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Abstract: The moving sofa problem, introduced by Leo Moser in 1966, seeks to determine the
maximal area of a 2D shape that can navigate an L-shaped corridor of unit width. Joseph Gerver’s
1992 solution, providing a lower bound of approximately 2.2195, is the best known, though its global
optimality remains unproven. This paper leverages neural networks’ approximation power and
recent advances in invexity optimization to explore global optimality. We propose two approaches
supporting Gerver’s conjecture that his sofa is the unique global maximum. The first approach
uses continuous function learning, discarding assumptions about the monotonicity, symmetry, and
differentiability of sofa movements. The sofa area is computed as a differentiable function using
our “waterfall” algorithm, with the loss function incorporating both differential terms and initial
conditions based on physics-informed machine learning. Extensive training with diverse network
initialization consistently converges to Gerver’s solution. The second approach applies discrete
optimization to the Kallus–Romik upper bound, improving it from 2.37 to 2.3337 for five rotation
angles. As the number of angles increases, our model asymptotically converges to Gerver’s area from
above, indicating that no larger sofa exists.

Keywords: moving sofa problem; optimality; deep learning; physics-informed neural network

1. Introduction

Among the unsolved problems in geometry, the moving sofa problem stands out for
its apparent simplicity. Formally proposed by Leo Moser [1], it asks for the two-dimensional
shape of the largest area that can be maneuvered through an L-shaped corridor with unit
width (see Figure 1). Beyond trivial shapes such as the square and half disk, the best-known
lower bounds are those found by John Hammersley [2] and Joseph Gerver [3], as shown in
Figure 1. Hammersley’s sofa, presented in a problem set for school and college students,
has an area of π/2 + 2/π ≈ 2.2074. It is the largest among the family whose touch point
with the inner corner of the corridor forms a semi-circle; he also showed an upper bound of
2
√

2 ≈ 2.8284. With an area slightly larger than 2.2195, Gerver’s sofa is the largest known
to date, composed of 18 curve sections (as partitioned by their analytical expressions).
In a reasonably implicit way, Gerver proved that his solution is a local maximum and
conjectured that it is the unique global maximum.

Dan Romik [4] advanced Gerver’s analysis by introducing a set of six differential
equations along with their general solutions. These solutions, under prescribed contact
mechanisms through five phases of rotation, land on Gerver’s sofa in a natural and explicit
way. Using the same method, Romik also discovered a lower bound of the ambidextrous sofa
that can pass through a double-cornered corridor. A numerical study [5] was carried out
based on Romik’s formulation. Yoav Kallus and Dan Romik [6] provided a new perspective
on the problem. They proved an upper bound of the maximum area through discrete
optimization of the rotation center at a finite sequence of angles. Under a seven-angle setup,
they discovered a new upper bound of the area of 2.37, along with a new lower bound of
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the least-required rotation angle for maximum area production, approximately 81.2◦. We
will delve into their findings in greater detail in Section 2.3.

Half disk, A = π/2

Hammersley’s, A = π/2 + 2/π

Gerver’s, A ≈ 2.2195

Figure 1. The moving sofa problem proposed by Leo Moser [1] in 1966 and some lower bounds. The
best-known two are found, respectively, by John Hammersley [2] and Joseph Gerver [3]. The point
markers separate the sections formed by different contact mechanisms (i.e., with either the inner
corner, the walls, or the wall envelopes of the corridor).

The past decade has witnessed groundbreaking advancements in deep learning, trans-
forming numerous fields of human activity (e.g., computer vision [7], natural language
processing [8], healthcare [9], and environmental sciences [10]). This impact extends to
mathematical research, a domain increasingly referred to as AI4Math. In the realm of
constructing examples or counterexamples—such as discovering new configurations for
the moving sofa problem—AI has produced results that surpass traditional human efforts.
Notable achievements include the development of faster algorithms for matrix multipli-
cation [11], the discovery of larger cap sets in high dimensions [12], and the identification
of more complex knots with specific topological properties [13]. Here, we aim to explore
the moving sofa problem through the lens of deep learning. One of the core methodolo-
gies we will employ is physics-informed neural networks (PINNs). Originating in the
1990’s [14,15] and flourishing within the contemporary deep learning landscape [16,17],
PINNs are primarily designed for solving and inverting differential equations. The central
concept involves training neural networks not only with data but also by incorporating the
target equations along with their initial and boundary conditions. This approach enhances
accuracy and generalization while reducing the amount of training data required. We will
adhere to the principles of PINNs to address the differential terms involved in sofa area
calculation, and the initial conditions of sofa movements. By doing so, we aim to achieve a
more precise and efficient solution to the moving sofa problem.

In this paper, we approach the moving sofa problem from an optimization standpoint,
employing neural networks to parameterize a function space to identify optimal sofa move-
ments or upper bounds. This method harnesses the universal approximation capability
of neural networks and modern optimizers’ enhanced, albeit still evolving, proficiency to
avoid local minima. Specifically, we take advantage of recent developments in invexity
optimization [18,19] to ensure that the employed neural networks will map only global
optima. Here, an invex function is a mapping where any critical point is a global mini-
mizer. While preliminary attempts from the community exist (e.g., on GitHub and Stack
Overflow), these efforts often fail to consider geometric constraints accurately and lack
comprehensive insights into optimality. A significant challenge we have overcome is the
computation of the sofa area. Our solution ensures that the area is calculated not only with
accuracy and robustness but also in a manner that supports differentiation, as required
for backpropagation.
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The remainder of the paper is organized as follows. In Section 2, we present two
problem formulations—one optimizing sofa area through corridor movement and the other
approaching the Kallu-s-Romik upper bound [6]. Section 3 describes our deep learning
methodology, highlighting the generality of the function space and diverse initialization to
reduce inductive bias. Finally, Section 4 presents our findings, reinforcing the global opti-
mality of Gerver’s sofa. To the best of our knowledge, this is the first study to leverage deep
learning in addressing the moving sofa problem. It represents a substantial advancement
by integrating geometric exactness with differentiable optimization techniques.

2. Problem Definition and Formulations
2.1. Sofa Formation

The moving sofa problem can be understood as determining the movement of the
L-shaped corridor in R2 to maximize the area not swept by its four walls. We describe its
movement using the trajectory of its inner corner, denoted by p, and the rotation angle α, as
illustrated in Figure 2. This representation allows us to describe the corridor’s position and
orientation at any moment. An interactive visualization, assuming an elliptical trajectory
for p, has been contributed by the community [20].

Q

P

(0, 0)

α

p

lih

liv

loh

lov

p lih, eih liv, eiv loh, eoh lov, eov

Figure 2. Geometry of the moving sofa problem. The movement of the corridor is described by the
trajectory of its inner corner P, as denoted by p, and the rotation angle α. The four walls form the four
families of lines: lih, liv, loh and lov, with the subscripts showing their initial positions (i for inner, o
for outer, h for horizontal and v for vertical). Their envelopes are, respectively, eih, eiv, eoh and eov.
In this example, p is a semi-ellipse with its major and minor lengths being, respectively, 1.8 and 1.1,
leading to some complexities in the envelopes, as highlighted by the magnified windows.

Previous studies using continuous optimization have considered
(
xp, yp

)
as functions

of α [3–5], thereby restricting the movement to a monotonic rotation. To overcome this
limitation, we introduce a pseudo-time t ∈ [0, 1], which allows us to describe the movement
as follows: 

xp = xp(t),

yp = yp(t),

α = α(t);

satisfying


xp(0) = 0,

yp(0) = 0,

α(0) = 0.

(1)

The above initial conditions at t = 0 are trivial, addressed by the translation and rotation
invariance of R2. A non-trivial condition is

α(1) > arcsin
84
85

≈ 81.2◦, (2)

that is, any moving sofa shape of the largest area must undergo rotation by an angle of
at least 81.2◦ [6]. We will later use this condition in our loss function. The parameter-
ization in Equation (1) only requires that xp(t), yp(t) and α(t) are of class C0, allowing
for independent translation and rotation that are non-monotonic, non-symmetric, and
non-differentiable.
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The movement of the corridor will determine the following four families of lines,
named by their initial position at t = 0 (see Figure 2):

Inner horizontal, lih :
(
x − xp

)
sin α −

(
y − yp

)
cos α = 0;

Inner vertical, liv :
(
x − xp

)
cos α +

(
y − yp

)
sin α = 0;

Outer horizontal, loh :
(
x − xp

)
sin α −

(
y − yp

)
cos α + 1 = 0;

Outer vertical, lov :
(
x − xp

)
cos α +

(
y − yp

)
sin α − 1 = 0.

(3)

Based on simple calculus, their envelopes can be shown as

Inner horizontal, eih :

xih = xp + cos α
(

x′p sin α − y′p cos α
)(

α′
)−1,

yih = yp + sin α
(

x′p sin α − y′p cos α
)(

α′
)−1;

Inner vertical, eiv :

xiv = xp − sin α
(

x′p cos α + y′p sin α
)(

α′
)−1,

yiv = yp + cos α
(

x′p cos α + y′p sin α
)(

α′
)−1;

Outer horizontal, eoh :
{

xoh = xih − sin α,
yoh = yih + cos α;

Outer vertical, eov :
{

xov = xiv + cos α,
yov = yiv + sin α,

(4)

where the primes denote derivatives with respect to t. We assume that xp(t), yp(t), and
α(t) are piecewise differentiable (piecewise C1) so that any non-differentiable points can be
excluded from the aforementioned envelopes. This assumption is justified, as it is unlikely
that the largest sofa could contain some fractal sections. If it does indeed, such sections are
inherently undetectable by methods based on analytical parameterization, including deep
learning approaches.

2.2. Differentiable Area Calculation

The resultant area is bounded from below by p, eih, eiv, and y = 0, depending on
which one is on top at any given point. Similarly, it is bounded from above by eoh, eov,
and y = 1, depending on which one is at the bottom. However, it cannot be formulated
as a simple integral because these curves can be self-intersecting and intersect at multiple
points, as indicated by the zoomed-in windows in Figure 2. Note that Figure 2 only shows a
simple case where the trajectory is elliptical; the envelopes can become intricate for arbitrary
movements. For example, Figure 3 shows the envelopes created by an irregular movement.
This complexity contributes to why the moving sofa problem remains unsolved.

Figure 3. Wall envelopes and sofa shape generated by an irregular corridor movement (red curve).
Refer to Figure 2 for detailed descriptions of the geometric elements. The envelope’s complex
geometry requires a robust algorithm to ensure precise area calculation.
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To compute the area robustly for any movement, we developed the waterfall algorithm,
inspired by the watershed algorithm for image segmentation [21,22]. The watershed algo-
rithm is a region-based image segmentation method that treats the image as a topographic
surface, where pixels represent elevation; it identifies “watershed lines” to separate distinct
regions. We adapt the concept of using “water” to identify surfaces from above and below.
Intuitively, a dense series of water sources aligned horizontally are placed high above,
generating a waterfall that touches the intersecting curves to form the upper limit for area
quadrature. The lower limit is determined similarly, but with the water flowing upward
from below. Our implementation ensures differentiability of the resultant area with respect
to the curve positions, which is essential for backpropagation. We also parallelize the water
source through sensitization to achieve faster computation. Some examples are given in
Figure 4.

Two arbitrary curves Curves formed by a movement

Figure 4. The waterfall algorithm for area calculation. Left: The waterfall is tested on two hand-drawn
curves from both below and above. Right: The waterfall is applied to the curves formed by the
corridor movement in Figure 2. Water sources are placed along the horizontal line in the middle,
with the arrows indicating the falling direction.

We optimize the calculated sofa area as a function of corridor movement, where the
targets xp(t), yp(t), and α(t) are modeled using neural networks, as detailed in Section 3.
The corresponding results are presented in Section 4.1.

2.3. Kallus–Romik Upper Bound

Yoav Kallus and Dan Romik [6] established an upper bound for the maximum sofa
area by optimizing the rotation center at a finite sequence of rotation angles. We provide a
brief review of their theory and discuss some limitations of their numerical algorithm.

Let Lα(u) denote the set formed by rotating the corridor by an angle α around the
center u = (u1, u2) ∈ R2:

Lα(u) =
{
(x, y) ∈ R2 : u1 ≤ x cos α + y sin α ≤ u1 + 1

}
∩{

(x, y) ∈ R2 : −x sin α + y cos α ≤ u2 + 1
}
∪{

(x, y) ∈ R2 : x cos α + y sin α ≤ u1 + 1
}
∩{

(x, y) ∈ R2 : u2 ≤ −x sin α + y cos α ≤ u2 + 1
}

.

(5)
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Let B(β1, β2) denote the set formed by rotating the vertical strip by angles β1 and β2, respec-
tively, and taking the union of these two rotations, resulting in a butterfly-shaped region:

B(β1, β2) =
{
(x, y) ∈ R2 : 0 ≤ x cos β1 + y sin β1

}
∩{

(x, y) ∈ R2 : x cos β2 + y sin β2 ≤ 1
}
∪{

(x, y) ∈ R2 : x cos β1 + y sin β1 ≤ 1
}
∩{

(x, y) ∈ R2 : 0 ≤ x cos β2 + y sin β2

}
.

(6)

Let λ denote the area measure on R2, and λ∗(X ) denote the maximal area of any
connected component X ⊂ R2. Then, given a finite sequence of angles, (α1, α2, · · · , αk),
and their corresponding rotation centers, (u1, u2, · · · , uk), and (β1, β2) with β1 ≤ β2, Kallus
and Romik [6] first defined the following area:

gβ1,β2
α1,α2,··· ,αk (u1, u2, · · · , uk) = λ∗

H ∩
k⋂

j=1

Lαj

(
uj
)
∩ B(β1, β2)

, (7)

where H = R× [0, 1] is the horizontal strip. Taking the supremum of the above area with
respect to the centers, they further obtained

Gβ1,β2
α1,α2,··· ,αk = sup

{
gβ1,β2

α1,α2,··· ,αk (u1, u2, · · · , uk) : u1, u2, · · · , uk ∈ R2
}

, (8)

which they ultimately proved to be an upper bound of the maximum sofa area. Note
that H ∩ B(β1, π/2) ≡ H; namely, when β2 = π/2, the value of β1 does not affect the
resultant area. Therefore, the end case of Gβ1,π/2

α1,α2,··· ,αk can simply be denoted by Gα1,α2,··· ,αk .

The above-defined sets, Lα(u) and B(β1, β2), and their induced gβ1,β2
α1,α2,··· ,αk are illustrated in

Figure 5, based on a small number of angles.

α3

Corridor sets, Lα (u)

β2

(0, 0)

β1

Butterfly set, B (β1, β2) Set determining gβ1,β2
α1,α2,α3

Figure 5. Sets defined for Kallus–Romik upper bound. In this example, the angles are α1 ≈ 16.26◦,
α2 ≈ 30.51◦, α3 ≈ 44.76◦, β1 ≈ 73.74◦ and β2 ≈ 79.61◦, corresponding to Equation (28) in [6].

For a sofa shape that moves around the corner while rotating continuously and
monotonically from 0 to some angle β ∈ [0, π/2], define its maximum area as A(β). The
global maximum area is then Amax = sup0≤β≤π/2 A(β). The most relevant results from
Kallus and Romik [6] are summarized as follows:

1. for any (α1, α2, · · · , αk) and (β1, β2) satisfying α1 < α2 < · · · < αk ≤ β1 ≤ β ≤ β2 ≤
π/2, one has [6] [Proposition 4 (iii)]

A(β) ≤ Gβ1,β2
α1,α2,··· ,αk , (9)

and [6] [Proposition 4 (ii)]
Amax ≤ Gα1,α2,··· ,αk ; (10)
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2. given an integer n ≥ 3, let γj =
j
n

π
2 , j = 1, 2, · · · , n; [6] [Theorem 5] asserts that

Amax = lim
n→∞

max
k=1,2,··· ,⌈n/3⌉

Gγn−k ,γn−k+1
γ1,γ2,··· ,γn−k−1 , (11)

which provides a way for constraining Amax asymptotically from above.

The above results are rigorous and elegant from a theoretical perspective. However,
the numerical algorithm they present for discrete optimization of the rotation centers,
(u1, u2, · · · , uk), seems to have two shortcomings:

1. Their algorithm does not yield Gβ1,β2
α1,α2,··· ,αk but instead provides another upper bound

whose tightness is unproven; though this computed one is also an upper bound of
A(β), there can be space for improving the tightness if Gβ1,β2

α1,α2,··· ,αk is evaluated directly.
2. Based on rational programming, their algorithm is computationally expensive and un-

scalable, which can only tackle a small number of angles. Consequently, Equation (11)
or their Theorem 5 remains unexploited for constraining the actual value of Amax.

These shortcomings motivate our work reported in Sections 4.2 and 4.3.

3. Deep Learning Methodology
3.1. Fully Connected Networks

Neural networks, particularly fully connected networks (FCNs), play a central role
in many machine learning tasks due to their ability to approximate complex functions.
An FCN consists of multiple layers of nodes, where each node applies a weighted sum
to its inputs, followed by an activation function to introduce non-linearity. This structure
allows FCNs to act as universal approximators, capable of representing a broad range
of continuous functions [23,24]. In deep learning, such models are trained to optimize
parameters that minimize a loss function, guiding the model towards accurate predictions.
The rectified linear unit (ReLU) activation function, commonly used in FCNs, introduces
piecewise linearity [25]. This property makes ReLU-based FCNs ideal for exploring a broad
function class, as required by the optimization problems discussed here.

In Appendix A, we provide a theoretical review of FCNs, including their formulation,
universal approximation ability, and characterization of invexity. Universal approximation
increases the likelihood that the global maximum is included in the solution space. Invex-
ity enhances the probability that the first-order, gradient-based optimizers used in deep
learning, featuring some capability to escape from local minima, can successfully locate
the global minima. Together, these properties reinforce the appeal of our conclusions from
extensive function search.

3.2. Network Parameterization of Corridor Movement

Distinct from typical deep learning tasks focused on data fitting, our application is not
primarily concerned with the accuracy or generalization of a single best model. Instead, our
objective is to support the global optimality of Gerver’s sofa by demonstrating that multiple
models from our over-parameterized function space converge to Gerver’s lower bound.
Consequently, we want our function space, or hypothesis class, to be as general as possible.
We parameterize xp(t), yp(t), and α(t) by three independent FCNs with ReLU as the
activation function. FCNs are chosen for their universal approximation capabilities [23,24],
and ReLU is selected for its ability to provide piecewise linear parameterization [25,26]. It
is worth mentioning that using C∞ activation functions such as tanh and softplus instead
of ReLU, would limit the search space to C∞ functions. Though they can lead to faster
convergence to Gerver’s sofa, our approach favors piecewise C1 functions for broader
generality. As explained, piecewise C1 is likely the most general class of functions that can
be explored using non-fractal methods.

Specifically, we mathematically show that our proposed neural networks map to
global optima (see Appendix A). We remark that this theoretical result plays a crucial role
in addressing the moving sofa problem. It ensures that any critical point corresponds to a
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global optimum (invexity definition [27]), a necessary condition for achieving the global
optimality of Gerver’s sofa. In Section 4, we will provide numerical validation for this
optimality by illustrating the landscapes of our network parameterization.

In general, neural network optimization, while gradient-based, does not guarantee
convergence to a global minimum. However, contemporary optimizers like Adam [28,29],
which incorporate adaptive learning rates and momentum, enhance the probability of es-
caping local minima. Additionally, the likelihood of attaining the global minimum increases
if multiple approximators, initialized diversely, converge to the same local minimum. In
this context, “diverse initialization” extends beyond mere variation in weights and biases; it
implies that approximators approach their resultant minima from distinct trajectories in the
parameter space. This requires meticulous scaling of the weight sampling distribution. For
instance, our target function α(t) lies within [0, π/2], whose approximators should hence
be initialized to safely cover [0, π/2]. This consideration diverges from typical machine
learning practices. Figure 6 illustrates a subset of our initialization samples.
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Figure 6. Function initialization with network weights sampled from scaled uniform distributions.
Each function is plotted in a different color to distinguish the individual curves. We sample weights

and biases from U
(
−s

√
k, s

√
k
)

, where k is the reciprocal of input size and s a number we obtain
for each target function by trial and error until its admissible range is safely covered from above, as
indicated by the dashed lines. Note that s = 1 is PyTorch default.

3.3. Physics-Informed Architecture

Our neural networks are physics informed, leveraging principles outlined in the
recent literature [16,17]. Firstly, as indicated in Equation (4), the computation of the
envelopes—and consequently the area—depends on the derivatives of the learned func-
tions (x′p, y′p, and α′), which are efficiently calculated via automatic differentiation (AD).
Secondly, we adhere to the initial conditions specified in Equation (1) directly within the
network architecture, while the non-trivial condition in Equation (2) is incorporated into
the loss function due to its unequal nature. Additionally, it is straightforward to see that a
movement involving xp > 0, yp < 0, or α < 0 is forbidden by geometry. Combing all of
these considerations, the functions describing a corridor movement are approximated by

xp(t) = −
∣∣∣Fxp(t)−Fxp(0)

∣∣∣,
yp(t) =

∣∣∣Fyp(t)−Fyp(0)
∣∣∣,

α(t) =
∣∣∣Fα(t)−Fα(0)

∣∣∣,
(12)
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where Fxp , Fyp , and Fα are unconstrained FCNs. With the area A computed by our
waterfall algorithm based on xp(t), yp(t), and α(t), the following loss function is adopted
for backpropagation:

L = −A + ReLU(81.2◦ − α(1)), (13)

where the ReLU deactivates the penalizing term once α(1) exceeds 81.2◦. The complete
architecture is summarized in Figure 7.

t xp

AD

p, eih,oh,iv,ov
Waterfall

yp

AD y′￼p

ℱyp
(t) − ℱyp

(0)

α

AD α′￼

ℱα (t) − ℱα (0)

A

L = − A + ReLU (81.2∘ − α (1))

− ℱxp
(t) − ℱxp

(0)

x′￼p

Figure 7. Schematic of our physics-informed network architecture and loss function. The F ’s
represent unconstrained ReLU-based FCNs. Once xp(t), yp(t), and α(t) are computed, automatic
differentiation (AD) is applied to obtain their derivatives, which are then used in Equation (4) to
calculate the envelopes, and subsequently, the sofa area via our waterfall algorithm.

For the Kallus–Romik upper bound, we use unconstrained FCNs to parameterize the
functions u1(α) and u2(α); that is, u1,2(α) = Fu1,2(α), with no initial conditions and sign
enforcement. The waterfall algorithm is applied directly on the four rays in Lα(u) and the
two lines in B(β1, β2), instead of on envelopes. Note that envelopes do not exist because
the upper bound is defined with discrete angles. These two differences indicate that our
neural networks are no longer informed by any “physics”, which is consistent with the
notion that the Kallus–Romik upper bound is not necessarily associated with a valid sofa
movement [6].

4. Results
4.1. Physics-Informed Area Optimization

We discretize the interval t ∈ [0, 1] into 2000 points, with 10,000 sources allocated to
the waterfall. This configuration is determined through iterative refinement, ensuring that
the area converges to the fourth decimal place when tested on Gerver’s shape. We conduct
a comprehensive exploration of 6000 runs, incorporating 1000 random seeds for weight
initialization, 3 initial learning rates (10−3, 10−4, and 10−5, halved every 2000 epochs), and
2 network architectures (2 hidden layers of size 256 and 3 hidden layers of size 128). These
architectures are selected to practically apply Theorem A2 (Appendix A) under the full
row-rank hypothesis. Moreover, since we use ReLU activation, which is strictly increasing
in its active domain, the assumptions of Theorem A2 are inherently satisfied. Each run
consists of 10,000 epochs, using the Adam optimizer [28]. To ensure high-precision area
calculations, we utilize float64, resulting in a runtime of approximately two hours on
the CPU, with minimal performance gain from GPU acceleration. The use of float64 is
critical for reliable statistical results, as float32 occasionally produces areas that slightly
exceed 2.2195.

In our analysis of the 6000 experimental runs, approximately 8.5% resulted in a
vanishing area, primarily occurring when the learning rate is highest. After excluding these
outliers, the remaining trials exhibit strong convergence, consistently approaching a small
neighborhood around Gerver’s solution, with an area close to 2.219532 [30]. The observed
areas follow a normal distribution, N (µ, σ2), where µ = 2.219482 and σ = 0.000011. The
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area values range from 2.219459 to 2.219502. Further refinement with 1000 epochs of fine
tuning using the L-BFGS algorithm [31] increases the maximum area to 2.219515. Due to
resource constraints, L-BFGS is not applied to other models.

We further extend our experiments to include deeper and wider architectures, C∞ acti-
vation functions, and diverse weight sampling distributions for rigorous verification. The
models using the tanh activation function yield a strikingly similar distribution while ex-
hibiting accelerated convergence in the initial phases of training, before the area approaches
the vicinity of 2.219.

Finally, to visually represent our findings, Figure 8 illustrates the Hessian-based
landscape of the sofa area for one of our representative models. This visualization of-
fers compelling evidence for the global optimality of Gerver’s sofa within our network-
parameterized function space.

C

C

B

B

G G

G

Figure 8. Landscape of sofa area. In this visualized model, the FCNs have three hidden layers of size
128, trained with a learning rate of 10−4. The landscape is anchored by the dominant eigenvectors of
the Hessian matrix with respect to model weights [32,33], normalized to unit length. The range of the
plot is [−1.5, 1.5]× [−1.5, 1.5], centered at Gerver’s area (the summit). There are no other peaks in the
landscape across [−10, 10]× [−10, 10]. Point G represents Gerver’s solution, the global maximum.
Points B and C are local maxima, marked in each viewport to help associate perspectives across the
different views.

4.2. Kallus–Romik Upper Bound with Many Angles

The computational cost of our deep learning workflow (waterfall and backpropagation)
scales with the number of rotation angles in the Kallus–Romik upper bound, allowing us
to directly explore the convergence theorem in Equation (11). We increase the number of
angles (n) from 10 to 10,000, incremented by 10 between [0, 100], by 100 between (100, 3000]
and by 500 afterward, making a total of 53 values for n. For each n, Equation (11) requires
⌈n/3⌉ training instances, which are still computationally expensive for large n’s. While
Kallus and Romik [6] have shown that 81.2◦ is the minimum angle, the corridor must rotate
for maximum area production; all current evidence suggests that a rotation of π/2 should
take place [3–6], including our results reported in Section 4.1. Therefore, we will vary model
initialization only for k = 1 (rotation by π/2) with 20 random seeds (i.e., using 1 seed for
k > 1). The other hyper-parameters (learning rates, architectures, and epochs) remain the
same as those in Section 4.1. The most expensive run for n = 10,000, with 10,000 sources for
the waterfall and 10,000 epochs, takes approximately 10 CPU hours to complete.

Our training results show that, for all values of n’s, the maximum Gγn−k ,γn−k+1
γ1,γ2,··· ,γn−k−1 is

achieved when k = 1, supporting of the conjecture that the largest sofa necessitates a full
rotation by π/2. We can then focus our attention on Gγn−1,γn

γ1,γ2,··· ,γn−2 (i.e., k = 1). As shown in
Figure 9, Gγn−1,γn

γ1,γ2,··· ,γn−2 found by our models converges asymptotically to Gerver’s area from
above. The relative error becomes smaller than 1%, 0.1%, and 0.01% respectively at n = 30,
300, and 2100, and finally reaches 0.003% at n = 10,000. This result provides another piece
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of evidence for the global optimality of Gerver’s sofa, along with the findings presented in
Section 4.1.

0 1000 2000 3000
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2.22

2.24

2.26

2.28

G
γ
n
−

1
,γ
n

γ
1
,γ

2
,··
·,γ
n
−

2

Gerver’s area: 2.219532

Kallus-Romik upper bound
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32

Figure 9. Convergence of Gγn−1,γn
γ1,γ2,··· ,γn−2 to Gerver’s area, where γj =

j
n

π
2 , j = 1, 2, · · · , n.

(Left) Gγn−1,γn
γ1,γ2,··· ,γn−2 in linear scale. (Right) Gγn−1,γn

γ1,γ2,··· ,γn−2 − 2.219532 in logarithmic scale.

4.3. Kallus–Romik Upper Bound with Five Angles

An outstanding advantage of the Kallus–Romik upper bound is that it allows for
exploring the problem at a low dimension by considering only a few angles. Kallus and
Romik [6] defined the following five angles (note that they originally defined seven, but
the other two are irrelevant to the sofa area):

α1 = arcsin
7

25
≈ 16.26◦,

α2 = arcsin
33
65

≈ 30.51◦,

α3 = arcsin
119
169

≈ 44.76◦,

α4 = arcsin
56
65

=
π

2
− α2 ≈ 59.59◦,

α5 = arcsin
24
25

=
π

2
− α1 ≈ 73.74◦.

(14)

These angles do not have a specific geometric meaning; they are derived from arcsin
functions because the numerical algorithm of Kallus and Romik [6] is rational.

As we have explored the Kallus–Romik upper bound with up to 10,000 rotation angles
in Section 4.2, the five-angle case holds less mathematical significance. However, its smaller
scale enables us to conduct a more exhaustive model search and visualize the results in
terms of the landscape with respect to the rotation centers. Both further reinforce the
conclusions drawn in Section 4.2 based on many angles.

The inequalities below combine the optimization results of their algorithm with those
of our neural networks for Gα1,α2,α3,α4,α5 and Gα4,α5

α1,α2,α3 , with ours in the middle:

Gα1,α2,α3,α4,α5 ≤ 2.3337 ± 0.0000 < 2.37,

Gα4,α5
α1,α2,α3 ≤ 1.9259 ± 0.0000 < 2.21.

(15)

Our results come from 6000 runs, using the same hyper-parameters (learning rates, archi-
tectures, seeds and epochs) as described in Section 4.1. The training converges so well that
the variances almost vanish (i.e., ±0.0000 in the inequalities in Equation (15)).

Based on Equation (9), it can be shown that Amax ≤ max(Gα1,α2,α3,α4,α5 , Gα4,α5
α1,α2,α3).

Therefore, our results suggest a tighter upper bound of 2.3337, corresponding to the set
shown in Figure 10. The landscape of gα1,α2,α3,α4,α5 is also shown in Figure 10, verifying the
global optimality of Gα1,α2,α3,α4,α5 in our network-parameterized function space.
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Set determining Gα1,α2,α3,α4,α5 Landscape of gα1,α2,α3,α4,α5

0 1 2

Figure 10. Set determining Gα1,α2,α3,α4,α5 (≈ 2.3337) and landscape of gα1,α2,α3,α4,α5 . The landscape
uses the rotation centers (u1, u2, · · · , u5) (instead of the network weights) as the high-dimensional
variable for directional perturbation, based on the discrete nature of the Kallus–Romik upper bound
(namely, the weights are less relevant since the α-sequence is prescribed). The two surface plots show
the same peak from different viewpoints, with a range of [−1, 1]× [−1, 1] centered at Gα1,α2,α3,α4,α5

(the summit). There are no other peaks in the landscape across [−10, 10]× [−10, 10].

5. Discussion

We have provided two lines of evidence supporting Gerver’s conjecture that his
18-section sofa, with an area of approximately 2.2195, is the unique shape of maximum
area that can navigate through a unit-width L-shaped corridor. First, we optimized the sofa
area using PINNs, focusing on minimizing inductive bias by ensuring generality in the
function space and diversity in function initialization. After training more than 6000 models,
over 90% converged on Gerver’s solution. Second, we refined the Kallus–Romik upper
bound [6], achieving a tighter upper bound of around 2.3337 compared to their previous
estimate of 2.37. By increasing the number of rotation angles to 10,000, our training results
showed that the upper bound asymptotically approaches Gerver’s area, further supporting
the conclusion that no larger sofa exists.

If a larger sofa does exist, how has it remained undiscovered for nearly 60 years?
We propose two plausible explanations in light of all previous attempts, including ours.
First, the shape may be fractal or include a fractal section. If so, its discovery would be
highly challenging, as we still struggle to estimate areas of known fractals. Second, the
global maximum might have such a small catchment basin that it is almost undetectable
by optimization-based methods, whether gradient-based or non-gradient-based. In either
case, any parameterized function space such as neural networks, would be insufficient.
Instead, geometric insights revealing a new movement pattern with contact mechanisms
distinct from Gerver’s (such as those described in [4]) would be more critical than further
algorithmic advancements.
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Appendix A. Fully Connected Networks

Appendix A.1. Architecture

Fully connected networks (FCNs) are the backbone of deep learning, forming the most
fundamental building blocks of neural network architectures. In this paper, we use FCNs
to model univariate functions, F : R → R, where the input is either the pseudo-time t (as
discussed in Section 2) or the rotation angle α (as described in Section 2.3). The output
represents one of the degrees of freedom in the movement of the corridor. For simplicity,
we demonstrate a two-hidden-layer architecture with a fixed width M, formulated as

g(t) = wT
3 σ(W2 σ(tw1 + b1) + b2) + b3, (A1)

where the learnable parameters include w1, w3, b1, b2 ∈ RM, W2 ∈ RM×M, and b3 ∈ R,
and σ denotes the ReLU activation function (applied entry-wise), σ(x) = max(0, x). Such
ReLU-activated FCNs form a piecewise linear function space with a vanished Hessian
(g′′(t) ≡ 0) [26].

Appendix A.2. Universal Approximation

The universal approximation properties of FCNs enable them to capture complex
patterns in target functions, which is crucial for the success and versatility of deep learn-
ing. Early universal approximation theorems [34,35] focused on networks with a single
hidden layer, while more recent studies have extended such theorems to deeper architec-
tures [36,37], including those applied to physics-informed machine learning [24].

For our two-layer case in Equation (A1), the following universal approximation theo-
rem can be proved based on either [36] or [37]:

Theorem A1. Given any continuous function f : R → R defined on a compact subset of R, and
any ϵ > 0, there exists a two-hidden-layer FCN of the form given in Equation (A1), with its width
M being sufficiently large and its weights and biases being appropriately chosen, such that

|g(x)− f (x)| < ϵ (A2)

for all x in the compact subset.

Appendix A.3. Invexity

The notion of invex functions was first introduced in [38,39] with the main aim of gener-
alizing the concept of convexity while retaining beneficial analytical properties. Specifically,
invex functions exhibit the remarkable property that their critical points coincide with the
global minima [27]. As such, convex functions are a special case of invex functions. One of
the most significant findings has been that invexity enables zero duality gap for certain
optimization problems [38], thereby matching an excellent attribute of convex optimization.
Motivated by the elegant properties of invex functions and their applicability for solving
complex optimization problems efficiently and robustly, we name a few works from the
state of the art [40–42]. Below, we present the notion of invexity, along with few needed
concepts, starting with the definition of a locally Lipschitz continuous function.

Definition A1. A function f : RM → R is locally Lipschitz continuous at a point x ∈ RM if
there exist scalars K > 0 and ϵ > 0 such that for all y, z ∈ B(x, ϵ) we have

| f (y)− f (z)| ≤ K∥y − z∥2,

where B(x; r) =
{

w ∈ RM : ∥w − x∥2 < r
}

.

Based on this, the concept of invex function is presented as follows.
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Definition A2. Let f : RM → R be locally Lipschitz; then f is invex if there exists a function
η : RM ×RM → RM such that

f (x)− f (y) ≥ ∇ f (y)Tη(x, y),

∀x, y ∈ RM.

By using the recent invexity results in [18], here we mathematically show that our
proposed network parameterization as in Equation (A1) are invex. To this end, we remark
that Equation (A1) can be equivalently, for analysis, seen as

g(x) = wT
3 σ(W2 σ(x + b1) + b2) + b3, (A3)

because the product tw1 in Equation (A1) can be encapsulated as a global vector input
x ∈ RM since t is variable and w1 in Equation (A1) is a learnable parameter. We remark that
proving (A3) is invex plays a crucial role in addressing the problem discussed in this paper.
It introduces a parameterization for xp(t), yp(t), and α(t) through neural networks, which
ensures that any critical point corresponds to a global optimum (invexity definition [27]), a
necessary condition for global optimality of Gerver’s sofa. This result is summarized in the
following theorem.

Theorem A2. Let σ : R → R be any strictly increasing smooth function. Then the neural network
parameterization g : RM → R, of the form

g(x) = wT
3 σ(W2 σ(x + b1) + b2) + b3, (A4)

is invex, when W2 ∈ RM×M is full row-rank with M the width of the neural network, w3, b1,
b2 ∈ RM, b3 ∈ R and w3 ̸= 0.

Proof. To prove the above theorem we analyze the gradient of g(x). Specifically, observe
that ∇g(x) is given as

∇g(x) =
(

W T
2
(
w3 ⊙ σ′(b2 + W2σ(x + b1))

))
⊙ σ′(x + b1). (A5)

From hypothesis we know that W2 is a full row-rank matrix, and the learnable parameter
w3 satisfies w3 ̸= 0. This implies that ∇g(x) ̸= 0, because σ′ > 0 since σ(·) was assumed
to be strictly increasing smooth function. Therefore, by appealing to [27] [Page 14] g(x) is
invex. Thus the result holds.
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