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Abstract: This paper offers a thorough examination of a unified class of Humbert’s polynomials in
two variables, extending beyond well-known polynomial families such as Gegenbauer, Humbert,
Legendre, Chebyshev, Pincherle, Horadam, Kinnsy, Horadam–Pethe, Djordjević, Gould, Milovanović,
Djordjević, Pathan, and Khan polynomials. This study’s motivation stems from exploring polynomials
that lack traditional nomenclature. This work presents various expansions for Humbert–Hermite
polynomials, including those involving Hermite–Gegenbauer (or ultraspherical) polynomials and
Hermite–Chebyshev polynomials. The proofs enhanced our understanding of the properties and
interrelationships within this extended class of polynomials, offering valuable insights into their
mathematical structure. This research consolidates existing knowledge while expanding the scope of
Humbert’s polynomials, laying the groundwork for further investigation and applications in diverse
mathematical fields.

Keywords: Hermite polynomials; generalized humbert polynomials; generalized (p, q)-Fibonacci
polynomials; generalized (p, q)-Lucas polynomials

MSC: 0A115; 05A19; 11B39; 33C45; 33C55; 33C99

1. Introduction and Preliminaries

Special polynomials represent a distinctive class in mathematics, characterized by their
inherent symmetries and unique properties that play pivotal roles in diverse mathematical
areas. Their symmetrical structures often facilitate solving differential equations and
analyzing orthogonal functions, making them tools for various fields. The symmetry
inherent in these polynomials contributes to their wide-ranging applications, extending
their utility to disciplines such as physics, engineering, and computer science, where they
provide elegant solutions to complex problems.

Among the prominent examples of special polynomials are several well-known fam-
ilies. Legendre polynomials often appear in solving problems related to potential fields
and wave equations, making them essential in electrostatics and quantum mechanics.
Chebyshev polynomials are central to approximation theory and numerical analysis, par-
ticularly in minimizing errors in polynomial approximations. Hermite polynomials are
crucial in quantum mechanics, especially in the study of the harmonic oscillator, where they
describe the wave functions of quantum states. Humbert polynomials play an important
role in combinatorial mathematics and the analysis of divided differences, contributing
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to the study of sequences and series. Appell polynomials are significant in the theory of
special functions and modular forms, with applications extending to complex analysis
and number theory. Touchard polynomials are instrumental in probability theory and
combinatorics, particularly in the enumeration of permutations and partitions. These
polynomials provide solutions to complex mathematical problems and are powerful tools
for modeling and analysis across various scientific and engineering fields, where their
inherent symmetry properties play a crucial role in simplifying computations and revealing
underlying structures.

In 1965, Gould [1,2] made a significant contribution to the field of special functions
by introducing a new class of polynomials, now referred to as Humbert polynomials,
which he denoted as Pω(θ, ν1, ν2, p, c). His work thoroughly analyzed these polynomials,
delving into their explicit mathematical expressions, recurrence relations, and higher-order
derivatives. Additionally, Gould explored their operational expansions and the inverse re-
lations associated with them, offering a comprehensive framework for understanding these
polynomials’ behavior under various transformations and operations. Due to their ability
to encompass several well-established families of polynomials through specific parameters,
Humbert polynomials are particularly intriguing. For instance, when particular parameter
values are selected, these polynomials can be reduced to Chebyshev, Gegenbauer, Kinney,
Legendre, Liouville, or Pincherle polynomials. This unifying characteristic highlights
the versatility of Humbert polynomials, making them a powerful tool in both theoretical
research and practical applications.

The adaptability of the Humbert–Gould polynomials Pω(θ, ν1, ν2, p, c) has attracted
considerable attention from mathematicians, leading to a wealth of research aimed at
expanding and generalizing their properties. Over the years, numerous scholars have
contributed to this growing body of knowledge, bringing new insights and extensions
to the original work. For example, Agarwal and Parihar [3] have provided valuable
generalizations that broaden the scope of these polynomials in different mathematical
contexts. Dilcher and Djordjević and their collaborators [4–8] have made significant strides
in exploring the deeper properties of these polynomials, investigating their relationships
with other special functions, and expanding their operational frameworks [9–14].

Researchers like He and Shiue [15,16] have furthered the understanding of Humbert–
Gould polynomials by examining their applications in combinatorial mathematics and other
areas. Horadam and their collaborators Mohan and Pethe have extensively studied these
polynomials, focusing on their combinatorial aspects and connections to other mathematical
structures. Khan and Pathan [17] have also played a key role in advancing the operational
theory related to these polynomials, providing new methods for their manipulation and
application [18–21].

Other notable contributions come from Milovanović and Djordjević [22], who have
explored the algebraic properties of Humbert–Gould polynomials, and Dave [23], Liu [24], and
Ma [25], who has worked on extending their applicability to various fields. Ramírez [26,27],
Nalli and Haukkanen [28] Sinha [29], Shreshta [30], Wang, and the collaborative work
of Wang and Wang [31,32] have all added to the rich tapestry of research surrounding
these polynomials, each offering unique perspectives and insights that have furthered the
mathematical community’s understanding of these versatile functions.

Therefore, Gould’s introduction of Humbert polynomials has opened up a vast area
of mathematical inquiry, with numerous researchers building upon their foundational
work. The ongoing exploration and generalization of these polynomials have deepened
our understanding of their inherent properties and expanded their application across
various domains, making them an essential subject of study in modern mathematics
(see [1,2,12,13,15,24]).

The Humbert–Gould polynomials [1] are introduced via the generating function
given by:

(c − mν1ξ + ν2ξθ)p =
∞

∑
ω=0

Pω(θ, ν1, ν2, p, c)ξω, (1)
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where θ is a positive integer, and the remaining parameters are generally free of restrictions.
The explicit form of the polynomial Pω(θ, ν1, ν2, p, c) is expressed as follows (see [1]):

Pω(θ, ν1, ν2, p, c) =
[ ω

θ ]

∑
ϕ=0

(
p
ϕ

)(
p − ϕ

ω − θϕ

)
cp−ω+(θ−1)ϕν

ϕ
2 (−θν1)

ω−θϕ, (2)

where [.] is the greatest integer.
In recent work, Wang and Wang [32] extended the concept by introducing generalized

forms of the (p, q)-Fibonacci and (p, q)-Lucas polynomials. These are defined as follows.
Let θ ≥ 2 be a fixed positive integer, and consider two polynomials p(ν1) and q(ν1)

with real coefficients. The generalized (p, q)-Fibonacci polynomials, denoted by uω,θ(ν1)
and (p, q)-Lucas polynomials vω,θ(ν1), are defined through the generating functions (refer
to [32]):

uω,θ(ν1) = p(ν1)uω−1,θ(ν1) + q(ν1)uω−θ,θ(ν1), ω ≥ θ, (3)

with the initial conditions u0,θ(ν1) = 0, u1,θ(ν1) = 1, u2,θ(ν1) = p(ν1) · · · , uθ−1,θ(ν1) =
pθ−2(ν1). And

vω,θ(ν1) = p(ν1)vω−1,θ(ν1) + q(ν1)vω−θ,θ(ν1), ω ≥ θ (4)

with the initial conditions v0,θ = 2, v1,θ = p(ν1), v2,θ(ν1) = p2(ν1) · · · , vθ−1,θ(ν1) =
pθ−1(ν1).

The generating functions for the sequences (uω,θ(ν1)) and (vω,θ(ν1)) are given by the
following expressions [32]:

Uθ(ν1, ξ) =
∞

∑
ω=0

uω,θ(ν1)ξ
ω =

ξ

1 − p(ν1)ξ − q(ν1)ξθ
, (5)

and

Vθ(ν1, ξ) =
∞

∑
ω=0

vω,θ(ν1)ξ
ω =

2 − p(ν1)ξ

1 − p(ν1)ξ − q(ν1)ξθ
. (6)

These definitions imply the following relationship:

uω,θ(ν1) = uω+1,θ(ν1) + q(ν1)uω−θ+1,θ(ν1), ω ≥ θ − 1. (7)

It is important to note that the sequences of polynomials (uω,θ(ν1)) and (vω,θ(ν1))
satisfy the same recurrence relation of order θ, yet they differ in their initial conditions.
These sequences are sometimes referred to as the generalized Lucas u-polynomial and the
generalized v-polynomial sequences, respectively.

The sequences (uω,θ(ν1)) and (vω,θ(ν1)) include several well-known polynomial se-
quences as particular cases. For example, when θ = 2, these sequences simplify to the
classical (p, q)-Fibonacci polynomials uω(ν1) and (p, q)-Lucas polynomials vω(ν1) (as de-
fined in (see [19,21,26,27,31]. Further simplifications yield familiar polynomials associated
with names such as Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas,
among others.

Recently, Wang and Wang [32] introduced the generalized the Humbert polynomials
u(r)

ω+1,θ(ν1) as the convolutions of Fibonacci polynomials.

Definition 1. For each complex number r, the generalized convolved (p, q)-Fibonacci poly-
nomials, also known as the generalized Humbert polynomials u(r)

ω+1,θ(ν1), are defined by the
generating function:

(1 − p(ν1)ξ − q(ν1)ξ
θ)−r =

∞

∑
ω=0

u(r)
ω+1,θ(ν1)

ξω

ω!
, (8)
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where θ is a positive integer.

This relationship underscores the connection between these generalized polynomial
sequences and various well-known sequences in the mathematical literature.

The introduction of special functions with numerous indices and variables represents
a noteworthy progression in the field of generalized special functions. These functions hold
considerable importance, finding recognition in both practical applications and pure math-
ematical contexts. The demand for polynomials with multiple indices and variables arises
from the necessity to address challenges across various mathematical disciplines, from the
study of partial differential equations to abstract group theory. Recently, the polynomials
represented by F [θ]

ω (ν1, ν2, · · · , νθ), known as multivariable Hermite Polynomials (MHP),
were introduced in (see [33,34]) and are given by generating relation:

exp
(

ν1ξ + ν2ξ2 + · · ·+ νθξθ
)
=

∞

∑
ω=0

F [θ]
ω (ν1, ν2, · · · , νθ)

ξω

ω!
, (9)

with the operational rule:

exp
(

ν2
∂2

∂ν1
2 + ν3

∂3

∂ν1
3 + · · ·+ νm

∂θ

∂ν1
θ

)
νω

1 = F [θ]
ω (ν1, ν2, · · · , νθ), (10)

and series representation:

F [θ]
ω (ν1, ν2, · · · νθ) = ω!

[ω/θ]

∑
r=0

νr
θ F

[θ]
ω−θr(ν1, ν2, · · · , νθ−1)

r! (ω − θr)!
. (11)

This paper is structured as follows. Section 2 delves into the introduction of the gen-
eralized multivariate Humbert–Hermite polynomials, denoted as FG

(r)
ω+1,θ(ν1, ν2, · · · , νθ).

These polynomials are constructed by leveraging the framework of generalized (p, q)-
Fibonacci polynomials. We provide a comprehensive exploration of their mathematical
properties, including but not limited to their generating relations, explicit forms, and no-
table identities. This section also examines the underlying algebraic structure and potential
applications of these polynomials in various mathematical contexts.

Section 3 shifts focus to the analysis and derivation of various expansions related to
Hermite polynomials. Specifically, we obtain expansions for the Hermite–Chebyshev and
Hermite–Gegenbauer polynomials. This section systematically explores the connections
between these classical orthogonal polynomials, providing detailed proofs and discussing
the implications of these expansions in broader mathematical and applied fields. Through
these expansions, we highlight how these polynomials can be expressed in terms of other
well-known polynomial families, thereby enriching the theory and application of Hermite-
related polynomials. The paper concludes with some remarks.

2. Generalized Multivariate Hermite–Humbert Polynomials

In this section, we present the introduction of generalized multivariate Hermite–
Humbert polynomials, denoted as FG

(r)
ω+1,θ(ν1, ν2, · · · , νθ). These polynomials are devel-

oped within the framework of generalized (p, q)-Fibonacci polynomials, which serve as the
foundational building blocks. By extending the concept of the classic Hermite–Humbert
polynomials into a multivariate setting, we aim to explore the deeper structural relation-
ships and functional properties that emerge in this generalized form. The introduction of
these polynomials is not merely a theoretical exercise; it represents a significant expansion
in the field of polynomial theory, with potential applications in areas such as combina-
torics, number theory, and the study of special functions. This work seeks to provide a
robust mathematical foundation for these polynomials, facilitating further exploration and
application in both pure and applied mathematics.
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We begin by formally defining the generalized multivariate Hermite–Humbert poly-
nomials FG

(r)
ω+1,θ(ν1, ν2, · · · , νθ), establishing the groundwork for a detailed examination of

their properties. These properties include generating functions, recurrence relations, and
identities that reveal the intricate connections between the multivariate Hermite–Humbert
polynomials and the underlying (p, q)-Fibonacci polynomials. By deriving and analyzing
these properties, we aim to uncover the mathematical significance of these polynomials,
demonstrating how they generalize classical results and contribute to the broader under-
standing of polynomial sequences. This section serves as a critical foundation for the
subsequent analysis, providing the essential tools and definitions required for the in-depth
exploration of these polynomials and their applications in later sections.

Definition 2. For each complex number r, the generalized convolved (p, q)-Fibonacci polynomials,
also known as the generalized multivariate Hermite–Humbert polynomials FG

(r)
ω+1,θ(ν1, ν2, · · · , νθ),

are defined by the generating function:

(1 − p(ν1)ξ − q(ν1)ξ
θ)−reν2ξ+ν3ξ2+···+νθξθ

=
∞

∑
ω=0

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω!
, (12)

where θ is a positive integer, r > 0, and the other parameters ν1, ν2, . . . , νθ are generally unrestricted.

Reduction to Known Results:
By setting ν2 = · · · = νθ = 0 in Equation (12), we obtain a known result by Wang and

Wang [32]:
Furthermore, by taking θ = 2, Equation (12) reduces to another known result by

Pathan and Khan [20].
Special Cases and Connections:
When r = 1, the polynomials FG

(1)
ω+1,θ(ν1, ν2, · · · , νθ) become the generalized multi-

variate (p, q)-Fibonacci polynomials Fν
(1)
ω,θ(ν1, ν2, · · · , νθ), that is:

FG
(1)
ω+1,θ(ν1, ν2, · · · , νθ) = Fu(1)

ω,θ(ν1, ν2, · · · , νθ), for ω ≥ 1. (13)

By adjusting the generating function in Equation (12) with the substitutions p(ν1) → θν1
c ,

q(ν1) → −wν2
c , and r → −r, where c ̸= 0, we obtain:

(1 − θν1

c
ξ +

wν2

c
ξθ)−reν2ξ+ν3ξ2+···+νθ ξθ

= c−r
∞

∑
ω=0

FPω(θ, ν1, ν2, · · · , νθ , r, c)
ξω

ω!
. (14)

where FPω(θ, ν1, ν2, · · · , νθ , w, r, c) denotes the multivariate Humbert–Hermite–Gould
polynomials. These polynomials can be further specialized into other polynomial families,
such as the multivariate Hermite–Gegenbauer polynomials, Pincherle polynomials, and
others, by appropriately choosing the parameters θ, ν1, ν2, · · · , νθ , r, and c.

Polynomial Sequences and Representations:
By choosing particular values for θ, p(ν1), and q(ν1) in Equation (12), we can generate

different polynomial sequences, as illustrated in Table 1. Furthermore, using the definitions
of F [θ]

ω (ν2, ν3, · · · , νθ) and u(r)
ω+1,θ(ν1), we derive the following representation:

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ) = ω!

ω

∑
ϕ=0

F [θ]
ϕ (ν2, ν3, · · · , νθ)u

(r)
ω−ϕ+1,θ(ν1)

ϕ!
. (15)

Some significant special cases of this representation are detailed below. By substituting
q(ν1) → −q(ν1) into Equation (15), we derive additional relationships and transformations
of these polynomials, which are as follows:
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FG
(r)
ω+1,θ(ν1, ν2, ν3, · · · , νθ) = FC(r,θ)

ω (ν1, ν2, ν3, · · · , νθ) = ω!
ω

∑
ϕ=0

F [θ]
ϕ (ν2, ν3, · · · , νθ)C

(r,θ)
ω−ϕ(ν1)

ϕ!
.

where FC(r,θ)
ω (ν1, ν2, ν3, · · · , νθ) are called the multivariate Hermite–Gegenbaurer polynomials:

FC(1,θ)
ω (ν1, ν2, ν3, · · · , νθ) = Fνθ

ω(ν1, ν2, ν3, · · · , νθ) = ω!
ω

∑
ϕ=0

F [θ]
ϕ (ν2, ν3, · · · , νθ)uθ

ω−ϕ(ν1)

ϕ!
,

where Fuθ
ω(ν1, ν2, ν3, · · · , νθ) are called the multivariate Hermite–Chebyshev polynomials.

FC1/2,θ
ω (ν1, ν2, ν3, · · · , νθ) = FP θ

ω(ν1, ν2, ν3, · · · , νθ) = ω!
ω

∑
ϕ=0

ω!F [θ]
ϕ (ν2, ν3, · · · , νθ)P θ

ω−ϕ(ν1)

ϕ!
,

where FP
[θ]
ω (ν1, ν2, ν3, · · · , νθ) denotes the multivariate Hermite–Legendre polynomials.

As a special case, if we set ν2 = ν3 = · · · = 2ν1, νm = −1, and q(ν1) → −q(ν1)

in Equation (12), the generalized multivariate Humbert–Hermite polynomial FG
(r)
ω+1,θ

(ν1, ν2, ν3, · · · , νθ) simplifies to the Humbert–Hermite polynomial FG
(r,)
ω,θ (ν1) in one variable.

Consequently, Equation (12) yields the following generating function:

[1 − p(ν1)ξ + q(ν1)ξ
θ ]−re2ν1ξ−ξθ

=
∞

∑
ω=0

FG
(r)
ω,θ(ν1)ξ

ω. (16)

Furthermore, the Hermite–Gegenbauer (or ultraspherical) polynomials FC(r)
ω,2(ν1)

(which are denoted as FCr
ω(ν1)) in one variable, for nonnegative integer r, are given by:

e2ν1ξ−ξ2
(1 − p(ν1)ξ + q(ν1)ξ

2)−r =
∞

∑
ω=0

FCr
ω(ν1)

ξω

ω!
. (17)

Letting r = 1/2 and r = 1, respectively, in (17) gives:

e2ν1ξ−ξ2
(1 − p(ν1)ξ + q(ν1)ξ

2)−1/2 =
∞

∑
ω=0

FPω(ν1)
ξω

ω!
, (18)

where FPω(ν1) are Hermite–Legendre polynomials, and

e2ν1ξ−ξ2
(1 − p(ν1)ξ + q(ν1)ξ

2)−1 =
∞

∑
ω=0

Fuω(ν1)
ξω

ω!
, (19)

where Fuω(ν1) represents the Hermite–Chebyshev polynomials.
Next, we derive the explicit expressions for the generalized multivariate Hermite–

Humbert polynomials. We start with the following theorem.
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Theorem 1. Let ω ≥ 0 and ϕ ∈ N. Then:

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ) = ω!

ω

∑
δ=0

[ ω−δ
θ ]

∑
ψ=0

(
−r
N

)(
N
ψ

)
(−p)ω−δ−θψ(−q)ψ

×F [θ]
δ (ν2, · · · , νθ)

1
δ!

, (20)

where N = ω − δ − (θ − 1)ψ.

Proof. From (12), we have:

∞

∑
ω=0

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω!
=

∞

∑
ϕ=0

(
−r
ϕ

)
(−pξ − qξθ)ϕ

∞

∑
δ=0

F [θ]
δ (ν2, · · · , νθ)

ξδ

δ!

=
∞

∑
ω=0

[ ω
θ ]

∑
ψ=0

(
−r
ω − (θ − 1)ϕ

)(
ω − (θ − 1)ψ
ψ

)
(−p)ω−θψ(−q)ψξω

×
∞

∑
δ=0

F [θ]
δ (ν2, · · · , νθ)

ξδ

δ!

∞

∑
ω=0

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω!
=

∞

∑
ω=0

ω

∑
δ=0

[ ω−δ
θ ]

∑
ψ=0

(
−r
ω − δ − (θ − 1)ψ

)(
ω − δ − (θ − 1)ψ
ψ

)
(−p)ω−δ−θψ(−q)ψ

×F [θ]
δ (ν2, · · · , νθ)

ξδ

δ!
.

Hence, we complete the proof of the theorem.

Remark 1. On setting ν2 = · · · = νθ = 0 in (20) we get the known result of Wang and
Wang [32].

Remark 2. Adjusting θ = 2, νθ = −1 and replacing ν2 by 2ν2 in (20), we get:

FG
(r)
ω+1,2(ν1, 2ν2,−1) = ω!

ω

∑
δ=0

[ ω−δ
2 ]

∑
ϕ=0

(
−r
ω − δ − ϕ

)(
ω − δ − ϕ
ϕ

)
(−p)ω−δ−2ϕ(−q)ϕ × Fδ(ν2)

δ!
. (21)

Theorem 2. Let ω ≥ 0 and ϕ ∈ N. Then:

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ) =

ω

∑
δ=0

ω!F [θ]
δ (ν2, · · · , νθ)

δ!

[ ω−δ
2 ]

∑
i=0

× ∑
0≤j≤i

(
r + i − 1
i

)(
i
j

)(
M
N

)(
p(ν1)

2

)ω−δ−θϕ

qϕ(ν1), (22)

where M = ω + 2r − δ − (θ − 2)ϕ − 1, N = ω − δ − 2i − (θ − 2)ϕ.
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Table 1. Special cases of the generalized multivariate Hermite–Humbert polynomials.

p(ν1) q(ν1) m r Generating Function
∞

∑
n=0

FG(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω! Polynomials

(1) 1 1 2 r (1 − ξ − ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F F(r)

ω+1(ν2, ν3, · · · , νθ ξθ) multivariate Hermite–Fibonacci–Hoggatt

(2) k 1 2 r (1 − kξ − ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F F(r)

ϕ,ω+1(ν2, · · · , νθ) multivariate Hermite–Fibonacci–Ramèrez

(3) 1 ν 2 r (1 − ξ − νξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F D(r)

ω+1(ν, ν2, · · · , νθ) multivariate Hermite–Dilcher

(4) 2ν 1 2 r (1 − 2νξ − ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
FP(r)

ω+1(ν, ν2, · · · , νθ) multivariate Hermite–Pell–Horadam–Mohan

(5) 2ν −1 2 1
2 (1 − 2νξ − ξ2)−

1
2 eν2ξ+ν3ξ2+···+νθ ξθ

FPω(ν, ν2, · · · , νθ) multivariate Hermite–Legendre

(6) 2ν −1 2 r (1 − 2νξ − ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F C(r)

ω (ν, ν2, · · · , νθ) multivariate Hermite–Gegenbauer

(7) 2ν 1 2 r (1 − 2νξ + (2ν − 1)ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F S(r)

ω (ν, ν2, · · · , νθ) multivariate Hermite–Sinha
−2ν

(8) 2ν p 2 r (1 − 2νξ − pξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F F(r)

ω (ν, ν2, · · · , νθ) multivariate Hermite–Fibonacci–Liu

(9) h(ν) 1 2 r (1 − h(ν)ξ − ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F F(r)

h,ω+1(ν, ν2, · · · , νθ) multivariate Hermite–Fibonacci–Ramèrez

(10) p(ν1) q(ν1) 2 r (1 − p(ν1)ξ − q(ν1)ξ2)−reν2ξ+ν3ξ2+···+νθ ξθ
F u(r)

ω+1(ν1, ν2, · · · , νθ) multivariate Hermite–Fibonacci–Wang

(11) 2q
p2

1
p2 2 1

2 p(p2 − 2qξ − ξ2)−
1
2 eν2ξ+ν3ξ2+···+νθ ξθ

F f (r)ω+1,p,q(ν2, · · · , νθ) Hermite–Lioville

(12) 2ν −1 3 r (1 − 2νξ + ξ3)−reν2ξ+ν3ξ2+···+νθ ξθ
FP (r)

ω+1(ν, ν2, · · · , νθ) multivariate Hermite–Horadam–Pethe

(13) 3ν −1 3 1
2 (1 − 3νξ + ξ3)−

1
2 eν2ξ+ν3ξ2+···+νθ ξθ

FPω(ν, ν2, · · · , νθ) multivariate Hermite–Pincherle

(14) 3ν −1 3 r (1 − 3νξ + ξ3)−reν2ξ+ν3ξ2+···+νθ ξθ
FP(r)

ω (ν, ν2, · · · , νθ) multivariate Hermite–Pincherle–Humbert

(15) 1 2ν θ r (1 − ξ − 2νξθ)−reν2ξ+ν3ξ2+···+νθ ξθ
F J(r)ω+1,θ(ν, ν2, · · · , νθ) multivariate Gould–Hopper–Jacobsthal–Djordjević

(16) ν −1 θ r (1 − νξ + ξθ)−reν2ξ+ν3ξ2+···+νθ ξθ
F V(r)

ω+1,θ(ν, ν2, · · · , νθ) multivariate Hermite–Chebyshev–Djordjević

(17) ν -2 θ r (1 − νξ + 2ξθ)−reν2ξ+ν3ξ2+···+νθ ξθ
F a(r)ω+1,θ(ν, ν2, · · · , νθ) multivariate Hermite–Fermat–Djordjević

(18) 2ν −1 θ r (1 − 2νξ + ξθ)−reν2ξ+ν3ξ2+···+νθ ξθ
FP (r)

ω,θ(ν, ν2, · · · , νθ) multivariate Hermite–Milovanović–Djordjević

(19) θν −1 θ 1
θ (1 − θνξ + ξθ)−

1
θ eν2ξ+ν3ξ2+···+νθ ξθ

FP (r)
ω,θ(ν, ν2, · · · , νθ) multivariate Hermite–Kinney

(20) θν −1 θ r (1 − θνξ + ξθ)−reν2ξ+ν3ξ2+···+νθ ξθ
F ∏(r)

ω,θ(ν, ν2, · · · , νθ) multivariate Hermite–Humbert

(21) θν
c − ν

c θ -r c−r(c − θνξ + νξθ)−reν2ξ+ν3ξ2+···+νθ ξθ c−r
FPω(θ, ν, ν2, · · · , νθ , r, c) multivariate Hermite–Humbert–Gould

(22) 2+ν −1 θ r (1 − (2 + ν)ξ + ξθ)−reν2ξ+ν3ξ2+···+νθ ξθ
F B(r)

ω+1,θ(ν, ν2, · · · , νθ) multivariate Hermite–Morgan–Voyce–Djordjević



Symmetry 2024, 16, 1415 9 of 15

Proof. Let p(ν1) = p and q(ν1) = q in Equation (12) and we have:

∞

∑
ω=0

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω!
= (1 − pξ − qξθ)−reν2ξ,··· ,νθξθ

.

Now:

(1 − pξ − qξθ)−r =

(
1 − pξ +

(
pξ

2

)2
−
(

pξ

2

)2
− qξθ

)−r

=

(
1 − pξ

2

)−2r
(

1 −
( pξ

2 )2 + qξθ

(1 − pξ
2 )2

)−r

=
∞

∑
i=0

(
−r
i

){(
pξ

2

)2
+ qξθ

}i(
1 − pξ

2

)−2r−2i

=
∞

∑
i=0

(
−r
i

)
(−1)i

(
pξ

2

)2i i

∑
j=0

(
i
j

){
qξθ

( pξ
2 )2

}
∞

∑
ϕ=0

(
−2r − 2i
ϕ

)
(−1)ϕ

(
pξ

2

)ϕ

=
∞

∑
i=0

i

∑
j=0

∞

∑
ϕ=0

(
r + i − 1
i

)(
i
j

)(
2r + 2i + ϕ − 1
ϕ

)( p
2

)2i−2j+ϕ
qjξ2i−2j+ϕ+θ j. (23)

From (23), we have:
∞

∑
ω=0

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω!

=
∞

∑
ω=0

[ ω
2 ]

∑
i=0

∑
0≤j≤i

(
r + i − 1
i

)(
i
j

)(
ω + 2r − (θ − 2)j − 1
ω − 2i − (θ − 2)j

)(
p(ν1)

2

)ω−θ

qj(ν1)ξ
ω

×
∞

∑
δ=0

F [θ]
δ (ν2, · · · , νθ)

ξδ

δ!

=
∞

∑
ω=0

ω

∑
δ=0

F [θ]
δ (ν2, · · · , νθ)

δ!

[ ω−δ
2 ]

∑
i=0

∑
0≤j≤i

(
r + i − 1
i

)(
i
j

)(
M
N

)(
p(ν1)

2

)ω−δ−θ j
qj(ν1)ξ

ω.

By matching the coefficients of ξω on both sides, we arrive at the desired result,
Equation (22).

Remark 3. If we set ν2 = · · · = νθ = 0 in Equation (22), we get to know the result of Wang and
Wang [32].

3. On Expansions of Multivariate Hermite–Chebyshev and Multivariate
Hermite–Gegenbaurer Polynomials

In this section, we focus on proving several important theorems related to the expan-
sions of multivariate Hermite–Gegenbauer and multivariate Hermite–Chebyshev poly-
nomials in three variables. These expansions are crucial for understanding the deeper
connections between various families of orthogonal polynomials and their applications in
mathematical analysis and theoretical physics.

We begin our exploration by examining Equations (12) and (14), along with a specific
case of (12) where r = 1 and q(ν1) → −q(ν1). The following equation:

(1 − p(ν1)ξ + q(ν1)ξ
θ)−1eν2ξ+ν3ξ2+···+νθ ξθ

=
∞

∑
ω=0

Fuω,θ(ν1, ν2, · · · , νθ)
ξω

ω!
, (24)

is not just a mathematical expression, but a powerful tool that will be used to derive
a series of subsidiary results in the following theorem. These results are significant be-
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cause they offer insights into the structure and relationships of multivariate polynomials,
which have broad implications in areas such as combinatorics, approximation theory, and
mathematical physics.

Understanding these expansions allows us to bridge the gap between different poly-
nomial families, providing a unified framework that can be applied to solve complex
problems in various domains. The theorems we prove here are not only of theoretical
interest but also pave the way for practical applications, making them a valuable addition
to the existing body of knowledge in the field.

Theorem 3. Let ω ≥ 0 and ϕ ∈ N. Then:

ω

∑
δ=0

F [θ]
δ (ϕν2, · · · , ϕνθ)u

(rϕ)
ω+1−δ,θ(ν1)

δ!

= ∑
ω1+ω2+···+ωϕ=ω

FG
(r)
ω1+1,θ(ν1, ν2, · · · , νθ)FG

(r)
ω2+1,θ(ν1, ν2, · · · , νθ) · · · FG

(r)
ωϕ+1,θ(ν1, ν2, · · · , νθ)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
. (25)

Proof. Rewrite the (12) as:[
(1 − p(ν1)ξ − q(ν1)ξ

θ)−reν2ξ+ν3ξ2+···+νθ ξθ
]ϕ

= (1 − p(ν1)ξ − q(ν1)ξ
θ)−rϕeϕν2ξ+ϕν3ξ2+···+ϕνθ ξθ

=

[
∞

∑
ω=0

FG
(r)
ω+1,θ(ν1, ν2, · · · , νθ)

ξω

ω!

]ϕ

.

Using (9), we can write:

eϕν2ξ+ϕν3ξ2+···+ϕνθ ξθ
=

∞

∑
δ=0

F [θ]
δ (ϕν2, · · · , ϕνθ)

ξδ

δ!
.

Now:

∞

∑
ω=0

u(rϕ)
ω+1,θ(ν1)ξ

ω
∞

∑
δ=0

F [θ]
δ (ϕν2, · · · , ϕνθ)

ξδ

δ!

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

FG
(r)
ω1+1,θ(ν1, ν2, · · · , νθ)FG

(r)
ω2+1,θ(ν1, ν2, · · · , νθ) · · · FG

(r)
ωϕ+1,θ(ν1, ν2, · · · , νθ)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
ξω.

∞

∑
ω=0

ω

∑
δ=0

F [θ]
δ (ϕν2, · · · , ϕνθ)ν

(rϕ,θ)
ω+1−δ(ν1)

δ!
ξω

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

FG
(r)
ω1+1,θ(ν1, ν2, · · · , νθ)FG

(r)
ω2+1,θ(ν1, ν2, · · · , νθ) · · · FG

(r)
ωϕ+1,θ(ν1, ν2, · · · , νθ)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
ξω.

Which completes the proof of the result.

Remark 4. Letting r = 1, q(ν1) → −q(ν1) in (25), we have the following.

Corollary 1. For ϕ ∈ N and ν1, ν2, · · · , νθ ∈ C, then:

ω

∑
δ=0

F θ
δ (ϕν2, · · · , ϕνθ)C

ϕ
ω−δ,θ(ν1)

δ!
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= ∑
ω1+ω2+···+ωϕ=ω

Fν
[θ]
ω1(ν1, ν2, · · · , νθ)Fuθ

ω2
(ν1, ν2, · · · , νθ) · · · Fuθ

nϕ
(ν1, ν2, · · · , νθ)

ω1!ω2! · · ·ωϕ!
. (26)

Corollary 2. For r = 0 in (25) with ϕ ∈ N and ν1, · · · , νθ ∈ C, then:

F [θ]
ω (ϕν2, · · · , ϕνθ)

ω!
= ∑

ω1+ω2+···+ωϕ=ω

F [θ]
ω1 (ν1, ν2, · · · , νθ)F

[θ]
ω2 (ν1, ν2, · · · , νθ) · · · F

[θ]
ωϕ

(ν1, ν2, · · · , νθ)

ω1!ω2! · · ·ωϕ!
. (27)

Theorem 4. Let ω ≥ 0. Then:
F [θ]

ω (ϕν1, ϕν2, · · · , ϕνθ)

= ω! ∑
ω1+ω2+···+ωϕ=ω

F [θ]
ω1 (ν1, ν2, · · · , νθ)F

[θ]
ω2 (ν1, ν2, · · · , νθ) . . .F [θ]

ωϕ
(ν1, ν2, · · · , νθ)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
. (28)

Proof. The definition of F [θ]
ω (ν1, ν2, · · · , νθ) can be written as:[

eν1ξ+ν2ξ2+···+νθ ξθ
]ϕ

= eϕν1ξ+ϕν2ξ2+···+ϕνθ ξθ

=

[
∞

∑
ω=0

F [θ]
ω (ν1, ν2, · · · , νϕ)

ξω

ω!

]ϕ

.

Using [35], we can write:

eϕYξ+ϕZξθ
=

∞

∑
δ=0

F [θ]
δ (ϕY, ϕZ)

ξδ

δ!

∞

∑
n=0

F [θ]
ω (ϕν1, ϕν2, · · · , ϕνθ)

ξω

ω!

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

F [θ]
ω1 (ν1, ν2, · · · , νθ)F

[θ]
ω2 (ν1, ν2, · · · , νθ) . . .F [θ]

ωϕ
(ν1, ν2, · · · , νθ)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
ξω.

Hence, we complete the proof of the result.

Remark 5. Adjusting θ = 2, r = 0, νθ = −1, ν2 → 2ν in (28), it reduces to the known result of
Batahan and Shehata [35].

Corollary 3. For ϕ ∈ N and ν ∈ C, then:

[ ω
2 ]

∑
p=0

(−ϕ)p(2ϕν)ω−2p

(ω − 2p)p!
= ∑

ω1+ω2+···+ωϕ=ω

Fω1(ν)Fω2(ν) · · · Fωϕ(ν)

ω1!ω2! · · ·ωϕ!
. (29)

Theorem 5. Let ω ≥ 0. Then:

[ ω
θ ]

∑
δ=0

(−1)δ(rϕ)ω−(θ−1)δ(p(X))ω−θδ(q(X))δ

δ! (ω − θδ)!

= ∑
ω1+ω2+···+ωϕ=ω

u(r)
ω1+1,θ(X)u(r)

ω2+1,θ(X) · · · u(r)
ωϕ+1,θ(X), (30)

where X =
ϕ

∑
i=0

νi.
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Proof. By applying the power series expansion of [1 − p(X)ξ − q(X)ξθ ]−r and arranging
the series appropriately, we obtain:

[1 − p(X)ξ − q(X)ξθ ]−rϕ =
∞

∑
ω=0

[ ω
θ ]

∑
δ=0

(−1)δ(rϕ)ω−(θ−1)δ(p(X))ω−θδ(q(X))δ

δ! (ω − θδ)!
ξω.

Additionally, we can express this as follows:

[1 − p(X)ξ − q(X)ξθ ]−rϕ =
[
[1 − p(X)ξ − q(X)ξθ ]−r

]ϕ
=

[
∞

∑
ω=0

u(r)
ω+1,θ(X)ξω

]ϕ

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

u(r)
ω1+1,θ(X)u(r)

ω2+1,θ(X) · · · u(r)
nϕ+1,θ(X)ξω. (31)

Now, by equating the coefficients of ξ on both sides of the resulting equation, we
obtain the desired result.

Remark 6. When setting r = 1 and q(X) → −q(X) in Theorem 5, the result simplifies to:

[ ω
θ ]

∑
δ=0

(−1)δ(ϕ)ω−(θ−1)δ(p(x))ω−θδ(q(X))δ

δ! (ω − θδ)!

= ∑
ω1+ω2+···+ωϕ=ω

νθ
ω1
(X)νθ

ω2
(X) · · · νθ

ωϕ
(X). (32)

In a similar manner, we can define the generalized (p, q)-Lucas polynomials as follows:

Definition 3. For any complex number r, the generalized convolved (p, q)-Lucas polynomials, also
referred to as the generalized multivariate Hermite–Humbert polynomials Fv(r)ω,θ(ν1, ν2, · · · , νθ),
are specified by:(

2 − p(ν1)ξ

1 − p(ν1)ξ − q(ν1)ξθ

)r
eν2ξ+ν3ξ2+···+νθ ξθ

=
∞

∑
ω=0

Fv(r)ω,θ(ν1, ν2, · · · , νθ)
ξω

ω!
, (33)

where θ ∈ N, r > 0, and the remaining parameters are generally unrestricted.

By setting ν2 = · · · = νθ = 0 in Equation (33), it simplifies to the known result by
Wang and Wang [32] as follows:(

2 − p(ν1)ξ

1 − p(ν1)ξ − q(ν1)ξθ

)r
=

∞

∑
ω=0

v(r)ω,θ(ν1)ξ
ω. (34)

Theorem 6. Let ω ≥ 0. Then:

ω

∑
δ=0

vrϕ
ω−δ,θ(ν1)F

[θ]
δ (ϕν2, ϕν3, · · · , ϕνθ)

1
δ!

= ∑
ω1+ω2+···+ωϕ=ω

Fv(r)ω1+1,θ(ν1, ν2, · · · , νθ)Fv(r)ω2+1,θ(ν1, ν2, · · · , νθ) · · · Fv(r)ωϕ+1,θ(ν1, ν2, · · · , νθ)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
. (35)

Proof. Utilizing expressions (9) and (33), it follows that:

[(
2 − p(ν1)ξ

1 − p(ν1)ξ − q(ν1)ξθ

)r
eν2ξ+ν3ξ2+···+νθ ξθ

]ϕ

=

(
∞

∑
ω=0

Fv(r)ω,θ(ν1, ν2, · · · , νθ)
ξω

ω!

)ϕ
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(
2 − p(ν1)ξ

1 − p(ν1)ξ − q(ν1)ξθ

)ϕr
eϕν2ξ+ϕν3ξ2+···+kνθ ξθ

=

(
∞

∑
ω=0

Fv(r)ω,θ(ν1, ν2, · · · , νθ)
ξω

ω!

)ϕ

∞

∑
ω=0

vrϕ
ω,θ(ν1)ξ

ω
∞

∑
δ=0

F [θ]
δ (ϕν2, ϕν3, · · · , νθ)

ξδ

δ!

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

Fv(r)ω1+1,θ((ν1, ν2, · · · , νθ))Fv(r)ω2+1,θ((ν1, ν2, · · · , νθ)) · · · Fv(r)ωϕ+1,θ((ν1, ν2, · · · , νθ))

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
ξω

∞

∑
ω=0

ω

∑
δ=0

vrϕ
ω−δ,θ(ν1)F

[θ]
δ ((ϕν2, kν3, · · · , kνθ))

ξω

δ!

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

Fv(r)ω1+1,θ((ν1, ν2, · · · , νθ))Fv(r)ω2+1,θ((ν1, ν2, · · · , νθ)) · · · Fv(r)ωk+1,θ((ν1, ν2, · · · , νθ))

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
ξω.

By matching the coefficients of ξn on both sides, we obtain Equation (35).

Remark 7. When ν2 = · · · = νθ = 0 is set in Theorem 6, the result simplifies to:

vrϕ
ω,θ(ν1) = ∑

ω1+ω2+···+ωϕ=ω

v(r)ω1+1,θ(ν1)v
(r)
ω2+1,θ(ν1) · · · v(r)ωϕ+1,θ(ν1)

(ω1 + 1)!(ω2 + 1)! · · · (ωϕ + 1)!
. (36)

Theorem 7. Let ω ≥ 0. Then:

∑
ω1+ω2+···+ωϕ=ω

Fvω1,θ(ν1, ν2, · · · , νθ)Fvω2,θ(ν1, ν2, · · · , νθ) · · · Fvωϕ ,θ(ν1, ν2, · · · , νθ)

ω1!ω2! · · ·ωϕ!

=
ω

∑
i=0

(
r
ω − i

)
2r−ω+i(−p(ν1))

ω−i
Fu(r)

i+1,θ(ν1, rν2, rν3, · · · , rνθ)
1
i!

. (37)

Proof. The expression (33) can be rewritten as:

[(
2 − p(ν1)ξ

1 − p(ν1)ξ − q(ν1)ξθ

)
eν2ξ+ν3ξ2+···+νθ ξθ

]r
=

(
∞

∑
ω=0

Fvω,θ(ν1, ν2, · · · , νθ)
ξω

ω!

)r

(2 − p(ν1)ξ)
r(1 − p(ν1)ξ − q(ν1)ξ

θ)−rerν2ξ+rν3ξ2+···+rνθ ξθ
=

(
∞

∑
ω=0

Fvω,θ(ν1, ν2, · · · , νθ)
ξω

ω!

)r

r

∑
ω=0

(
r
ω

)
2r−ω(−p(ν1))

ωξω
∞

∑
i=0

Fu(r)
i+1,θ(ν1, rν2, rν3, · · · , rνθ)

ξ i

i!

=
∞

∑
ω=0

∑
ω1+ω2+···+ωϕ=ω

Fvω1,θ(ν1, ν2, · · · , νθ)Fvω2,θ(ν1, ν2, · · · , νθ) · · · Fvωϕ ,θ(ν1, ν2, · · · , νθ)

ω1!ω2! · · ·ωϕ!
ξω.

By equating the coefficients of ξω on both sides, we obtain Equation (37).

Remark 8. By setting ν2 = · · · = νθ = 0 in Theorem 7, the result simplifies to the following:

∑
ω1+ω2+···+ωϕ=ω

vω1,θ(ν1)vω2,θ(ν1) · · · vωϕ ,θ(ν1) =
ω

∑
i=0

(
r
ω − i

)
2r−ω+i(−p(ν1))

ω−iu(r)
i+1,θ(ν1). (38)
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4. Conclusions

This paper has thoroughly investigated the generalized multivariable Humbert–
Hermite polynomials, represented by the notation FG

(r)
ω+1,θ(ν1, ν2, · · · , νθ). Building on

the generalized (p, q)-Fibonacci polynomials, Section 2 has revealed key mathematical
properties of these polynomials, including their generating relations, explicit forms, and
significant identities. Additionally, the section has explored these polynomials’ algebraic
structure and potential mathematical applications. Section 3 expanded the discussion by
focusing on the derivation and analysis of expansions related to Hermite polynomials,
particularly Hermite–Chebyshev and Hermite–Gegenbauer polynomials. This section has
systematically examined the connections between these classical orthogonal polynomials,
providing detailed proof and discussing the broader implications of these expansions. The
ability to express these polynomials in terms of other well-known families enhances the
theory and application of Hermite-related polynomials.

Future observations could focus on extending the derived expansions of Hermite-
related polynomials, particularly Hermite–Chebyshev and Hermite–Gegenbauer poly-
nomials, to more generalized families or multivariable settings. This could deepen the
understanding of their orthogonal properties and recurrence relations in broader contexts.
Additionally, exploring numerical methods for efficiently computing these expansions
could be valuable, particularly in applications such as quantum mechanics or signal pro-
cessing. Further research might uncover new combinatorial interpretations or connections
between these polynomials and algebraic identities, enhancing their use in approximation
theory, especially for solving differential equations and optimization problems.
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