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Abstract: Waveform design is a potentially significant approach to improve the performance of
an imaging or detection system. Photoacoustic imaging is a rapidly developing field in recent
years; however, photoacoustic waveform design has not been extensively investigated. This paper
considers the problem of photoacoustic waveform design for parameter estimation under constraints
on input energy. The use of information theory is exploited to formulate and solve this optimal
waveform design problem. The approach yields the optimal waveform power spectral density. Direct
inverse Fourier transform of the optimal waveform frequency spectrum amplitude is proposed
to obtain a real waveform in the time domain. Absorbers are assumed to be stochastic absorber
ensembles with uncertain duration and location parameters. Simulation results show the relationship
between absorber parameter distribution and the characteristics of optimal waveforms. Comparison
of optimal waveforms for estimation, optimal waveforms for detection (signal-to-noise ratio) and
other commonly used waveforms are also discussed. The symmetry properties of the forward and
inverse Fourier Transforms are used to analyze the time and frequency properties and provide a
heuristic view of how different goals affect the choice of waveform.

Keywords: waveform engineering; estimation waveform; information theory; photoacoustic imaging;
detection waveform

1. Introduction

A photoacoustic imaging (PAI) system designed for biomedical applications offers the
combined benefits of optical and acoustical imaging methods. The approach leverages the
sensitivity and contrast of optical absorption and minimal scattering in soft tissue of acoustic
propagation [1,2]. By using safe, non-ionizing illumination sources, the photoacoustic effect
is effectively utilized in biological tissues. Pulsed electromagnetic waves have been the
most commonly used excitation source for photoacoustics, as illustrated in the work of
Kruger and Wang [3–7]. Notably, in the past decade, continuous wave photoacoustics
has attracted attention as it uses less expensive and smaller laser sources [8]. Attempts
have been made to improve the photoacoustic system performance, such as improving
the signal-to-noise ratio (SNR) [8–10], contrast [11,12], and resolution [13,14], through
different methods such as averaging, using contrast agents, and optimizing the input
waveforms. Dynamic contrast-enhanced imaging is also drawing extensive attention in
photoacoustics in recent years as it provides an additional increase in imaging contrast [15].
Recently, information theory has also been applied in photoacoustic imaging to improve
resolution [16] and noise reduction [17].

Waveform design is one of the commonly used methods to improve the performance
of imaging or detection modalities. Waveform design involves creating specific signals to
optimize performance in applications, yet this topic has not received much attention in
photoacoustics. The primary goal of waveform design is to design waveforms that enhance
the system’s ability to achieve desired tasks under given constraints. In this context,
estimation and detection waveforms serve different purposes. Estimation waveforms are
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tailored to accurately measure and extract parameters of interest, such as the location
or size of a target. They are designed to improve parameter accuracy or precision. In
contrast, detection waveforms are optimized to identify the presence or absence of a target
or signal. Their design focuses on maximizing the probability of detection, ensuring reliable
target identification even in challenging environments. In the well-studied radar modality,
optimal waveform design has been developed for optimal detection and optimal parameter
estimation problems. In photoacoustics, the problem of designing a waveform for optimal
detection has been considered in our previous work [9]. An approach that uses simpler
waveforms (Prolate Spheroidal Wave Functions (PSWF) or their discrete relative, Discrete
Prolate Spheroidal Sequences (DPSS) was also proposed to achieve near optimal results by
exploiting their properties of compactness [10]. However, the problem of optimal waveform
design for photoacoustic absorber parameter estimation has yet to be explored.

Bell [18] proposed a method of finding optimal waveforms for estimation in radar
applications by leveraging an approach based on information theory. Information theory
has mostly been applied to communication technologies [19], specifically to radar since the
1950s [20] and still attracts research attention [21]. However, the applicability of information
theory to photoacoustic waveform design has not been addressed in the literature. To
date, any attempts at photoacoustic waveform design have been based on deterministic
absorber profiles. In this paper, we address the problem of optimal waveform design
for photoacoustic absorber parameter estimation. An information theoretic approach is
proposed to obtain optimal waveforms for parameter estimation under the assumption of
stochastic absorber profiles.

This paper assumes a stochastic absorber ensemble with independent location and
duration parameters which follow a Gaussian distribution. The goal of the optimiza-
tion algorithm is to find the optimal waveform for estimating the parameters of the
absorber ensemble with limitations on system bandwidth and input waveform energy.
Section 2 formulates the waveform design problem, starting with the photoacoustic wave
equation and separating the heating function into absorber absorption profile and laser
energy deposition density. Then, information theory is used to obtain the optimal wave-
form for absorber parameter estimation. Section 3 provides simulations of the proposed
approach using numerical methods in MATLAB and discusses the observations on the
resulting properties of the optimal waveforms.

Results of this paper show that the optimization algorithm is suitable for photoa-
coustic imaging systems. The characteristics of the optimal waveforms corresponding to
different absorber parameter distributions are discussed. Furthermore, in traditional radar
waveform design [18,21], the optimization algorithm only provides the optimal waveform
spectrum amplitude in the frequency domain. To obtain a transmittable real waveform
in the time domain, we use the direct inverse Fourier transform of the square root of the
obtained optimal waveform power spectrum. The time domain waveform obtained from
the frequency power spectrum yields in this manner is not unique [22]. However, our
proposed approach is a possible approach to finding a real, implementable waveform
from the optimal power spectrum. Once the optimal waveform is found by the method
in this paper, the numerical method of finding the photoacoustic pressure response and
calculating other metrics such as SNR can be found in [9,14]. The laser source that can
modulate the laser intensity to the desired optimal temporal profile can be the combination
of a fiber laser with an acousto-optic modulator [23].

2. Problem Formulation
2.1. Photoacoustic Imaging

The physics of a photoacoustic system are governed by the photoacoustic equation
given by [24] (

∇2 − 1
v2

s

∂2

∂t2

)
p
(→

r , t
)
= − β

CP

∂H
(→

r , t
)

∂t
(1)
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where p is the pressure response at position
→
r and time t, β is the thermal coefficient of

volume expansion, Cp is the heat capacity at constant pressure, and vs is the speed of sound.

H
(→

r , t
)

is the heating function (thermal energy converted per unit volume and per unit
time [25]), representing the spatial and temporal distribution of the absorbed optical energy.
It is assumed that H

(→
r , t

)
is a separable function of space and time [14], which implies

H
(→

r , t
)
= α

(→
r
)

ϕ(t) (2)

where α
(→

r
)

is the absorber absorption coefficient in
[
cm−1] describing the photoacoustic

absorber’s spatial absorption profile, and ϕ(t) is the energy deposition density describing
the temporal profile of the laser deposited at the skin (surface), so that

Ep =

∞∫
−∞

ϕ(t)dt (3)

is the physical energy deposition per unit area, in
[
J/cm2]. Note that ϕ(t) has physical

units of
[
J/
(
cm2 · µs

)]
. In signal processing, the energy of a signal is defined as

E =

∞∫
−∞

|ϕ(t)|2dt (4)

Considering a 1-D problem in the z direction and substituting H
(→

r , t
)
= α(z)ϕ(t)

in (1) Gives (
∂2

∂z2 − 1
v2

s

∂2

∂t2

)
p(z, t) = − β

CP
α(z)

∂ϕ(t)
∂t

(5)

Now applying the temporal Fourier transform gives

∂2

∂z2 p̃(z, ω) +
ω2

v2
s

p̃(z, ω) = − iωβ

CP
α(z)ϕ̃(ω) (6)

where the tilde ·̃ denotes a temporal Fourier domain and ω is the temporal frequency
variable. Then, using the wavenumber k = ω/vs, we have

d2

dz2 p̃(z, ω) + k2 p̃(z, ω) = − ikvsβ

CP
α(z)ϕ̃(ω) (7)

Taking the spatial Fourier transform of Equation (7), we have

−ωz
2 ˆ̃p(ωz, ω) + k2 ˆ̃p(ωz, ω) = − ikvs β

CP
α̂(ωz)ϕ̃(ω)

ˆ̃p(ωz, ω) = − ikvs β
CP

α̂(ωz)
(k2−ωz2)

ϕ̃(ω)
(8)

where the hat ·̂ denotes a spatial Fourier transform and ωz is the spatial frequency variable.
We make use of the Gruneisen parameter defined as [25]

Γ =
β

ρCVκ
(9)

where κ is the absorber isothermal compressibility described by

κ =
CP

ρv2
s CV

(10)
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where Cv is the heat capacity at constant volume. Note here that Cv and Cp are approxi-
mately the same for tissue [25]. Hence, it follows that

Γ =
β

ρCV
CP

ρv2
s CV

=
v2

s β

CP
(11)

Substituting Equation (11) into Equation (8) gives

ˆ̃p(ωz, ω) = − ikΓ
vs

α̂(ωz)

(k2 − ωz2)
ϕ̃(ω) (12)

Now, we define the absorber transfer function in the (spatial and temporal) Fourier
domain as

ˆ̃θ(ωz, k) =
ikΓ
vs

α̂(ωz)

(ωz2 − k2)
(13)

It then follows that
ˆ̃p(ωz, ω) = ˆ̃θ(ωz, k)ϕ̃(ω) (14)

Equation (14) clearly demonstrates the input/output relationship between the input

ϕ(t) energy deposition density, the absorber transfer function ˆ̃θ(ωz, k) and the output
pressure response ˆ̃p(ωz, ω).

Taking the inverse spatial Fourier transform of (13) gives

θ̃(z, k) =
1

2π

∞∫
−∞

ˆ̃θ(ωz, k)eiωzzdωz =
ikΓ
vs

1
2π

∞∫
−∞

α̂(ωz)

(ωz2 − k2)
eiωzzdωz (15)

Using the standing wave case in Theorem 5 of [26], and assuming α̂(ωz) has no poles
and remains bounded, we have

1
2π

∞∫
−∞

α̂(ωz)

(ωz2 − k2)
eiωzzdωz =


1

2ik
α̂(−k)e−ikz z > 0

1
2ik

α̂(k)eikz z < 0
(16)

Hence, Equation (15) becomes

θ̃(z, k) =
Γ

2vs

{
α̂(−k)e−ikz z > 0
α̂(k)eikz z < 0

(17)

The system impulse response in the time domain is found by taking the inverse
temporal Fourier transform of the transfer function

θ(z, t) =
1

2π

∞∫
−∞

θ̃(z, k)eiωtdω

=
Γ

4πvs


∞∫

−∞
α̂

(
− ω

vs

)
e
−iω

z
vs eiωtdω z > 0

∞∫
−∞

α̂

(
ω

vs

)
e

iω
z
vs eiωtdω z < 0

(18)

Solving Equation (18) gives the absorber impulse response as

θ(z, t) =
Γ
2

{
α(z − vst) z > 0
α(z + vst) z < 0

(19)



Symmetry 2024, 16, 1402 5 of 30

Equation (19) shows that the impulse response of the absorber has exactly the same
spatial shape of the inhomogeneity (absorber), although it is a function in time whereas
the shape of the absorber is a function of space. The speed of sound in the medium is the
converting factor that relates distances in space to durations in time. The expression for
photoacoustic imaging in input/output form is then given by

p(z, t) = θ(z, t) ∗ ϕ(t) (20)

where ∗ denotes convolution.

2.2. Optimal Estimation Waveform Design Problem

Viewing the photoacoustic imaging system in an input/output form, for detection at
some fixed location z, we have the block diagram shown in Figure 1.
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Figure 1. Block diagram of photoacoustic imaging (detection at a fixed location).

At a fixed detection location z, the pressure response signal p(t) is received at the
receiver filter R(t) in the presence of additive noise process n(t). The noise is assumed to
be stationary and ergodic, and to have power spectral density (PSD) Pnn( f ). Furthermore,
the noise is assumed to be statistically independent of both the energy deposition density
ϕ(t) and the absorber impulse response θ(t).

We now examine some properties of an absorber impulse response ensemble Θ(t) with
N absorbers and with probability measures assigned to each θi(t), i = 1..N. We assume the
back propagation case (z < 0) in Equation (17), and we assume monotone laser radiation as
in most PAI systems [14,27,28], where the laser reacts with a single type of absorber such as
hemoglobin. We also assume that the absorber ensemble can be modeled as a collection of
randomly distributed absorbers [29]. It then follows that.

θ̃i(zi, k) =
Γ

2vs
α̂i(k)eikzi (21)

where zi (a negative number) denotes the distance between the transducer and the ith absorber.
In the time domain, then

θi(zi, t) =
Γ
2

αi(zi + vst) (22)

From Equation (20) and using the notation ω = 2π f , we have

| p̃( f )|2 =
∣∣∣θ̃( f )

∣∣∣2∣∣ϕ̃( f )
∣∣2 (23)

Taking the expectation with respect to the ensemble Θ̃( f ), the mean-square spectrum
of p(t) is

E| p̃( f )|2 = E
{∣∣∣Θ̃( f )

∣∣∣2}∣∣ϕ̃( f )
∣∣2 (24)

Now, the expectation with respect to the ensemble can be written as [18]

E
∣∣∣Θ̃( f )

∣∣∣2 = |µθ( f )|2 + σ2
θ ( f ) (25)
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where µθ( f ) is the mean of Θ̃( f ),

µθ( f ) = E
{

Θ̃( f )
}

(26)

and σ2
θ ( f ) is the variance of Θ̃( f ),

σ2
θ ( f ) = E

{∣∣∣θ̃( f )− µθ( f )
∣∣∣2} (27)

We are interested primarily in σ2
θ ( f ) for the absorber ensemble, as the pressure signal

p(t) corresponding to the mean µθ( f ) is known for a known ϕ̃( f ). It thus provides no
information about the absorber. Similarly, we have

E| p̃( f )|2 =
∣∣µp( f )

∣∣2 + σ2
p( f ) (28)

where µp( f ) is the mean of p̃( f ), and σ2
p( f ) is the variance of p̃( f ).

Now considering the photoacoustic measurement system shown in Figure 1, we have a
random absorber θ(t) that consists of parameters that characterize the absorber we wish to
measure, and a probabilistic model of the unknown parameters that is meaningful (modeled
by the probability distribution of absorber ensemble Θ(t)). The measurement system maps
θ(t) into the random vector y(t). The observer observes y(t) and then determines the
desired description of θ(t). The measurement mechanism is assumed to have inherent
inaccuracies, so its measurements contain errors. This can be modeled by assuming that the
measurement mechanism stochastically maps the random vector θ(t) to the random vector
y(t). We will denote the mutual information between θ(t) and y(t) to I(θ(t); y(t)). The
mutual information I(θ(t); y(t)) tells us the quantity of information that the observation of
y(t) provides about θ(t). In other words, I(θ(t); y(t)) is the amount of information that the
measurement y(t) provides about the absorber parameter vector θ(t).

Hence, the problem of interest can now be stated as follows. Given a random absorber
ensemble Θ(t) having spectral variance σ2

θ ( f ), find the waveforms ϕ(t) that maximize the
mutual information MI(Θ(t); y(t)|ϕ(t)) between the absorber ensemble impulse response
and the received waveform, y(t). The spectral variance σ2

θ ( f ) is the variance of the ab-
sorbers’ transfer functions θ̃( f ) at all frequencies, calculated via Equation (27). The mutual
information is a function of the deterministic input waveform ϕ(t), and we are interested in
finding the functions ϕ(t) that maximize MI(Θ(t); y(t)|ϕ(t)) under constraints on energy
and bandwidth of the input waveform ϕ(t).

Consider an ideal bandpass receiver filter with bandwidth [−W, W] (W can also denote
PAI system frequency limitations), and an observation time interval TO. The observation
time interval TO must be long enough to capture all but a negligible portion of the pressure
response p(t), i.e., TO must be larger than the sum of the characteristic duration of the input
waveform 2T and the absorber characteristic duration Ta (size of the absorber converted
into a duration via the speed of sound). Here, we are assuming that the input waveform is
nonzero only between [−T, T], and hence has duration 2T. It should be noted that in radar
applications the target impulse response duration is much shorter than the input waveform
duration, hence TO is usually assumed to be equal to the duration of the input waveform
(2T) [18].

The problem can now be stated as follows. Given a target ensemble Θ̃( f ) of N
absorbers with random impulse responses θ̃i( f ), i = 1..N, find the [−T, T] time limited
and [−W, W] band concentrated optical energy deposition density waveforms ϕ(t) with
limited energy that maximize the mutual information between the output waveform
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and the absorber ensemble impulse response MI(Θ(t); y(t)|ϕ(t)). From [18], the mutual
information is given by

MI(Θ(t); y(t)|ϕ(t)) = TO

W∫
−W

ln

[
1 +

2|ϕ( f )|2σ2
Θ( f )

Pnn( f )TO

]
d f (29)

To address this problem, we start by defining

M( f ) =
Pnn( f )TO

2σ2
θ ( f )

(30)

and the total energy of the optical energy deposition density given by

W∫
−W

∣∣ϕ̃( f )
∣∣2d f = E (31)

Then the
∣∣ϕ̃( f )

∣∣2 that maximizes MI(Θ(t); y(t)|ϕ(t)) under the energy constraint is
given by ∣∣ϕ̃( f )

∣∣2 = max[0, A − M( f )] (32)

where the constant A is determined by solving the following equation

E =

W∫
−W

max[0, A − M( f )]d f (33)

Substituting the expression ∣∣ϕ̃( f )
∣∣2 = A − M( f ) (34)

into the energy constraint (27), we have

A =
E

2W
+

1
2W

W∫
−W

Pnn( f )TO

2σ2
θ ( f )

d f (35)

However, the direct use of (35) would result in an invalid
∣∣ϕ̃( f )

∣∣2 with negative values.
Hence, we must first solve for values of A that satisfy (33) numerically. An easy way
of solving

∣∣ϕ̃( f )
∣∣2 can be by first using A = min[M( f )] and then finding the energy E

using (33). If E is not the same (allowable numerical error should be accepted) as the energy
constraint, then increase A by a small step and calculate E again. This process is repeated
until E is the same as the constraint, within acceptable numerical error.

In this manner, the optimal waveform power spectrum in the frequency domain∣∣ϕ̃( f )
∣∣2 is found. This approach yields the optimal waveform power spectrum, for which

there are multiple possible corresponding waveforms in the time domain. That is, there
is no unique solution to obtain the optimal waveform ϕ(t) in the time domain given only
the power spectrum

∣∣ϕ̃( f )
∣∣2 [22]. There are many methods on recovering a signal in the

time domain from its magnitude spectrum in the frequency [22,30–32]. However, all these
approaches need some additional assumption on either phase information or some portion
of the original signal in the time domain. The optimal waveform in time does not need
to be unique, i.e., any waveform that gives the corresponding power spectrum

∣∣ϕ̃( f )
∣∣2

will be optimal. Hence, in this paper we use the direct inverse Fourier transform of the
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square root of
∣∣ϕ̃( f )

∣∣2 to obtain one (of many possible) applicable optimal waveform in the
time domain.

2.3. Noise Levels and Safety Standards in Photoacoustic

The noise level Na( f ), in units of [J·s] in a photoacoustic system mainly comes from
thermal acoustic noise [33], which can be described via

Na( f ) = η( f )kBTemp (36)

where η( f ) is the detector efficiency at frequency f , kB is the Boltzmann constant, and Temp
is the absolute temperature of the medium. The typical noise level for a photoacoustic
system is approximately 40[µV], which is 6.7[Pa] = 6.7

[
J/m3

]
= 6.7 × 10−6

[
J/cm3

]
[34].

Here, it is assumed that the noise is white in frequency and has its total energy concentrated
in the frequency range [−W, W], hence the noise spectrum is Pnn( f ) = En

2W where En is the

noise level in units of
[
J/cm3

]
.

The safety standard [35] sets the maximum exposure (MPE) level for 1064 nm laser
with duration T on human skin as

EMPE = 5.5T0.25
[
J/cm2

]
(37)

2.4. Absorber Ensemble Modelling

Absorbers in this paper are considered to be thin layer (1D) absorbers with thickness l,
located at a distance d from the receiver. We assume that there is no decay of the laser
inside the absorber. The absorber can be modeled as

θ(t) =
Γ
2

{
1, d

vs
≤ t ≤ d+l

vs

0, Otherwise
(38)

Defining

t0 =
d
vs

(39)

as the location of absorber, and

Ta =
l

vs
(40)

as the duration (size) of the absorber, then it follows that

θ(t) =
Γ
2

{
1, t0 ≤ t ≤ t0 + Ta

0, Otherwise
(41)

Typical values of the Gruneisen parameter Γ for blood are 0.152~0.226 [36]. More
detailed information for blood and other types of absorbers such as fat, lipid, and Serum
can be found in [37]. We refer to this absorber as the ‘square absorber’ since the temporal
profile from Equation (41) resembles that of a square wave. The simulations in this paper
use Γ = 0.2, with varying location and duration of absorbers to form the absorber ensemble.

3. Simulations

This section shows some examples of finding optimal waveforms for the laser energy
deposition density and gives guidelines for how to choose the laser waveform for different
absorber ensemble profiles. Simulations are performed with Matlab R2019b. Random
parameters of the absorbers are generated through random number generator normrnd,
which requires the Statistics and Machine Learning Toolbox.



Symmetry 2024, 16, 1402 9 of 30

3.1. Example of Absorber Ensemble with Unknown Thickness

The first ensemble consists of an ensemble of absorbers of known location but un-
known size (thickness). We consider an absorber ensemble consisting of 100 square ab-
sorbers with the same known location t0 = z

vs
= 5[µs] (i.e., distance from receiver z in

Equation (19) is 7.5[mm] and speed of sound vs is 1500[m/s]). The durations (size) of the
absorbers Ta (absorber thickness divided by speed of sound) are unknown and follow a
Gaussian distribution with mean duration of µTa = 5[µs] (that is, the mean thickness is
7.5[mm] and the distribution of thicknesses follow a Gaussian distribution around that
mean) and standard deviation σ = 2[µs]. The distribution of duration and location parame-
ters is shown in Figure 2a.

Symmetry 2024, 16, x FOR PEER REVIEW 10 of 34 
 

 

 
Figure 2. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f) 
and A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform 
in frequency domain. 

Figure 2b shows the variance of the absorber ensemble ( )2 fθσ , which provides an 
intrinsic view of the frequency range where there is the most uncertainty (higher 
amplitude means higher uncertainty in that frequency). The spectral variance ( )2 fθσ  is 

the variance of all the absorbers’ transfer functions ( )fθ  at each frequency, calculated 

via Equation (27). Figure 2c shows ( ) ( )
( )22

nn OP f T
M f

fθσ
=  and the constant A  used in the 

optimization algorithm. Figure 2c illustrates the terminology of the “water-filling” 
method. The idea is to ‘waterfill’—that is for the optimal signal to put its energy where 
there is room in the allowable space between ( )M f   and A  . The input duration is a 
constraint of the problem, here this constraint is set to be smaller than the observation time 

[ ]20 μsOT =  and the energy limit is calculated from Equation (37). We suppose that the 
energy limit is given by E  (total amount of “water”), and that the ( )M f  (the “bottle” to 
be filled) is fixed with a given noise level, input duration and absorber ensemble profile. 
The constant A  (“water” level) is found when all the E  amount of “water” (energy) is 
poured into the ( )M f   “bottle”. Hence, the magnitude spectrum of the optimal 

waveform ( ) 2
fφ   is found by keeping ( )M f   under the constant A  . That is, the 

algorithm specifies that the optimal waveform is found by ‘waterfilling’ the allowable 
energy between ( )M f  and A  by putting the allowable energy in the frequencies that 
give the greatest increase in mutual information. Figure 2e is one possible optimal 
waveform ( )fφ   obtained by taking the square root of ( ) 2

fφ  . Note here that the 
optimal waveform is not unique, i.e., all waveforms that have a magnitude spectrum of 

( ) 2
fφ  are optimal. Figure 2d is the optimal waveform ( )tφ  in the time domain obtained 

by directly taking the inverse Fourier transform of the waveform ( )fφ   in (e). The 
legends in Figure 2b,d,e show the corresponding energy concentration region. For 

Figure 2. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f) and
A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform in
frequency domain.

Figure 2b shows the variance of the absorber ensemble σ2
θ ( f ), which provides an

intrinsic view of the frequency range where there is the most uncertainty (higher amplitude
means higher uncertainty in that frequency). The spectral variance σ2

θ ( f ) is the variance
of all the absorbers’ transfer functions θ̃( f ) at each frequency, calculated via Equation (27).
Figure 2c shows M( f ) = Pnn( f )TO

2σ2
θ ( f )

and the constant A used in the optimization algo-

rithm. Figure 2c illustrates the terminology of the “water-filling” method. The idea is
to ‘waterfill’—that is for the optimal signal to put its energy where there is room in the
allowable space between M( f ) and A. The input duration is a constraint of the problem,
here this constraint is set to be smaller than the observation time TO = 20[µs] and the
energy limit is calculated from Equation (37). We suppose that the energy limit is given
by E (total amount of “water”), and that the M( f ) (the “bottle” to be filled) is fixed with a
given noise level, input duration and absorber ensemble profile. The constant A (“water”
level) is found when all the E amount of “water” (energy) is poured into the M( f ) “bottle”.
Hence, the magnitude spectrum of the optimal waveform

∣∣ϕ̃( f )
∣∣2 is found by keeping

M( f ) under the constant A. That is, the algorithm specifies that the optimal waveform
is found by ‘waterfilling’ the allowable energy between M( f ) and A by putting the al-
lowable energy in the frequencies that give the greatest increase in mutual information.
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Figure 2e is one possible optimal waveform ϕ̃( f ) obtained by taking the square root of∣∣ϕ̃( f )
∣∣2. Note here that the optimal waveform is not unique, i.e., all waveforms that have a

magnitude spectrum of
∣∣ϕ̃( f )

∣∣2 are optimal. Figure 2d is the optimal waveform ϕ(t) in the
time domain obtained by directly taking the inverse Fourier transform of the waveform
ϕ̃( f ) in (e). The legends in Figure 2b,d,e show the corresponding energy concentration
region. For example, in Figure 2d, 98% energy of the waveform ϕ(t) is concentrated in
the time range [−0.23µs, 0.23µs] which meets the duration constraint that the observation
time TO = 20[µs] must be greater than 2T + Ta. The absorber ensemble in this example
ensemble has a mean duration of Ta = 5[µs], so with this mean duration 2T + Ta = 5.46[µs].
The absorber that has the longest duration in the ensemble has the duration Ta = 11.33[µs],
so in that case, 2T + Ta = 11.56[µs].

3.2. Trends in Uncertainty in Absorber Duration/Thickness

Consider an absorber ensemble with a small uncertainty in both duration and location,
as shown in Figure 3a. All other parameters for absorber, input and noise are kept the same
as the previous example in Section 3.1. However, the duration uncertainty is reduced in
order to study the effect of uncertainty in duration. As can be seen in Figure 3b, compared
with the previous example the variance of the absorber ensemble expands into a wider
frequency range and the smaller uncertainty results in a smaller amplitude of σ2

θ ( f ). Hence,
the optimal waveform in Figure 3e tends to be more spread out in frequency compared
to Figure 2e.
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Figure 3. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f) and
A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform in
frequency domain.

To better illustrate this trend, Figure 4b plots the optimal waveform bandwidth change
for various absorber duration standard deviations σTa . In the small standard deviation for
duration (σTa ) range, the optimal waveform narrows in frequency with higher uncertainty
(amplitude) in absorber duration. This follows because the absorber ensemble variance
σ2

θ ( f ) narrows in frequency (but increases in amplitude) when the uncertainty on duration
increases which can be seen from Figure 4a.
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The energy concentration of the variance of the absorber ensemble approaches zero
(that is, very narrowly concentrated in frequency, although high in amplitude) when σTa

is large enough and hence the optimal waveform concentration reaches a near constant
value. This can be explained clearly by looking at the plots in Figures 5 and 6, which
show frequency domain plots of two ensembles’ variances and real/imaginary parts
of the absorbers in those ensembles. The ensemble in Figure 5 has less uncertainty in
absorber duration (smaller σTa which results in a lower (but wider range) amplitude of
σ2

θ ( f ) in Figure 5a compared with the ensemble in Figure 6 which has higher amplitude
of σ2

θ ( f ). Other parameters are the same (certain location t0 = 5[µs], mean duration
µTa = 5[µs]).

The square absorbers are sinc functions in frequency, with amplitudes and zero cross-
ings specified by their duration Ta in time, and oscillations in frequency related with their
shift in time (location t0). As can be seen in Figure 5b–d the absorbers with less duration
uncertainty almost have almost the same frequency spectrum, because t0 are the same and
have small uncertainty in Ta—that is, there is very little variation between absorbers, they
are all mostly the same and in the same location. Hence, the overall magnitude of the
variance between the absorbers is small (the variance plot in Figure 5a is in 10−5 order of
magnitude). However, a small difference between absorbers in the high frequency region
has higher significance compared to the small overall variance magnitude and hence results
in a wider variance σ2

θ ( f )—that is, a wider variance in frequency with a lower peak value.
Now consider the ensemble in Figure 6 which has higher uncertainty in absorber duration.
The higher uncertainty manifests itself as different peak amplitude of the absorbers in plots
(b), (c) and (d), giving a higher maximum amplitude of variance σ2

θ ( f ), now on the order of
10−2. The variance order of magnitude trend can also be seen from Figure 4c. The differ-
ences in the high frequencies of the absorber plots becomes comparatively insignificant and
thus results in a concentrated variance σ2

θ ( f ) (high max amplitude, narrower spread) in
frequency. However, when the uncertainty on duration is big enough, the concentration of
variance σ2

θ ( f ) approaches zero and cannot be concentrated (narrowed) any further, even
though the magnitude of σ2

θ ( f ) can still increase with increasing uncertainty on absorber
duration as shown in Figure 4c. That is, the behavior of σ2

θ ( f ) approaches that of a delta
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function and leads to an optimal waveform that must be concentrated in frequency as much
as possible.
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Figure 5. (a) Ensemble variance σ2
θ ( f ) of 100 absorbers with same location t0 = 5[µs] and uncertain

duration with mean µTa = 5[µs] and standard deviation σTa = 0.0621[µs]; (b) Real part of 5 absorbers
in the ensemble; (c) Imaginary part of 5 absorbers in the ensemble; (d) Absolute value of 5 absorbers
in the ensemble. Different colors in (b,c,d) represent different absorbers in the ensemble.
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Figure 6. (a) Ensemble variance σ2
θ ( f ) of 100 absorbers with same location t0 = 5[µs] and uncertain

duration with mean µTa = 5[µs] and standard deviation σTa = 1[µs]; (b) Real part of 5 absorbers in
the ensemble; (c) Imaginary part of 5 absorbers in the ensemble; (d) Absolute value of 5 absorbers in
the ensemble. Different colors in (b–d) represent different absorbers in the ensemble.
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It needs to be noted that the optimal waveform energy concentration frequency range
is not the same as the ensemble variance energy concentration frequency range. The
concentration of the optimal waveform energy is related to the ensemble variance σ2

θ ( f ),
the noise level Pnn( f ), available bandwidth W, observation time TO, and the energy limit
E, since the optimal waveform is obtained through

|ϕ( f )|2 = max

[
0, A − Pnn( f )TO

2σ2
θ ( f )

]
(42)

Figure 7 demonstrates the effect of the noise floor. Figure 7a–d plot the same ensemble
variance with different noise floor Pnn( f ). The noise floor in Figure 7a is the same as the
values used in previous simulations shown in this section. Figure 7b–d increase the noise
floor Pnn( f ) by 100, 1000, and 10,000 times. The extreme values of Pnn( f ) are not realistic
for photoacoustic imaging but are simulated to understand the effect of the noise floor.
Figure 7e–h show the optimal waveform corresponding to the Pnn( f ) in (a) to (d). In
Figure 7a–d, the bound where variance σ2

θ ( f ) is greater than Pnn( f ) is shown by red circles,
and the corresponding frequency range is printed on the legend. The bounds are shown for
illustration only, since the units of Pnn( f ) and σ2

θ ( f ) are not the same, hence comparing the

actual values between them is meaningless. In Equation (42), the Pnn( f )
σ2

θ ( f )
in the optimization

algorithm acts like a (negative) weighting function in frequency, which implies that the
optimal waveform allocates its energy where σ2

θ ( f ) dominates (i.e., is large). At some
frequencies, noise dominates or “buries” the variance (as shown in Figure 7 where the
noise floor is high comparing to the variance of absorbers). In such cases, allocating energy
to frequencies where noise dominates will only result in a small gain in information. As
shown in Figure 7, as the noise floor increases, the frequency range where variance σ2

θ ( f ) is
above the noise floor becomes narrower, hence, the optimal waveform tends to be narrower.
Furthermore, when the energy of the waveform is limited, the optimal waveform fills its
energy in the frequency region near the peak of σ2

θ ( f ) even if the noise floor is low, as
shown in Figure 7a,e. The mutual information MI for all cases are calculated and shown in
the legend in Figure 7 e–h. The value of the mutual information decreases with increasing

noise level since the mutual information is proportional to σ2
θ ( f )

Pnn( f ) as shown in Equation (29).

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 34 
 

 

only result in a small gain in information. As shown in Figure 7, as the noise floor 
increases, the frequency range where variance ( )2 fθσ  is above the noise floor becomes 
narrower, hence, the optimal waveform tends to be narrower. Furthermore, when the 
energy of the waveform is limited, the optimal waveform fills its energy in the frequency 
region near the peak of ( )2 fθσ  even if the noise floor is low, as shown in Figure 7a,e. The 
mutual information MI  for all cases are calculated and shown in the legend in Figure 7 
e–h. The value of the mutual information decreases with increasing noise level since the 

mutual information is proportional to ( )
( )

2

nn

f
P f

θσ
 as shown in Equation (29). 

 
Figure 7. (a–d) Absorber ensemble variance and noise power spectrum; (e–h) Optimal waveform 
with corresponding noise floor. 

Another way of looking at the problem of how noise and energy constraint affect the 
shape of the optimal waveform is to keep the noise constant and increase the energy 
constraint of the input waveform. To simulate this, twenty optimal waveforms 
corresponding to different energy constraints are found for an absorber ensemble with the 
same noise floor. The ensemble distribution and variance are shown in Figure 8a,b to 
provide a view of how the absorbers are distributed. The absorber ensemble shown in 
Figure 8a has known location [ ]0 5 μst =   and unknown durations/thicknesses with the 

distribution [ ]5 μs
aT

μ =   and [ ]1 μs
aT

σ =  . Noise spectrum is 

( ) 4 23.35 10 J/(cm MHz)nnP f −  = × ⋅  . 

Figure 7. (a–d) Absorber ensemble variance and noise power spectrum; (e–h) Optimal waveform
with corresponding noise floor.



Symmetry 2024, 16, 1402 14 of 30

Another way of looking at the problem of how noise and energy constraint affect the
shape of the optimal waveform is to keep the noise constant and increase the energy con-
straint of the input waveform. To simulate this, twenty optimal waveforms corresponding
to different energy constraints are found for an absorber ensemble with the same noise
floor. The ensemble distribution and variance are shown in Figure 8a,b to provide a view of
how the absorbers are distributed. The absorber ensemble shown in Figure 8a has known
location t0 = 5[µs] and unknown durations/thicknesses with the distribution µTa = 5[µs]

and σTa = 1[µs]. Noise spectrum is Pnn( f ) = 3.35 × 10−4
[
J/(cm 2 · MHz)

]
.
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Figure 8. (a) Absorber ensemble parameter distribution; (b) Variance of absorber ensemble and
illustrative noise floor.

Figure 9 shows nine of those optimal waveforms and the corresponding bandwidth
and mutual information are shown in the legend. The optimal waveforms durations
(constraint) are T = 10[µs]. Energy limit on the input waveform varies from 0.0309

[
J/cm2

]
(0.1 of the energy limit given by the safety standard) to 3.0929 × 103

[
J/cm2

]
(10,000 times

of the energy limit given by the safety standard).
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]
.
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From Figure 9, the optimal waveform tends to spread in frequency when the energy

limit increases, i.e., more energy is devoted to the frequencies where σ2
θ ( f )

Pnn( f ) is relatively small

compared to the frequencies where ensemble variance σ2
θ ( f ) peaks. To better illustrate this

result, Figure 10a shows the relationship of the twenty optimal waveforms’ bandwidth and
the energy constraint. Figure 10b shows the relationship between the mutual information
obtained by the twenty optimal waveforms and their energy limit.
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From Figure 10a, the bandwidth of the optimal waveforms increases with increasing
energy limit. The resultant mutual information, shown in Figure 10b, shows almost the same
pattern. Moreover, even when the energy constraint changes drastically in Figure 10a, the
optimal waveform concentrates in a relatively small bandwidth (several MHz). This implies
that devoting energy to the frequencies where noise outweighs the variance of absorbers can
only give minor mutual information; a better strategy to increase mutual information is to
devote energy to the frequencies where variance is not outweighed by the noise.

3.3. Trends in Absorber Mean Duration (Size)

This section explores how the mean duration of the absorber ensemble affects the vari-
ance of the absorber ensemble and in turn affects the optimal waveform. Figure 11 shows
the result of an ensemble of 100 absorbers. The distribution parameters of the ensemble are
shown in Figure 11a which indicates a mild uncertainty in absorber duration and a large
mean duration (µTa = 10[µs]). Another ensemble of 100 absorbers with the same uncer-
tainty in duration but a small mean duration (µTa = 0.1[µs]) is analyzed in Figure 12. Other
parameters used for Figures 11 and 12 are the same and listed here: observation duration
is TO = 10[µs] and energy limit is calculated from the safety limit in Equation (37); noise
level is low comparing to the variance but realistic for photoacoustic imaging applications
Pnn( f ) = 3.35 × 10−7[J/(cm2 · MHz

)]
.

As shown in Figures 11 and 12, the peak value of variance σ2
θ ( f ) increases with

increasing mean duration, however, the variance concentration in frequency does not
change significantly. To better see the trend, Figure 13 plots the absorber variance energy
concentration, optimal waveform energy concentration, absorber variance peak value
and mutual information against different absorber ensemble mean durations. Twenty
ensembles are used in each subplot.
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Figure 11. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f)
and A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform
in frequency domain.
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Figure 12. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f)
and A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform
in frequency domain.

As shown in Figure 13a, the absorber variance bandwidth does not change significantly
with increasing absorber mean duration. From Figure 13c, the increase in variance peak
value occurs at the small mean duration range and then remains almost constant with
increasing mean duration. Compared with Figure 4c, which plots the peak values of
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variance for a different ensemble with different uncertainties in duration, the change
in Figure 13c is small. This is because the variance σ2

θ ( f ) reveals the uncertainty in the
absorbers. Furthermore Figure 13 demonstrates that the change in absorber variance
is insignificant with increasing mean duration. Hence, the optimal waveform and the
resulting mutual information do not have any significant change as shown by the almost
flat lines in subplots (b) and (d).
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To better illustrate the trend shown in Figures 13c, 14a and 15a show two absorber
ensembles’ variances σ2

θ ( f ) with different mean durations but the same uncertainty. Sub-
plots (b), (c) and (d) in Figures 14 and 15 show real, imaginary, and absolute values of five
absorber transfer functions in the ensembles. Although the absorber transfer functions
could change significantly with changes in mean duration (as shown in the absorber plots
(b), (c) and (d) in Figure 14 for small mean duration and (b), (c) and (d) in Figure 15 for large
mean duration), the uncertainty can still be similar (peak values from Figures 14a and 15a
are similar).

3.4. Trends in Uncertainty in Absorber Location

This section considers different absorber ensembles consisting of 100 square absorbers
with the same known duration Ta = 5 [µs] (absorber thickness is 7.5 [mm]). The locations
of absorbers, expressed via t0, are unknown and follow a Gaussian distribution with mean
location µt0 = 7.5 [µs] (mean distance to receiver is 11.2 [mm]), with different standard
deviations for different ensembles. Figure 16a shows the absorber ensemble distribution
with location standard deviation σt0 = 0.06 which is considered a small uncertainty.

Figure 16b shows the absorber ensemble variance in the frequency domain. Figure 16c
shows the M( f ) and constant A found from the “water-filling” approach. Figure 16e is the
corresponding optimal waveform in the frequency domain and Figure 16d is the optimal
waveform in the time domain obtained through direct inverse Fourier transform of (e).
As shown in Figure 16d,e, the optimal waveform can be viewed as a series of pulses in
time, with spacing equal to the absorber duration Ta. Note here that the observation time
TO must capture all but negligible energy of the optimal waveform and additionally the
absorber characteristic duration, i.e., 2T + Ta ≤ TO. The observation time used in Figure 16
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is TO = 30[µs], which is greater than the effective duration of the input waveform. The
effective duration is calculated as the duration that contains 98% of the input energy. This
‘effective duration’ is adopted to account for waveforms that are theoretically never zero
(for example, a sinc or a Gaussian never reach zero) but effectively have a finite duration.
As shown in the legend in Figure 16d, the effective duration of the entire pulse train is
approximately 15 micro seconds and 7 pulses are inside this effective duration. Figure 17
plots 4 of the pulses of separately (the pulse at the origin and 3 smaller pulses at the
positive time axis because the entire pulse train is even). The effective duration (T98%) of
each individual pulses and their amplitude (Amp) at their own center are shown in the
legends. As shown in the detailed plots, it is obvious that the pulses are spaced by the
Ta = 5[µs]. The effective duration of each pulse T < 1[µs] is much less than the input
duration constraint of 10[µs] and obeys 2T + Ta ≤ TO. Figure 17 also shows the trend that
the peaks become wider (larger effective duration) and smaller (absolute amplitude) as
they get away from the origin.
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Figure 14. (a) Ensemble variance of 100 absorbers with same location t0 = 15[µs] and uncertain
duration with mean µTa = 0.1[µs] and standard deviation σTa = 1; (b) Real part of 5 absorbers in the
ensemble; (c) Imaginary part of 5 absorbers in the ensemble; (d) Absolute value of 5 absorbers in the
ensemble. Different colors in (b,c,d) represent different absorbers in the ensemble.

We now consider a similar case where the uncertainty is absorber location is much
larger. Figure 18 shows the simulation results of another absorber ensemble like the one
shown in Figure 16. The difference is that now σt0 = 1, which indicates larger uncertainty
in location compared to the case simulated in Figure 16. A similar trend is found in
Figure 18. The optimal waveform is a series of pulses with the spacing equal to the absorber
duration Ta and the detailed plots of individual pulses are shown in Figure 19. The effective
durations of each pulses satisfy 2T + Ta ≤ TO = 30[µs]. The trend of the pulses shows that
the pulses become wider (larger effective duration) and smaller (absolute amplitude) as
they get away from the origin.
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Figure 15. (a) Ensemble variance of 100 absorbers with same location t0 = 15[µs] and uncertain
duration with mean µTa = 10[µs] and standard deviation σTa = 1; (b) Real part of 5 absorbers in the
ensemble; (c) Imaginary part of 5 absorbers in the ensemble; (d) Absolute value of 5 absorbers in the
ensemble. Different colors in (b,c,d) represent different absorbers in the ensemble.
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and A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform
in frequency domain.
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Figure 17. Separate plots of peaks of the time domain optimal waveform in Figure 16d. (a) Peak at
origin; (b) Peak at 5 microsecond; (c) Peak at 10 micro second; (d) Peak at 15 micro second.
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Figure 18. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f)
and A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform
in frequency domain.

From Figures 16–18, the absorber variance bandwidth decreases and amplitude in-
creases with increasing uncertainty in location. Hence, the optimal waveform tends to be
more compact in frequency (smaller range of frequencies).

The absorber variance is not the only component that affects the optimal waveform.
These trends can be seen clearly in Figure 20 which calculates the characteristics of absorber
variance and optimal waveform for twenty different ensembles with different uncertainties
in location. The parameters used are the same as those used in Figure 16 except for the
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location standard deviation σt0 , which indicates the uncertainty of location. As shown in
Figure 20, in the small duration standard deviation σTa range (small uncertainty on absorber
duration), the optimal waveform narrows in frequency when there is higher uncertainty on
absorber location. This follows because the absorber ensemble variance σ2

θ ( f ) narrows in
frequency when the uncertainty on location increases, Figure 20a. The (energy concentrated)
bandwidth of the absorber ensemble variance σ2

θ ( f ) tends to decrease/narrow to near zero
when uncertainty in the absorber location is large enough, while the maximum amplitude
increases. The reader is reminded that large uncertainty results in higher amplitude of
ensemble variance σ2

θ ( f ) as shown in Figure 20c. This result for uncertainty in location
is the same as the result for uncertainty in duration. As a reminder from Figure 4a,c,
when the uncertainty in absorber duration increases, the bandwidth of absorber ensemble
variance σ2

θ ( f ) tends to narrow to near zero and the amplitude increases. The observations
in Figure 18 can be further explained by Figures 21 and 22.
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Figure 19. Separate plots of peaks of the time domain optimal waveform in Figure 18d. (a) Peak at
origin; (b) Peak at 5 microsecond; (c) Peak at 10 micro second; (d) Peak at 15 micro second.
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Figure 21. (a) Ensemble variance of 100 absorbers with same duration Ta = 5[µs] and uncertain
location with mean µt0 = 7.5[µs] and standard deviation σt0 = 0.06; (b) Real part of 5 absorbers in
the ensemble; (c) Imaginary part of 5 absorbers in the ensemble; (d) Absolute value of 5 absorbers in
the ensemble. Different colors in (b–d) represent different absorbers in the ensemble.
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Figure 22. (a) Ensemble variance of 100 absorbers with same duration Ta = 5[µs] and uncertain
location with mean µt0 = 7.5[µs] and standard deviation σt0 = 1; (b) Real part of 5 absorbers in the
ensemble; (c) Imaginary part of 5 absorbers in the ensemble; (d) Absolute value of 5 absorbers in the
ensemble; (e) Zoomed plot of ensemble variance in (a). Different colors in (b–d) represent different
absorbers in the ensemble.

Figures 21 and 22 show frequency domain plots of two ensembles’ variances and
real/imaginary parts of the absorbers in those ensembles. The ensemble in Figure 21 has
less uncertainty in absorber location (smaller standard deviation σt0 of location which
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results in a lower amplitude of ensemble variance σ2
θ ( f ) in Figure 21a) than the ensemble

in Figure 22 which has higher amplitude of σ2
θ ( f ). Other parameters are the same (known

duration Ta = 5[µs], mean location µt0 = 7.5[µs]) Note that square absorbers in time are
sinc functions in frequency. The amplitudes and zero crossings of the sinc in frequency
are specified by the duration of the absorbers Ta in time, whereas oscillations and phase in
frequency are controlled by their shift in time (here, the shifts in time correspond to changes
in location t0). As can be seen in Figure 21b–d absorbers with less uncertainty have almost
the same frequency spectrum, especially in the frequency range near the origin. Hence, the
variance between the absorbers transfer functions is small (the variance plot in Figure 21a is
in 10−4 order of magnitude). However, a small difference in the high frequency region (due
to slight difference in location t0 and the resulting difference in phase information shown by
the real and imaginary plots) has high significance compared to the small overall variance
and hence results in a wide spread of variance σ2

θ ( f ). Consider the case in Figure 22, which
has higher uncertainty in the absorber location than Figure 21. The higher uncertainty (dif-
ferent sidelobe amplitude of the absorbers in plot (b), (c)) gives variance σ2

θ ( f ) with higher
magnitude, on the order of 10−2. The differences in the high frequencies of the absorber
spectrum become insignificant, which lead to a concentrated variance σ2

θ ( f ) in frequency.
The results in Figures 21 and 22 explain the observations made from Figure 20, which
indicated that higher uncertainty in location leads to concentrated (narrower) variance
σ2

θ ( f ) in frequency and hence a compact optimal waveform in frequency.
However, unlike the uncertainty in duration shown in Figure 4 and its explanation in

Figures 5 and 6, in which we showed the ensemble variance σ2
θ ( f ) comes from the difference

in amplitude of absorber transfer functions, the uncertainty in location implies uncertainty
in phase information of the absorber ensemble which manifests itself as oscillations in
the sidelobes of the real and imaginary components of the absorber plots. These in turn
contribute to the ensemble variance σ2

θ ( f ). This can also be seen in Figure 22e which
shows the ensemble variance zoomed in [−2MHz, 2MHz]. The variance peaks at the
sidelobes of the absorbers. Hence, even though the magnitude plots of absorbers are the
same for different absorbers in the ensemble (shown by Figure 22c), the variance of the
absorbers can still be large, indicating large uncertainty. When the uncertainty on location
is large enough, the concentration (frequency spread) of variance σ2

θ ( f ) approaches zero
and cannot be concentrated any further. However, the magnitude of σ2

θ ( f ) can still increase
with increasing uncertainty on absorber duration, as shown in Figure 20c.

3.5. Trends in Absorber Mean Location

This section demonstrates the effect of the mean location of absorbers µt0 on absorber
variance and hence the effect on optimal waveform. Similar to the trend for absorber mean
duration, the change in mean location plays a minor role in the absorber variance because
it does not change the uncertainty about the absorbers.

Figures 23 and 24 show simulation results for absorber ensembles with the same
known duration Ta = 2[µs] and uncertain location, with different mean locations but the
same uncertainty σt0 = 1. Other parameters (parameter for optimal waveform constraints
and noise) are the same, and TO = 10[µs].

In Figures 23 and 24, the optimal waveforms are series of pulses with the spacing
equal to the absorber duration Ta due to the uncertainty in location. From Figure 23
to Figure 24, the absorber variance shown in subplots (b) do not reveal visible changes
compared to the significant change in mean location (from 3 to 15 microseconds). Hence,
the optimal waveforms in Figures 23 and 24 are nearly the same. These trends can be seen
clearly in Figure 25 which calculates the characteristics of absorber variance and optimal
waveform for twenty different ensembles with same location uncertainties but different
mean locations.

As can be seen from Figure 25, as the mean location of the absorber location increases,
all metrics for absorber variance and optimal waveforms shown in subplots (a) to (d) are
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almost a flat line. This leads to the conclusion that the change in mean location plays a
minor role in the absorber variance because it does not change the uncertainty of absorbers.
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Figure 23. (a) Distribution of 100 absorber parameters; (b) Variance of absorber ensemble; (c) M(f)
and A used in optimization problem; (d) Optimal waveform in time domain; (e) Optimal waveform
in frequency domain.
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3.6. Realistic Case When Duration and Location Are Both Uncertain

This section considers a realistic case when both duration and location of absorbers are
uncertain. To gain insight, 400 absorber ensembles are generated. The absorber ensembles
have the same mean duration µTa = 5[µs] and mean location, µt0 = 7.5[µs]. The input
duration constraints are kept the same as previous simulations at T = 10[µs]. Observa-
tion durations also kept the same at TO = 20[µs]. The energy limit is kept constant and
calculated through Equation (37). Noise level is relatively low with the (realistic) value
Pnn( f ) = 3.35 × 10−7[J/(cm2 · MHz

)]
. The absorber ensembles have different uncertain-

ties; their parameters standard deviations are in the ranges σTa = 0.01..1 and σt0 = 0.01..1.
Figure 26 shows the simulation results of the absorber ensemble with the largest

uncertainty. As shown in Figure 26a, the absorber parameters are scattered in both location
and duration dimensions. From Figure 26d,e, the corresponding optimal waveform com-
bines the characteristics of the optimal waveforms for uncertain duration (Figure 2 which
shows a single pulse shape in time and no oscillations in frequency) and uncertain location
(Figure 18 which shows multiple pulses in time with spacing equal to the mean duration of
absorbers, and oscillations in frequency).

Energy concentration trends of the absorber variance and optimal waveform and
corresponding mutual information are shown in Figure 27.

As shown in Figure 27a, the bandwidth of absorber variance is large when uncertainty
(no matter in duration or location) of the absorbers is small (σTa and σt0 are close to zero).
Hence, the resulting optimal waveform also spreads its energy in a larger bandwidth as
shown in Figure 27b, where the (98% energy-concentrated) bandwidth W98% peaks. In
this small uncertainty region, the reason for the wide spread of the bandwidth of absorber
variance and bandwidth of optimal waveform was explained via simulations of absorber
transfer functions in previous sections. Simply put, when there is less uncertainty in the
absorber (duration or location), a small difference in the amplitude of sidelobes of absorber
transfer functions is significant compared to the amplitude difference in the main lobe (for
duration uncertainty) or first sidelobe (for location uncertainty). Hence, the bandwidths
of the absorber variance and corresponding optimal waveform spread in frequency. The
bandwidth of the absorber variance drops quickly to near zero when uncertainties of
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absorbers increase, which indicates the main difference between the absorbers in the
ensemble is at zero frequency (peak of the absorber transfer function). The peak value
of the variance of absorbers increases with increasing uncertainty (location or duration)
of absorber, as shown in Figure 27c. However, with limited input energy, the mutual
information also reaches a maximum value when uncertainty of absorber increases, as
shown in Figure 27d.
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3.7. Comparison with Optimal Waveforms for Detection and Other Commonly Used Waveforms

There are many different waveforms used in photoacoustics for different purposes,
such as chirps for enhancing resolution [14], and specific optimal waveforms for SNR [9].
PSWFs and their discrete relative DPSS were found to be near optimal waveforms for
SNR [10]. This section compares the optimal waveform for estimation obtained in this
paper with other waveforms that are commonly used: the waveforms (PSWFs) obtained for
near optimal detection (SNR) are chosen according to the process in [10]; the nanosecond
pulse that is commonly used in photoacoustics [38]; and the chirp chosen according to
the process in [14] to achieve high SNR and axial resolution for an absorber that has the
duration of 5[µs] and at a location of 7.5[µs]. The goal of this section is to demonstrate
how different goals affect the requirements for energy allocation on the input waveform. It
is noted that the optimal waveform for SNR and the chirp require prior information of a
deterministic absorber.

Figure 28 compares the optimal waveform for estimation with the other waveforms.
Figure 28a shows the absorber ensemble with uncertain location and duration. The mean
location is µt0 = 7.5[µs] and the mean duration is µTa = 5[µs]. The uncertainty of the
absorber ensembles is described via the duration standard deviation σTa = 1 and location
standard deviation σt0 = 1. The constraints for input durations for the optimal waveform,
the chirp, and PSWF are the same T = 10[µs]. Observation duration is TO = 20[µs]. Energy
limits for all waveforms are kept the same and calculated through Equation (37). Noise
level is Pnn( f ) = 3.35 × 10−7[J/(cm2 · MHz

)]
. The PSWF shown in Figure 28 is obtained

by the method in [10] to have near optimal SNR of a square absorber.
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(c) Optimal waveform for estimation and near optimal waveform for detection (PSWF) in time
domain; (d) Optimal waveform for estimation and near optimal waveform for detection (PSWF) in
frequency domain.

As shown in Figure 28, the near optimal waveform for detection (optimal SNR)
tends to concentrate its energy as much as possible around the origin in the frequency
domain to obtain the maximum response (SNR). On the other hand, the optimal waveform
for estimation tends to spread its energy to a larger frequency range to obtain maximum
information (parameter estimation). As shown in the legend of Figure 28c,d, the information
loss of using a detection waveform is over 90%. The other two waveforms (short pulse
and chirp) are neither optimal for detection nor optimal for estimation. The short pulse in
time, due to the symmetry properties of the Fourier Transform between time and frequency
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domains, spreads its energy in frequency too much to the frequencies where the information
gain is small. The chirp, although concentrating its energy to the frequency range similar
to the optimal waveform for estimation, does not allocate its energy in an optimal way.
Hence, their information loss results are better than the PSWF but still not comparable with
the optimal waveform for estimation. These simulations underscore the importance of
articulating the waveform design goal (detection or estimation, or other purpose) and then
designing the waveform accordingly. What is an optimal waveform for one objective is not
optimal for another objective and, as the simulations show, may create a large performance
loss for the other objective.

4. Conclusions

This paper uses information theory in photoacoustic imaging waveform design to
obtain optimal waveforms for parameter estimation. From the simulation results, the
conclusions are summarized below.

• The optimization algorithm allocates the input waveform energy to the frequencies
where absorber ensemble variance σ2

θ ( f ) dominates over the noise Pnn( f ) (water-
filling). The ensemble variance σ2

θ ( f ) essentially contains the information that is
available. Increasing the input waveform energy limitation gives higher obtained
mutual information. However, putting energy at frequencies where noise Pnn( f )
dominates only results in a small increase in obtained mutual information. Similarly,
an increase of the noise floor will result in more information ‘buried’ by the noise.
Hence, the obtained mutual information decreases.

• Uncertainty in absorber parameters plays an important role in the ensemble variance
σ2

θ ( f ). Higher uncertainty (no matter in duration or location) results in an absorber
ensemble variance σ2

θ ( f ) that has higher amplitude and is more concentrated in
frequency. Uncertainty in duration (thickness) of absorbers typically results in a
variance σ2

θ ( f ) with a single peak centered at zero frequency. Uncertainty in absorber
location (distance from receiver) typically results a variance σ2

θ ( f ) with multiple peaks,
with most of the energy concentrated near zero frequency. The characteristics of the
absorber variance σ2

θ ( f ) indicate where (in frequency) there is uncertainty about the
absorber and hence where to allocate energy in the input waveform.

• The proposed algorithm returns the power spectrum of the optimal estimation wave-
form. The applicable time domain optimal waveform can be obtained through direct
inverse Fourier transform of the square root of the obtained optimal power spectrum
|ϕ( f )|2 given by the optimization algorithm. The optimal waveform is not unique,
since the algorithm returns the power spectrum of the optimal waveform and not the
optimal waveform itself. There are many possible waveforms that will correspond
to the same power spectrum. It should also be noted that most of the energy of the
resulting time domain waveform needs to be inside the observation duration.

• From the results for optimal waveforms, the shape of the optimal waveform depends
on the uncertainty in different parameters. Uncertainty in duration requires the input
waveform to be a single pulse in time, while uncertainty in location requires the
input waveform in the time domain to be a pulse train with pulse spacings equal
to the absorber durations. The shape of the optimal waveform for uncertainty in
both duration and location requires the input waveform to be a combination of the
two types of waveforms. In general, higher uncertainty (no matter in duration or
location) needs the optimal waveform to be more concentrated in frequency to a certain
minimum bandwidth, because the absorber variance generally always concentrates
around zero frequency.

• From comparison with ‘detection’ waveforms and other waveforms, the estimation
waveforms need to cover more frequencies where the information is contained. The
proposed algorithm clearly demonstrates how different goals (detection or estimation)
necessitate different input energy allocation methods, which in turn implies different
types of waveforms.
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