shock further exacerbates the degradation
process, leading to the third state, where the degradation becomes highly non-linear and
complex, making the system most sensitive to µ2 and σ2. Additionally, the parameters b1,
b2, and b3 represent the time transformation factors in the degradation process, indicating
the degree of non-linearity in each state. The analysis shows that b3 is significantly more
sensitive than b1 and b2, highlighting the increased non-linear effects in the third state. This
increased sensitivity of b3 reflects the compounded impact of two shocks, which introduce
substantial deviations from the initial degradation pattern and result in a more complex
degradation trajectory.

The shock parameters λ, µw, and σw also play a crucial role in influencing the reliability
of the system. The sensitivity analysis indicates that these shock parameters significantly
affect the reliability, particularly in the later states. As the rate of shock occurrence (λ) and
the magnitude of the shocks (µw and σw) increase, the degradation process becomes more
abrupt and unpredictable, thereby increasing the sensitivity of the reliability function. The
impact of these shock parameters is more pronounced in the second and third states, where
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the system has already undergone one or more shocks, leading to a heightened response to
further shocks.

We further investigate the effect of b1, b2, and b3 within the reliability curve to under-
stand how these time transformation factors influence system reliability across different
states. The result is presented in Figure 11. The analysis reveals that b1 does not significantly
affect the reliability function in the first state, indicating that initial degradation processes
are relatively insensitive to variations in b1 within the selected values. In contrast, the
factors b2 and b3 exhibit a pronounced impact on the reliability function in the second and
third states, respectively. As b2 increases, the reliability function declines more rapidly,
suggesting that post-shock degradation in the second state is highly sensitive to changes in
b2. Similarly, increasing b3 results in a faster decrease in reliability, reflecting the significant
acceleration in degradation after the second shock. This accelerated degradation after the
second shock can be attributed to the accumulation of shock impacts, which compound the
damage and introduce more severe degradation patterns.

Figure 9. Sensitivity of reliability with respect to degradation parameters.

Figure 10. Sensitivity of reliability with respect to shock parameters.



Symmetry 2024, 16, 1364 18 of 21

Figure 11. Effect of b1, b2, and b3 within reliability curve.

These observations align with the theoretical expectations that shocks not only ac-
celerate degradation but also introduce significant changes in the degradation patterns,
thereby increasing the system’s sensitivity to parameter variations as it transitions through
successive states. This comprehensive sensitivity analysis, encompassing both degradation
and shock parameters, is crucial for understanding the robustness of the reliability model
and for identifying key parameters that influence system performance, thereby guiding
targeted reliability improvement efforts.

5. Conclusions

This study presents a comprehensive multi-state reliability model for systems subject
to competing failure processes driven by both degradation and random shocks. By consid-
ering state-varying degradation patterns, our model captures the dynamic and complex
nature of real-world degradation processes. The effectiveness of our parameter estimation
approach was validated through a simulation study. This simulation involved a complex
system influenced by a degradation-shock process with multiple states. The shocks, mod-
eled by a Poisson process, and the degradation parameters were tested under various
tolerance thresholds using the ABC-Gibbs method. The simulation results demonstrated
that the parameter estimates closely approximate the true values, emphasizing the im-
portance of selecting appropriate tolerance thresholds for achieving accurate results. In
addition to the simulation, a practical application was performed using a MEMS case study,
which illustrated the applicability and effectiveness of the proposed model. The reliability
function analysis revealed that the system’s reliability decreases over time, with notable
changes in the slope indicating shifts in the degradation pattern. Sensitivity analysis fur-
ther highlighted the increasing sensitivity of the reliability function to parameter changes
across different states, underscoring the compounded impact of shocks and the non-linear
degradation trajectory in the later states.

Overall, the proposed multi-state reliability model, combined with sensitivity analysis
and parameter estimation using the ABC-Gibbs method, offers a robust framework for
analyzing complex systems with degradation-shock dependencies. This approach not
only enhances the accuracy of reliability predictions but also guides targeted reliability
improvement efforts, making it a valuable tool for engineers and researchers in the field
of reliability engineering. Furthermore, the model’s adaptability has significant potential
across various disciplines. In materials science, it can be used to predict material degra-
dation and failure, while in operational research, it could optimize resource allocation
and maintenance strategies for systems subject to varying degradation patterns. Future
work will focus on extending the model to incorporate additional failure mechanisms,
exploring its applicability to a broader range of engineering systems, and refining the
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parameter estimation techniques to handle even more complex and high-dimensional sce-
narios. Moreover, integrating machine learning algorithms with our model could further
enhance predictive capabilities and facilitate real-time reliability assessments, ultimately
contributing to more resilient and reliable engineering products across diverse industries
such as aerospace, automotive, and heavy machinery.
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