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Abstract: In context-aware decision analysis, mean can be an important measure, even when the
distribution is skewed. Previous comparative studies showed that it is a real challenge to construct
a confidence interval that performs well for highly skewed data. In this study, we propose new
confidence intervals for the population mean based on Edgeworth expansion that include both
skewness and kurtosis corrections. We compared existing and newly proposed confidence intervals
for a range of samples from symmetric and skewed distributions of varying levels of kurtosis. Using
Monte Carlo simulations, we evaluated the performance of these intervals based on the coverage
probability, mean length, and standard deviation of the length. The proposed bootstrap Edgeworth-
based confidence interval outperformed other confidence intervals in terms of coverage probability
for both symmetric and skewed distributions and can be recommended for general use in practice.
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1. Introduction

The sample mean is a natural and most commonly used measure to summarize the
data. When the probability distribution is skewed, the extremely high or low values pull
away the mean from the center of the distribution. In those cases, it is usually recommended
to use more robust measures of central tendency, such as the median, trimmed mean, etc.
What if our primary concern is not a good measure of central tendency, regardless of the
distribution’s shape? In the cost-effectiveness analysis of new health care programs, the
mean is typically the preferred measure, because multiplying the mean cost by the number
of patients provides health care decision-makers with the budget impact of the health care
technology under study [1]. For insurance companies, average claim size is one of the
crucial measures [2]. National statistical offices publish estimates of household spending
and report the average annual expenditure per household [3]. In situations where we are
interested in a population total, the mean becomes a more valuable measure. In some cases,
choosing the mean emphasizes the goals of the decision analysis and context awareness,
with a primary focus on the measure that can lead to the optimal decision-making policy.

Confidence intervals are essential statistical tools used to measure the uncertainty
associated with a sample statistic. Common parametric confidence intervals for the popula-
tion mean are based on the assumption of a normal population distribution. However, a
wealth of evidence indicates that non-normality in real-world data frequently occurs. For
example, Blanca et al. [4] analyzed 693 data samples of sizes ranging from 10 to 30 and
found that only 5.5% of distributions conformed to normality. Small samples are justifiably
encountered in practice, for example in the cases of rare diseases, experiments in highly
controlled conditions, phase-I trials of clinical studies, etc. [5]. A confidence interval that
performs well for different sample sizes has a higher practical value.

We have analyzed four major types of confidence intervals: normal confidence interval,
t confidence intervals, bootstrap t confidence interval and confidence intervals based on
Edgeworth expansion. Construction of these confidence intervals for the population mean
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µ revolves around the distribution of the statistic T = X−µ

ŜEM
, where X is the sample mean

and ŜEM is the estimate of the standard error of the sample mean. Student’s t confidence
intervals approximate the distribution of the statistic with the Student’s distribution. They
adjust for data non-normality by either removing the effect of skewness [6], transforming
the statistics [7], using more robust measures of variability [8–10], or modifying the dis-
tribution’s degrees of freedom [11]. The bootstrap t confidence interval approximates the
distribution of the statistic T through bootstrapping [12,13]. Edgeworth expansion approxi-
mates the distribution of the statistic by correcting the basic normal approximation for the
effects of skewness, kurtosis, etc. Previous studies focused on the first-order Edgeworth
expansion together with the transformation of the statistic, either by using normal distribu-
tion [14,15] as the baseline or bootstrap distribution [16]. None of these confidence intervals
demonstrated adequate performance in achieving the nominal coverage probability for
moderately to highly skewed data. Their performance was even worse for small samples.

Banik and Kibria [17] conducted the comparative study of the numerious confidence
intervals for the population mean, where they compared their performance for random
samples from normal and various skewed distributions. None of the methods provided
completely satisfactory coverage for moderate to high skewness, especially when the
sample size was small. They did not analyze the interval estimators’ performance for
higher levels of kurtosis, i.e., for random samples from symmetric or skewed heavy-tailed
distributions. Skewness is a measure of symmetry and offers valuable information about
the shape of the distribution. Kurtosis is another measure of the shape that takes into
account both peakedness and tails, providing additional insight about the distribution [18].
We propose using both skewness and kurtosis corrections to achieve better performance of
the confidence interval for the population mean.

The coverage probability of the confidence intervals is dependent on the accuracy
of the approximation of the distribution of the statistic T. Existing methods do not have
satisfactory performance for small-sized skewed data, as their approximations work better
for large samples and do not incorporate enough information available in the data. Our
aim was to construct the confidence interval for the population mean based on the more
accurate approximation of the distribution of the statistic T. We created a new confidence
interval for the population mean, which is based on the second-order Edgeworth expansion
of the distribution of the statistic T. This expansion corrects the normal approximation
by incorporating information about both the skewness and kurtosis. We have created
two additional versions of the proposed interval estimator: the modified version with the
bias-corrected estimates of the skewness and kurtosis and the bootstrap version that uses
the bootstrap distribution of the statistic T. Bootstrap confidence intervals are known to
improve the coverage but can have the drawback of producing longer intervals, especially
for small samples [13].

We performed a simulation study to compare various confidence intervals by gener-
ating random samples of different sizes from symmetric and skewed distributions with
varying levels of kurtosis. Theoretical comparison, even when it is available (i.e., asymptotic
coverage), does not provide a lot of information about the performance of the confidence
interval for small samples. A simulation study where confidence intervals’ performance is
compared for various samples from a wide range of distribution’s shapes is an essential
tool for providing deeper insight. We compared various confidence intervals based on
the following criteria: (1) coverage probability; (2) mean interval length; and (3) standard
deviation of the interval length. The coverage probability is the probability that a confi-
dence interval will include the true value of the unknown parameter. The definition of
the confidence interval states that the coverage probability at any value of the parameter
must be at least the confidence level [19]. As such, coverage probability is a measure of the
accuracy of a confidence interval. We can make more accurate conclusions as the coverage
probability moves closer to the confidence level (nominal coverage probability). On the
other hand, the confidence interval width measures the precision characterizing the point
estimate. A narrow confidence interval demonstrates a greater degree of precision. The
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standard deviation of the confidence interval length is also reported, as it can provide us
with information on how its length varies.

This paper is organized as follows: In Section 2, we review the existing confidence
intervals for the population mean. In Section 3, we present the existing Edgeworth-based
confidence intervals and introduce a new interval. In Section 4, we describe the Monte Carlo
simulation study that is used to evaluate the performance of the confidence intervals. We
present the results of our comparative analysis in Section 5 and discuss them in Section 6.
Finally, conclusions are given in Section 7.

2. Existing Methods

Let X be a continuous random variable with unknown mean µ = E(X), variance

σ2 = V(X), skewness γ = E(X−µ)3

σ3 , and excess kurtosis k = E(X−µ)4

σ4 − 3.
Let (X1, X2, . . . Xn) be a simple random sample. Mean, variance, skewness, and excess

kurtosis are, respectively, estimated from the sample with

X =
1
n

n

∑
i=1

Xi, S2 =
1

n − 1

n

∑
i=1

(Xi − X)2,

γ̂ =

1
n

n
∑

i=1
(Xi − X)3

(
1
n

n
∑

i=1
(Xi − X)2

)3/2 , k̂ =

1
n

n
∑

i=1
(Xi − X)4

(
1
n

n
∑

i=1
(Xi − X)2

)2 − 3.

2.1. Normal Confidence Interval

According to Slutzky’s theorem [20], the statistic T = X−µ
S

√
n has approximately a

standard normal distribution for large sample sizes. This result follows from two facts:
(1) The sample mean has a normal distribution, either exactly for normal samples or
approximately for non-normal large samples (according to the central limit theorem), and
(2) The sample variance converges in probability to σ2 when n → ∞, according to the law
of large numbers.

Two-sided 100(1 − α)% confidence interval for the population mean is equal to

Iµ =

[
X − z1− α

2

S√
n

, X + z1− α
2

S√
n

]
, (1)

where z1− α
2

is 1 − α
2 -quantile of the standard normal distribution. A normal-based confi-

dence interval is usually recommended when the sample size is large.

2.2. Student’s t Confidence Intervals
2.2.1. Ordinary t Confidence Interval

When the distribution is normal, the statistic T = X−µ
S

√
n has a Student’s t-distribution

with n − 1 degrees of freedom. This is the case because (1) the sample mean has a normal

distribution, (2) the statistic (n−1)S2

σ2 has a χ2 distribution with n − 1 degrees of freedom,
and (3) the sample mean and variance are uncorrelated. For non-normal samples, the
discrepancy between the distribution of the sample variance and χ2

n−1 can be substantial,
and also the sample mean and the sample variance are correlated.

Two-sided 100(1 − α)% confidence interval for the population mean is equal to

Iµ =

[
X − tn−1;1− α

2

S√
n

, X + tn−1;1− α
2

S√
n

]
, (2)

where tn−1;1− α
2

is 1 − α
2 -quantile of Student’s t-distribution with n − 1 degrees of freedom.

An ordinary t-based confidence interval is usually recommended when the variable X is
normally distributed with unknown variance.
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2.2.2. Modified t Confidence Interval

O’Neill [11] discussed the approximate distribution results for the sample variance. If

excess kurtosis and variance are finite, then dfnS2

σ2 ∼ χ2
dfn

, as n → ∞, where d f n = 2n
k+ 2n

n−1
.

In the case of normally distributed data, we get dfn = n − 1. Further, he derived the limit
of the correlation between the sample mean and sample variance, which depends on the
coefficients of skewness and excess kurtosis

lim
n→∞

ρ(X, S2) =
γ√

k + 2
.

Finally, he showed that the statistic X−µ
S

√
n has approximately Student’s t-distribution

with dfn degrees of freedom for large sample sizes. Note that this approximation ignores
the correlation between the sample mean and the sample variance.

Two-sided 100(1 − α)% confidence interval for the population mean is equal to

Iµ =

[
X − tdfn ;1− α

2

S√
n

, X + tdfn ;1− α
2

S√
n

]
, (3)

where tdfn ;1− α
2

is 1 − α
2 -quantile of Student’s t-distribution with dfn degrees of freedom.

2.2.3. Johnson’s t Confidence Interval

Johnson [6] suggested the following two-sided 100(1 − α)% confidence interval for
the population mean that includes the skewness correction

Iµ =

[(
X +

Sγ̂

6n

)
− tn−1;1− α

2

S√
n

,
(

X +
Sγ̂

6n

)
+ tn−1;1− α

2

S√
n

]
. (4)

2.2.4. Shi-Kibria’s t Confidence Interval

Shi and Kibria [8] suggested using the following two-sided 100(1 − α)% confidence
interval for the population mean

Iµ =

[
X − tn−1;1− α

2

S̃√
n

, X + tn−1;1− α
2

S̃√
n

]
, (5)

where S̃2 = 1
n−1

n
∑

i=1
(Xi − X̃)2, and X̃ is the sample median.

2.3. Bootstrap t Confidence Interval

Let (X∗
1 , X∗

2 , . . . X∗
n) be a bootstrap sample, generated by random sampling with re-

placement from the original sample (X1, X2, . . . , Xn). We calculate the sample mean X∗, the
sample standard deviation S∗, and the statistic T∗ = X∗−X

S∗
√

n. We repeat the procedure B
times and sort the sample statistics into the non-decreasing order T∗

(1) ≤ T∗
(2) ≤ . . . ≤ T∗

(B).
Two-sided 100(1 − α)% confidence interval for the population mean is equal to [21][

X − T∗
(u)

S√
n

, X − T∗
(l)

S√
n

]
, (6)

where l = ⌊(B + 1) α
2 ⌋ and u = B − l.

3. Existing and New Edgeworth-Based Confidence Intervals

The distribution of the statistic T = X−µ
σ̂

√
n admits the Edgeworth expansion [22]

P(T ≤ x) = Φ(x) +
1√
n

p1(x)φ(x) +
1
n

p2(x)φ(x) + . . . +
1

nj/2 pj(x)φ(x) + O(n−(j+1)/2),
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x ∈ R, where Φ(x) and φ(x) are the probability distribution function and density function

of a standard normal distribution, σ̂2 = Ŝ2 = 1
n

n
∑

i=1
(Xi − X)2 and pj is a polynomial of

degree no more than 3j − 1 depending on the cumulants of (X − µ)/σ̂.
First two polynomials p1 and p2 are, respectively, equal to

p1(x) = γ

(
x2

3
+

1
6

)
,

p2(x) = x
(

1
12

k(x2 − 3)− 1
18

γ2(x4 + 2x2 − 3)− 1
4
(x2 + 3)

)
.

Polynomial p1 is called a skewness correction and p2 a correction for kurtosis and for
the secondary effect of skewness.

3.1. Hall’s Confidence Interval

In order to find the transformation that reduces the skewness of the statistic T, Hall [14]
assumed the Edgeworth expansion

P(T ≤ x) = Φ(x) +
1√
n

γ

(
x2

3
+

1
6

)
φ(x) + O(n−1), x ∈ R.

He showed that the transformed statistic f (T) = T + 1√
n γ
(

T2

3 + 1
6

)
admits the Edge-

worth expansion of the form P( f (T) ≤ x) = Φ(x) + O(n−1).
Hall proposed the transformation

g(T) = f (T) +
1

27n
γ2T3 = T +

1
3
√

n
γT2 +

1
27n

γ2T3 +
1

6
√

n
γ̂,

by adding the term 1
27n γ2T3 to f (T) to convert it to a monotone one-to-one function with a

unique inverse.
Two-sided 100(1 − α)% confidence interval with the skewness correction is equal to

Iµ =

[
X − g−1(zξ

) Ŝ√
n

, X − g−1(z1−ξ

) Ŝ√
n

]
, (7)

where

g−1(zξ) =
3
√

n
γ̂

(
3

√
1 + γ̂

(
zξ√

n
− γ̂

6n

)
− 1

)
,

zξ is ξ-quantile of a standard normal distribution, and ξ = 1 − α
2 .

3.2. Modified Hall’s Confidence Interval

Bias, mean square error, and variability of sample skewness and sample excess kurtosis
can be considerable [23]. We wanted to explore whether including of the bias-corrected
estimate of the sample skewness would help improve the performance of the Edgeworth-
based confidence interval with the skewness correction.

We estimated the bias of the sample skewness by bootstrapping in the following
way. Let (X∗

1 , X∗
2 , . . . X∗

n) be a bootstrap sample, generated by random sampling with
replacement from the original sample (X1, X2, . . . , Xn). Bootstrap skewness estimate γ̂∗ is
equal to

γ̂∗ =

1
n

n
∑

i=1
(X∗

i − X∗
)3

(
1
n

n
∑

i=1
(X∗

i − X∗
)2
)3/2 .
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where X∗ is the mean of a bootstrap sample. After repeating the procedure B times, we
calculated the bootstrap estimate of the bias [24]

biasboot(γ̂) =
1
B

B

∑
i=1

γ̂∗
i − γ̂.

The bias-corrected estimate of the sample skewness is then equal to

γ̂corr = γ̂ − biasboot(γ̂).

Two-sided 100(1 − α)% modified Edgeworth-based confidence interval with the skew-
ness correction is equal to

Iµ =

[
X − g−1(zξ

) Ŝ√
n

, X − g−1(z1−ξ

) Ŝ√
n

]
, (8)

where

g−1(zξ

)
=

3
√

n
γ̂corr

(
3

√
1 + γ̂corr

(
zξ√

n
− γ̂corr

6n

)
− 1

)
,

zξ is ξ-quantile of a standard normal distribution, and ξ = 1 − α
2 .

3.3. Bootstrap Hall’s Confidence Interval

Let T∗ = X∗−X
Ŝ∗

√
n, where X∗ and Ŝ∗ are mean and standard deviation of a bootstrap

sample. Further, let g∗(T∗) be the bootstrap version of g(T) [16]

g∗(T∗) = T∗ +
1

3
√

n
γ̂∗(T∗)2 +

1
27n

γ̂∗2
(T∗)3 +

1
6
√

n
γ̂∗,

where γ̂∗ is estimate of skewness calculated from the bootstrap sample. Write ŷα for the
solution of

P(g∗(T∗) ≤ ŷα) = α.

Two-sided 100(1 − α)% bootstrap confidence interval with the skewness correction is
equal to

Iµ =

[
X − g−1(ŷξ

) Ŝ√
n

, X − g−1(ŷ1−ξ

) Ŝ√
n

]
, (9)

where ξ = 1 − α
2 .

3.4. New Confidence Interval

We will denote with tα and zα α-quantiles of the statistic T and standard normal
statistic Z, respectively. An expansion of tα in terms of zα

tα = zα +
1√
n

p11(zα +
1
n

p21(zα) +
1

nj/2 pj1(zα) + O(n−(j+1)/2)

is called a Cornish-Fisher expansion [22]. Polynomials pj1 are determined from the polyno-
mials p1, p2, . . . , pj of the Edgeworth expansion. For the first two polynomials p11 and p21
it follows
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p11(x) = −p1(x) = −γ

6
(2x2 + 1),

p21(x) = p1(x)p′1(x)− 1
2

xp1(x)2 − p2(x) =

= x
(

5γ2(4x2 − 1)
72

− k(x2 − 3)
12

+
x2 + 3

4

)
.

When we pass from the population skewness and kurtosis to their sample estimates,
we get the sample version of the Cornish-Fisher expansion

tα ≈ zα −
γ̂

6
√

n
(2z2

α + 1) +
zα

n

(
5γ̂2(4z2

α − 1)
72

− k̂(z2
α − 3)
12

+
z2

α + 3
4

)
.

We propose the following two-sided 100(1 − α)% confidence interval for the popula-
tion mean that includes both skewness and kurtosis corrections

Iµ =

[
X − tξ

Ŝ√
n

, X − t1−ξ
Ŝ√
n

]
, (10)

where ξ = 1 − α
2 .

3.5. Modified New Confidence Interval

We wanted to explore whether including the bias-corrected estimates of the sample
skewness and sample excess kurtosis would help improve the performance of the newly
proposed Edgeworth-based confidence interval. We calculated the bias of the sample
skewness, as discussed in the modified Edgeworth-based confidence interval with the
skewness correction. We used bootstrapping to estimate the bias of the sample excess
kurtosis in the following way.

Let (X∗
1 , X∗

2 , . . . X∗
n) be a bootstrap sample, generated by random sampling with replace-

ment from the original sample (X1, X2, . . . , Xn). The bootstrap estimate k̂∗ is equal to

k̂∗ =

1
n

n
∑

i=1
(X∗

i − X∗
)4

(
1
n

n
∑

i=1
(X∗

i − X∗
)2
)2 − 3.

where X∗ is the mean of a bootstrap sample. We calculated a bootstrap estimate of the bias
of the sample excess kurtosis [24]

biasboot(k̂) =
1
B

B

∑
i=1

k̂∗i − k̂.

The bias-corrected estimate of the sample excess kurtosis is then equal to

k̂corr = k̂ − biasboot(k̂).

Two-sided 100(1 − α)% modified confidence interval with the skewness and kurtosis
corrections is equal to

Iµ =

[
X − tξ

Ŝ√
n

, X − t1−ξ
Ŝ√
n

]
, (11)

where tα ≈ zα − γ̂corr
6
√

n (2z2
α + 1) + zα

n

(
5γ̂2

corr(4z2
α−1)

72 − k̂corr(z2
α−3)

12 + z2
α+3
4

)
, and ξ = 1 − α

2 .
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3.6. Bootstrap New Confidence Interval

Let T∗ = X∗−X
Ŝ∗

√
n, where X∗ and Ŝ∗ are mean and standard deviation of a bootstrap

sample. Write t∗α for the solution of

P(T∗ ≤ t∗α) = α.

Two-sided 100(1 − α)% bootstrap confidence interval for the population mean with
the skewness and kurtosis corrections is equal to

Iµ =

[
X − tξ

Ŝ√
n

, X − t1−ξ
Ŝ√
n

]
, (12)

where tα ≈ t∗α −
γ̂

6
√

n (2t∗α
2 + 1) + t∗α

n

(
5γ̂2(4t∗α

2−1)
72 − k̂(t∗α

2−3)
12 + t∗α

2+3
4

)
, and ξ = 1 − α

2 .

4. Simulation Study

This section details the simulation study for the comparison of the confidence intervals’
performance. Code for both the methods and the simulations is written by the author in
the programming language R. The design of the simulation study is presented below.

1. We generated samples of sizes n = 10, 20, 30, 50, 70, 100 from

• positively asymmetric distributions

❖ beta B(1, 100) (γ = 1.94, k = 5.54),
❖ beta B(1, 10) (γ = 1.52, k = 2.78),
❖ beta B(1, 2)(γ = 0.57, k = −0.6),
❖ gamma Γ(100, 0.1), (γ = 0.2, k = 0.06),
❖ gamma Γ(4, 1) (γ = 1, k = 1.5),
❖ gamma Γ(1, 1) or standard exponential distribution (γ = 2, k = 6),
❖ log-normal LN (1, 0.5) (γ = 1.75, k = 5.9).

• negatively asymmetric distributions

❖ beta B(100, 1) (γ = −1.94, k = 5.54),
❖ beta B(10, 1) (γ = −1.52, k = 2.78),
❖ beta B(2, 1) (γ = −0.57, k = −0.6),

• symmetric distributions

❖ beta B(1, 1) or standard uniform distribution (γ = 0, k = −1.2),
❖ beta B(5, 5) (γ = 0, k = −0.46),
❖ beta B(300, 300) (γ = 0, k = −0.01),
❖ normal distribution N (2, 1) (γ = 0, k = 0),
❖ logistic LG(4, 0.5) (γ = 0, k = 1.2),

2. We calculated two-sided 95% confidence intervals, as described by the Equations (1)–(12).
3. Simulation was repeated N = 5000 times with the number of bootstrap replications

equal to B = 2000.

Distributions are chosen to represent various shapes, focusing on those that are often
encountered in practice, with wide range of applications [25,26].

Further, when selecting the parameters of the distributions, and therefore values of
skewness and excess kurtosis, we take into account the results of the study by Blanca et al. [4].
They analyzed 693 data distributions, with a sample size ranging from 10 to 30. Their results
showed that skewness ranged between −2.49 and 2.33 and excess kurtosis between −1.92
and 7.41. Bias-corrected estimates of the sample skewness and sample kurtosis that are
used in modified Edgeworth-based confidence intervals are calculated using 2000 bootstrap
replications.

Sample sizes are chosen to represent small (n = 10 and n = 20), medium (n = 30,
n = 50 and n = 70) and large sample sizes (n = 100). Sample size n = 30 is often
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encountered in the literature as being large enough for central limit theorem to follow,
while n = 50 is cited as sufficient to obtain stable parameter estimates (for example, see the
discussion in [27]).

The performance of the confidence intervals is compared using three key metrics:
the coverage probability, the mean length, and the standard deviation of the length. The
coverage probability is estimated using the proportion of cases where the population mean
falls within the confidence interval, i.e., between its lower and upper limits. Further, the
mean and standard deviation of the interval’s length are estimated, respectively, with the
mean and standard deviation of the length of a random sample of N simulated confidence
intervals. Desirable properties of the confidence interval are defined as having coverage
probability close to the nominal level and being of short length with a small standard
deviation of the length.

5. Results
5.1. Comparisons of Different Versions of Edgeworth-Based Confidence Intervals

Firstly, we wanted to investigate the performance of different versions of the Edgeworth-
based confidence intervals for the population mean. In Hall’s confidence interval, a modi-
fied version with a bias-corrected estimate of skewness generally offers a small advantage
over a non-modified version in terms of estimated coverage probability and a slightly
greater mean and standard deviation of the length. On the other hand, the bootstrap
version of the confidence interval has a smaller or greater estimated coverage probability
than the other two, depending on the sample size, but always a greater mean and standard
deviation of the length (see example Figures 1 and 2).

Regarding the newly proposed Edgeworth-based confidence interval, the modified
version demonstrates a more pronounced advantage in terms of estimated coverage proba-
bility, accompanied by a slightly greater mean and standard deviation of the length. The
bootstrap version has a higher estimated coverage probability than the other two for the
majority of the sample sizes, but with a higher mean and standard deviation of the length,
especially for the sample sizes n = 10 and n = 20 (see example Figures 3 and 4).

The modified versions of the Edgeworth-based confidence intervals offers some
improvement in the coverage probability and should be taken into account over the
non-modified version. We included modified and bootstrap versions of the Edgeworth-
based confidence intervals in the overall comparison of the performance of different
interval estimators.

Figure 1. The comparison of the performance of three versions of Hall’s confidence intervals for
samples from the beta distribution B(1, 100) with skewness γ = 1.94 and excess kurtosis k = 5.54. Ab-
breviations: hall-Hall’s confidence interval, mhall-modified Hall’s confidence interval, bhall-bootstrap
Hall’s confidence interval.



Symmetry 2024, 16, 1424 10 of 22

Figure 2. The comparison of the performance of three versions of Hall’s confidence interval for
samples from the gamma distribution G(1, 1) with skewness γ = 2 and excess kurtosis k = 6. Abbre-
viations: hall-Hall’s confidence interval, mhall-modified Hall’s confidence interval, bhall-bootstrap
Hall’s confidence interval.

Figure 3. The comparison of the performance of three versions of the new confidence interval for
samples from the beta distribution B(1, 100) with skewness γ = 1.94 and excess kurtosis k = 5.54.
Abbreviations: new-new confidence interval, mnew-modified new confidence interval, bnew-bootstrap
new confidence interval.

Figure 4. The comparison of the performance of three versions of the new confidence interval
for samples from the gamma distribution G(1, 1) with skewness γ = 2 and excess kurtosis k = 6.
Abbreviations: new-new confidence interval, mnew-modified new confidence interval, bnew-bootstrap
new confidence interval.
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5.2. Overall Comparison of the Confidence Intervals

We summarized the results of the simulation study in Tables 1 and 2. Normal distri-
bution managed to attain the nominal coverage probability only for sample size n = 100
from normal distribution (with an estimated coverage probability equal to 95.08%). We did
not include the results of the normal confidence interval in the presented tables due to the
interval’s inferior performance.

We further compared the confidence intervals by graphically representing the values
of three key metrics (estimated coverage probability, mean, and standard deviation of the
interval length) on line graphs for each of the considered distributions. In the graphical
comparisons, we included only the interval estimators that attained nominal coverage
probability for at least one sample size. Examples of the graphical comparisons for the
random samples from the distribution with both moderate skewness and kurtosis and the
distribution with both high skewness and kurtosis are shown in the Figures 5 and 6.

The bootstrap new confidence interval achieved a nominal coverage probability for
all positively skewed distributions and all sample sizes. However, for small samples
(n = 10), the mean and standard deviation of the length were significantly higher. In the
case of small asymmetry, the modified new confidence interval attained nominal coverage
probability for the majority of sample sizes. For moderate to high positive skewness, this
confidence interval attained a nominal level for at least one sample size with the lowest
estimated coverage probability of 92.9% (beta B(1, 100) distribution). Bootstrap t confidence
interval was generally ranked third in terms of coverage (the lowest estimated coverage
probability equal to 93.7% for log-normal distribution), and Shi-Kibria’s t confidence
interval was ranked fourth (with the lowest value of estimated coverage probability 90.78%
for exponential distribution). Other t confidence intervals failed to achieve the nominal
coverage probability for moderate to highly skewed distributions, with the exception of
larger samples from the log-normal distribution. Their performance was better in the cases
of small skewness. Modified Hall’s confidence interval underperformed in all cases, except
for the large samples from distributions with small asymmetry. Bootstrap Hall’s confidence
interval had slightly better performance.
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Table 1. Confidence intervals’ coverage, mean length, and standard deviation of length for positively skewed distributions.

n
Estimated Coverage Probability Mean Length (Standard Deviation)

t modt johnsn shik tboot mhall bhall mnew bnew t modt johnsn shik tboot mhall bhall mnew bnew

beta B(1, 2) (γ = 0.57, k = −0.6)
10 0.9386 0.9314 0.9406 0.9436 0.9624 0.9262 0.9416 0.9498 0.988 0.3309 0.3151 0.3309 0.3418 0.3742 0.3036 0.4292 0.3369 0.6677

(0.0703) (0.0659) (0.0703) (0.0757) (0.1129) (0.0988) (0.3202) (0.0744) (0.9364)
20 0.9436 0.9412 0.9464 0.9494 0.9616 0.9444 0.9496 0.959 0.9796 0.2187 0.2142 0.2187 0.2245 0.2256 0.2041 0.2122 0.2216 0.2629

(0.0307) (0.0291) (0.0307) (0.0334) (0.033) (0.0296) (0.0439) (0.0309) (0.0522)
30 0.9456 0.9446 0.9476 0.9508 0.9586 0.9458 0.947 0.9568 0.9722 0.1753 0.1731 0.1753 0.1794 0.1784 0.1671 0.1691 0.177 0.1956

(0.02) (0.0192) (0.02) (0.0216) (0.0209) (0.0189) (0.0183) (0.0201) (0.0241)
50 0.9442 0.9434 0.947 0.9502 0.9562 0.9468 0.949 0.9554 0.9658 0.1333 0.1324 0.1333 0.136 0.1345 0.1296 0.1303 0.1342 0.1417

(0.0115) (0.0112) (0.0115) (0.0125) (0.012) (0.0111) (0.0111) (0.0115) (0.0128)
70 0.9464 0.946 0.9474 0.9514 0.9538 0.9492 0.9468 0.9558 0.9618 0.1121 0.1115 0.1121 0.1142 0.1127 0.1098 0.1102 0.1126 0.1169

(0.0081) (0.008) (0.0081) (0.0088) (0.0085) (0.0079) (0.0081) (0.0082) (0.0089)
100 0.9508 0.9504 0.9518 0.9544 0.9552 0.951 0.951 0.9556 0.963 0.0934 0.0931 0.0934 0.0951 0.0938 0.0921 0.0923 0.0938 0.0962

(0.0056) (0.0055) (0.0056) (0.0061) (0.0061) (0.0055) (0.0058) (0.0056) (0.0063)

beta B(1, 10) (γ = 1.52, k = 2.78)
10 0.9114 0.908 0.9134 0.9162 0.9428 0.903 0.9226 0.9328 0.973 0.1109 0.1123 0.1109 0.1162 0.1447 0.1298 0.2027 0.1246 0.5473

(0.0388) (0.0446) (0.0388) (0.0422) (0.081) (0.0779) (0.1583) (0.0549) (2.8423)
20 0.9262 0.9304 0.9276 0.9338 0.9528 0.9326 0.943 0.9496 0.969 0.0753 0.0781 0.0753 0.0788 0.0847 0.086 0.107 0.0824 0.1279

(0.0186) (0.0219) (0.0186) (0.0203) (0.0264) (0.0421) (0.0733) (0.0249) (0.09)
30 0.9332 0.9388 0.9358 0.9438 0.9548 0.944 0.949 0.956 0.9682 0.0607 0.0627 0.0607 0.0634 0.0654 0.065 0.0728 0.0648 0.0831

(0.012) (0.0137) (0.012) (0.0131) (0.0152) (0.0235) (0.0389) (0.0149) (0.0325)
50 0.9418 0.945 0.9424 0.9488 0.9538 0.9486 0.9522 0.9544 0.9632 0.0466 0.0478 0.0466 0.0486 0.0487 0.0476 0.0493 0.0487 0.0555

(0.0071) (0.0078) (0.0071) (0.0077) (0.0081) (0.0099) (0.0133) (0.0081) (0.0119)
70 0.9394 0.9446 0.9412 0.9482 0.9504 0.9444 0.9488 0.9504 0.9542 0.0392 0.04 0.0392 0.0409 0.0404 0.0395 0.0403 0.0404 0.0443

(0.0051) (0.0055) (0.0051) (0.0056) (0.0057) (0.0059) (0.0069) (0.0056) (0.0073)
100 0.9416 0.945 0.9426 0.9492 0.9476 0.9428 0.9438 0.9474 0.95 0.0327 0.0332 0.0327 0.0341 0.0334 0.0328 0.0332 0.0334 0.0356

(0.0036) (0.0038) (0.0036) (0.0039) (0.0039) (0.0038) (0.004) (0.0038) (0.0046)

beta B(1, 100) (γ = 1.94, k = 5.54)
10 0.9058 0.9026 0.9078 0.9118 0.9468 0.9022 0.9218 0.9292 0.9754 0.0131 0.0136 0.0131 0.0138 0.0186 0.0163 0.0259 0.0154 0.1106

(0.0053) (0.0065) (0.0053) (0.0057) (0.0136) (0.0106) (0.0206) (0.0084) (0.5761)
20 0.9176 0.9226 0.92 0.925 0.947 0.9298 0.9396 0.9452 0.968 0.0088 0.0094 0.0088 0.0092 0.0103 0.0111 0.0142 0.01 0.0184

(0.0026) (0.0034) (0.0026) (0.0028) (0.0042) (0.0066) (0.0105) (0.0039) (0.0217)
30 0.9242 0.9324 0.9272 0.934 0.947 0.9276 0.9368 0.9458 0.9602 0.0071 0.0075 0.0071 0.0075 0.0079 0.0084 0.0098 0.0079 0.0112

(0.0017) (0.0022) (0.0017) (0.0019) (0.0025) (0.0043) (0.0067) (0.0025) (0.0077)
50 0.9384 0.944 0.939 0.9466 0.9522 0.947 0.949 0.954 0.9594 0.0055 0.0057 0.0055 0.0057 0.0058 0.0059 0.0064 0.0059 0.0071

(0.001) (0.0012) (0.001) (0.0011) (0.0013) (0.0022) (0.0032) (0.0013) (0.0027)
70 0.937 0.943 0.9382 0.9476 0.9488 0.9454 0.948 0.9506 0.9574 0.0046 0.0048 0.0046 0.0048 0.0048 0.0048 0.005 0.0048 0.0055

(0.0007) (0.0008) (0.0007) (0.0008) (0.0009) (0.0013) (0.0017) (0.0009) (0.0014)
100 0.9438 0.9478 0.9446 0.9506 0.948 0.944 0.946 0.9484 0.9502 0.0039 0.004 0.0039 0.004 0.004 0.004 0.0041 0.004 0.0044

(0.0005) (0.0006) (0.0005) (0.0006) (0.0006) (0.0008) (0.001) (0.0006) (0.0009)
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Table 1. Cont.

n
Estimated Coverage Probability Mean Length (Standard Deviation)

t modt johnsn shik tboot mhall bhall mnew bnew t modt johnsn shik tboot mhall bhall mnew bnew

gamma G(100, 0.1) (γ = 0.2, k = 0.06)
10 0.9506 0.9424 0.9516 0.9544 0.9474 0.9006 0.9242 0.946 0.9682 139.2332 134.4575 139.2332 142.1655 150.1299 127.317 178.6623 140.8266 224.3392

(33.8268) (33.7284) (33.8268) (34.751) (40.0917) (48.1457) (121.685) (36.1823) (131.2656)
20 0.953 0.9508 0.9532 0.9556 0.9524 0.932 0.944 0.9502 0.9642 92.4165 91.6894 92.4165 93.5786 94.0277 86.0954 94.3772 93.1071 106.8596

(15.4694) (15.6693) (15.4694) (15.7801) (16.2467) (16.4159) (26.0686) (15.981) (20.9608)
30 0.9502 0.9498 0.9502 0.9518 0.948 0.9368 0.9458 0.9482 0.9596 74.0697 73.8287 74.0697 74.7326 74.5952 70.3095 74.0317 74.3645 80.4221

(9.7421) (9.8488) (9.7421) (9.8942) (10.033) (9.3735) (10.7363) (9.8881) (11.297)
50 0.9512 0.9504 0.9506 0.9524 0.9512 0.9436 0.951 0.9514 0.9588 56.5142 56.4604 56.5142 56.8473 56.6638 54.7233 56.4059 56.6186 59.0601

(5.8096) (5.8405) (5.8096) (5.8882) (6.0061) (5.6589) (6.0662) (5.8546) (6.3869)
70 0.9518 0.952 0.9522 0.953 0.9548 0.9474 0.9544 0.9526 0.9594 47.6283 47.6148 47.6283 47.8378 47.6958 46.5326 47.5691 47.6811 49.0711

(4.0816) (4.1026) (4.0816) (4.1242) (4.2327) (4.0027) (4.2594) (4.1015) (4.4059)
100 0.9526 0.9524 0.9524 0.953 0.9546 0.9502 0.9538 0.9532 0.9576 39.6213 39.619 39.6213 39.7515 39.6539 38.976 39.5923 39.6481 40.4296

(2.8589) (2.8672) (2.8589) (2.8834) (2.9946) (2.819) (3.0057) (2.8679) (3.0771)

gamma G(4, 1) (γ = 1, k = 1.5)
10 0.9296 0.9242 0.9302 0.9348 0.943 0.895 0.9248 0.9384 0.9678 2.7319 2.6932 2.7319 2.8141 3.141 2.8128 4.2627 2.8926 6.279

(0.8119) (0.8993) (0.8119) (0.8636) (1.2933) (1.5718) (3.4337) (1.0798) (9.493)
20 0.9438 0.945 0.945 0.9472 0.9492 0.9288 0.9436 0.9486 0.9642 1.835 1.8552 1.835 1.8777 1.9344 1.8677 2.2207 1.9165 2.425

(0.3815) (0.4357) (0.3815) (0.4055) (0.4745) (0.7602) (1.4046) (0.4819) (1.0333)
30 0.9442 0.9444 0.9448 0.9474 0.9488 0.936 0.9452 0.951 0.961 1.4683 1.4876 1.4683 1.4973 1.5161 1.4646 1.594 1.5156 1.7383

(0.2487) (0.2771) (0.2487) (0.2628) (0.2894) (0.4024) (0.6433) (0.2941) (0.4763)
50 0.9484 0.9496 0.9482 0.9514 0.9518 0.9436 0.9492 0.9532 0.9586 1.1263 1.139 1.1263 1.1463 1.1478 1.1158 1.1575 1.1492 1.2411

(0.1488) (0.1629) (0.1488) (0.1578) (0.1656) (0.1946) (0.2451) (0.1673) (0.2205)
70 0.9476 0.9478 0.9482 0.9512 0.9492 0.9442 0.949 0.9488 0.9532 0.9496 0.9583 0.9496 0.9651 0.9624 0.9401 0.9628 0.9631 1.0158

(0.1062) (0.1129) (0.1062) (0.1123) (0.1147) (0.1131) (0.1245) (0.1142) (0.137)
100 0.9454 0.947 0.946 0.9476 0.9486 0.9436 0.9474 0.9486 0.9518 0.7913 0.797 0.7913 0.8035 0.7987 0.7854 0.7986 0.7992 0.8294

(0.073) (0.0769) (0.073) (0.0772) (0.0787) (0.0761) (0.083) (0.0772) (0.0894)

gamma G(1, 1) (γ = 2, k = 6)
10 0.9002 0.898 0.9032 0.9078 0.943 0.9016 0.9226 0.93 0.9724 1.327 1.3843 1.327 1.4 1.9027 1.6597 2.6585 1.5627 12.6293

(0.5507) (0.6818) (0.5507) (0.6003) (1.4413) (1.0949) (2.1225) (0.8684) (108.5592)
20 0.9204 0.927 0.9244 0.9296 0.9444 0.923 0.9314 0.945 0.961 0.8984 0.9565 0.8984 0.944 1.0552 1.1212 1.4518 1.0199 1.8825

(0.265) (0.3407) (0.265) (0.2872) (0.4302) (0.647) (1.0614) (0.4004) (2.1679)
30 0.928 0.9336 0.929 0.9356 0.9478 0.932 0.9372 0.9468 0.961 0.7226 0.7647 0.7226 0.7583 0.8057 0.8556 1.019 0.7979 1.1368

(0.1752) (0.2183) (0.1752) (0.1898) (0.2461) (0.4334) (0.6937) (0.2452) (0.6946)
50 0.9382 0.943 0.9386 0.9448 0.948 0.9386 0.9428 0.9494 0.954 0.5589 0.5862 0.5589 0.5861 0.5986 0.618 0.6718 0.6009 0.7354

(0.1093) (0.1352) (0.1093) (0.1182) (0.1399) (0.2468) (0.3611) (0.1484) (0.3268)
70 0.935 0.9406 0.937 0.944 0.9506 0.9472 0.9484 0.9518 0.9584 0.4694 0.4868 0.4694 0.4917 0.4929 0.4964 0.5201 0.4945 0.5658

(0.0789) (0.0932) (0.0789) (0.085) (0.0949) (0.1514) (0.2149) (0.0986) (0.1625)
100 0.942 0.9486 0.943 0.9534 0.9488 0.9448 0.9474 0.9492 0.9524 0.3924 0.4033 0.3924 0.4111 0.406 0.4033 0.4125 0.407 0.4458

(0.0544) (0.0615) (0.0544) (0.0585) (0.0621) (0.079) (0.0994) (0.0635) (0.0886)
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Table 1. Cont.

n
Estimated Coverage Probability Mean Length (Standard Deviation)

t modt johnsn shik tboot mhall bhall mnew bnew t modt johnsn shik tboot mhall bhall mnew bnew

log-normal LN (1, 0.5) (γ = 1.75, k = 5.9)
10 0.923 0.9154 0.9236 0.9272 0.9392 0.8892 0.9166 0.9322 0.966 2.1968 2.2417 2.1968 2.2822 2.7673 2.5595 4.0927 2.4807 9.1887

(0.8359) (1.0291) (0.8359) (0.8987) (1.7204) (1.7349) (3.4579) (1.3234) (32.2238)
20 0.9264 0.9278 0.927 0.9312 0.937 0.9166 0.9292 0.9372 0.957 1.4768 1.5499 1.4768 1.5239 1.6443 1.7123 2.2302 1.6356 2.5914

(0.4176) (0.5616) (0.4176) (0.4457) (0.653) (0.9989) (1.7264) (0.6846) (4.6306)
30 0.9394 0.9438 0.9412 0.945 0.9464 0.9334 0.9426 0.9514 0.9566 1.1969 1.2561 1.1969 1.2326 1.2906 1.3562 1.6144 1.3009 1.7075

(0.2875) (0.3811) (0.2875) (0.3061) (0.4012) (0.7112) (1.1472) (0.4439) (1.2712)
50 0.9438 0.9472 0.9444 0.9482 0.9482 0.9394 0.9448 0.949 0.9542 0.9168 0.9516 0.9168 0.942 0.9597 0.9821 1.0695 0.9682 1.1193

(0.1673) (0.21) (0.1673) (0.1776) (0.2109) (0.3845) (0.5678) (0.231) (0.4332)
70 0.9504 0.9528 0.9508 0.9536 0.9492 0.9452 0.9488 0.953 0.9532 0.7737 0.7979 0.7737 0.7942 0.7997 0.8072 0.852 0.8064 0.8911

(0.121) (0.1477) (0.121) (0.1285) (0.1452) (0.2458) (0.3503) (0.1582) (0.2459)
100 0.9468 0.95 0.9466 0.9522 0.9532 0.9484 0.9522 0.953 0.95 0.6454 0.6615 0.6454 0.6621 0.6614 0.6614 0.6835 0.6651 0.7135

(0.0861) (0.1021) (0.0861) (0.0911) (0.1) (0.1491) (0.1937) (0.1064) (0.149)

t—standard t confidence interval, modt—modified t confidence interval, johnsn—Johnson’s t confidence interval, shik—Shi-Kibria’s t confidence interval), tboot—bootstrap t-confidence
interval, mhall—modified Hall’s confidence interval, bhall—bootstrap Hall’s confidence interval, mnew—modified new confidence interval, bnew—bootstrap new confidence interval.

Table 2. Confidence intervals’ coverage, mean length and standard deviation of length for symmetric distributions.

n
Estimated Coverage Probability Mean Length (Standard Deviation)

t modt johnsn shik tboot mhall bhall mnew bnew t modt johnsn shik tboot mhall bhall mnew bnew

normal N (2, 1) (γ = 0, k = 0)
10 0.945 0.9406 0.9452 0.9482 0.9474 0.9034 0.9294 0.943 0.9694 1.39 1.3419 1.39 1.4191 1.4929 1.2654 1.7451 1.4049 2.2066

(0.3325) (0.3297) (0.3325) (0.3419) (0.3935) (0.4606) (1.16) (0.353) (1.2298)
20 0.9494 0.9474 0.9496 0.9516 0.949 0.932 0.944 0.947 0.9666 0.9204 0.9133 0.9204 0.9314 0.9348 0.8565 0.9375 0.9263 1.059

(0.1526) (0.1542) (0.1526) (0.155) (0.1579) (0.1618) (0.2415) (0.1562) (0.1979)
30 0.949 0.9478 0.9488 0.9504 0.9498 0.9366 0.9464 0.9476 0.9588 0.7406 0.7381 0.7406 0.7468 0.745 0.7029 0.7401 0.7429 0.8016

(0.0976) (0.0978) (0.0976) (0.0988) (0.0993) (0.0957) (0.1098) (0.098) (0.1092)
50 0.9506 0.9496 0.9498 0.9518 0.9474 0.9412 0.9456 0.949 0.9536 0.5653 0.5645 0.5653 0.5682 0.5664 0.547 0.5637 0.5659 0.5894

(0.0576) (0.0576) (0.0576) (0.0581) (0.059) (0.0558) (0.0594) (0.0577) (0.0619)
70 0.9526 0.9524 0.9522 0.9532 0.9532 0.946 0.9522 0.9524 0.958 0.4763 0.476 0.4763 0.4781 0.4769 0.4651 0.4757 0.4766 0.4902

(0.0407) (0.0408) (0.0407) (0.0409) (0.0421) (0.0398) (0.0424) (0.0407) (0.0434)
100 0.961 0.9612 0.9612 0.9614 0.9602 0.9562 0.9596 0.9598 0.9628 0.3961 0.396 0.3961 0.3972 0.3965 0.3895 0.3958 0.3962 0.4039

(0.0279) (0.0279) (0.0279) (0.028) (0.0292) (0.0275) (0.0293) (0.0279) (0.0299)
beta B(300, 300) (γ = 0, k = −0.01)

10 0.949 0.9424 0.95 0.9534 0.9496 0.9064 0.9288 0.9462 0.9708 0.0284 0.0274 0.0284 0.029 0.0305 0.0258 0.0361 0.0287 0.0462
(0.0068) (0.0067) (0.0068) (0.007) (0.0082) (0.0093) (0.024) (0.0071) (0.0494)

20 0.9464 0.9442 0.9468 0.9486 0.9444 0.9288 0.9388 0.9444 0.9576 0.0188 0.0186 0.0188 0.019 0.0191 0.0175 0.0191 0.0189 0.0216
(0.0031) (0.0031) (0.0031) (0.0031) (0.0032) (0.0031) (0.0045) (0.0031) (0.0039)

30 0.951 0.9492 0.9516 0.9532 0.9472 0.9318 0.9456 0.9486 0.9616 0.0151 0.015 0.0151 0.0152 0.0152 0.0143 0.015 0.0151 0.0163
(0.002) (0.002) (0.002) (0.002) (0.002) (0.0019) (0.0021) (0.002) (0.0022)

50 0.9472 0.9468 0.9472 0.9478 0.9466 0.9412 0.9464 0.9476 0.9542 0.0115 0.0115 0.0115 0.0116 0.0115 0.0111 0.0115 0.0115 0.012
(0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0011) (0.0012) (0.0012) (0.0013)
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Table 2. Cont.

n
Estimated Coverage Probability Mean Length (Standard Deviation)

t modt johnsn shik tboot mhall bhall mnew bnew t modt johnsn shik tboot mhall bhall mnew bnew

70 0.9494 0.9488 0.9498 0.9498 0.9508 0.9438 0.9496 0.9508 0.9566 0.0097 0.0097 0.0097 0.0098 0.0097 0.0095 0.0097 0.0097 0.01
(0.0008) (0.0008) (0.0008) (0.0008) (0.0009) (0.0008) (0.0009) (0.0008) (0.0009)

100 0.948 0.948 0.9476 0.949 0.9484 0.9458 0.9488 0.949 0.952 0.0081 0.0081 0.0081 0.0081 0.0081 0.0079 0.0081 0.0081 0.0082
(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

beta B(5, 5) (γ = 0, k = −0.46)
10 0.9504 0.9408 0.9502 0.953 0.958 0.9124 0.9362 0.951 0.976 0.2109 0.2016 0.2109 0.2154 0.2256 0.1864 0.2515 0.2112 0.326

(0.0456) (0.043) (0.0456) (0.0472) (0.0539) (0.0538) (0.1594) (0.046) (0.1928)
20 0.95 0.9462 0.9502 0.952 0.9564 0.933 0.9486 0.9536 0.9734 0.1392 0.1368 0.1392 0.1409 0.1411 0.1282 0.1361 0.1394 0.1584

(0.0202) (0.0195) (0.0202) (0.0206) (0.0208) (0.0185) (0.0203) (0.0201) (0.0241)
30 0.9536 0.9524 0.9534 0.9556 0.956 0.9448 0.9528 0.9566 0.9698 0.1119 0.1107 0.1119 0.1129 0.1126 0.1058 0.1097 0.112 0.1207

(0.0129) (0.0126) (0.0129) (0.0132) (0.0133) (0.0122) (0.0125) (0.0129) (0.0143)
50 0.949 0.9484 0.9494 0.9504 0.9508 0.9442 0.9488 0.9526 0.961 0.0853 0.0848 0.0853 0.0858 0.0855 0.0824 0.0842 0.0853 0.0888

(0.0076) (0.0074) (0.0076) (0.0076) (0.0078) (0.0073) (0.0075) (0.0076) (0.0082)
70 0.946 0.9456 0.9466 0.9474 0.9484 0.943 0.9462 0.9502 0.9562 0.0716 0.0713 0.0716 0.0719 0.0717 0.0699 0.0709 0.0716 0.0736

(0.0053) (0.0053) (0.0053) (0.0054) (0.0056) (0.0052) (0.0054) (0.0053) (0.0057)
100 0.9494 0.9484 0.9498 0.95 0.9504 0.9482 0.9482 0.9512 0.9564 0.0597 0.0595 0.0597 0.0598 0.0597 0.0586 0.0593 0.0597 0.0608

(0.0037) (0.0037) (0.0037) (0.0037) (0.0039) (0.0036) (0.0038) (0.0037) (0.004)
beta B(1, 1) (γ = 0, k = −1.2)

10 0.9468 0.9444 0.9504 0.953 0.977 0.9436 0.9546 0.9656 0.9906 0.4064 0.3796 0.4064 0.4179 0.4412 0.3477 0.4366 0.4037 0.6541
(0.0683) (0.059) (0.0683) (0.074) (0.0927) (0.0687) (0.2777) (0.0672) (0.4822)

20 0.9452 0.939 0.9478 0.9508 0.9682 0.9462 0.9514 0.9634 0.9874 0.2684 0.2592 0.2684 0.2736 0.2722 0.2462 0.2474 0.2684 0.3051
(0.0292) (0.0266) (0.0292) (0.0314) (0.0305) (0.0265) (0.023) (0.0291) (0.0354)

30 0.9576 0.9546 0.9584 0.9616 0.97 0.9582 0.9586 0.9686 0.9844 0.2148 0.2098 0.2148 0.2177 0.2162 0.2028 0.2033 0.2149 0.2317
(0.0184) (0.0173) (0.0184) (0.0195) (0.0193) (0.0173) (0.0161) (0.0184) (0.0209)

50 0.9482 0.945 0.9486 0.9508 0.9548 0.9474 0.9482 0.9548 0.9708 0.1638 0.1615 0.1638 0.1652 0.1642 0.1582 0.1584 0.1639 0.1708
(0.0107) (0.0103) (0.0107) (0.0112) (0.0113) (0.0103) (0.0102) (0.0107) (0.0118)

70 0.9564 0.9542 0.9566 0.958 0.9612 0.957 0.9552 0.9606 0.9692 0.1376 0.1362 0.1376 0.1385 0.1379 0.1343 0.1344 0.1377 0.1417
(0.0076) (0.0074) (0.0076) (0.0079) (0.0083) (0.0074) (0.0077) (0.0076) (0.0086)

100 0.9496 0.9492 0.95 0.9516 0.9528 0.9498 0.9498 0.9532 0.9598 0.1145 0.1137 0.1145 0.115 0.1146 0.1126 0.1126 0.1146 0.1168
(0.0052) (0.0051) (0.0052) (0.0053) (0.0058) (0.0051) (0.0055) (0.0052) (0.006)

logistic LG(4, 0.5) (γ = 0, k = 1.2)
10 0.9586 0.9518 0.9578 0.9608 0.9424 0.8896 0.9174 0.9462 0.9584 1.2477 1.2309 1.2477 1.2738 1.3607 1.2242 1.8094 1.2953 2.2564

(0.3509) (0.3792) (0.3509) (0.3602) (0.4516) (0.611) (1.3455) (0.4282) (2.7684)
20 0.9552 0.9562 0.9558 0.9582 0.948 0.9228 0.9432 0.9476 0.9562 0.8338 0.8419 0.8338 0.8437 0.8521 0.8024 0.9304 0.8505 0.9899

(0.1657) (0.1818) (0.1657) (0.1682) (0.1785) (0.245) (0.4232) (0.1865) (0.2728)
30 0.9542 0.9544 0.9534 0.9562 0.9462 0.9296 0.9424 0.9454 0.9488 0.6688 0.6762 0.6688 0.6745 0.6758 0.6452 0.7035 0.6767 0.7374

(0.1094) (0.1184) (0.1094) (0.1105) (0.114) (0.1355) (0.1977) (0.1173) (0.142)
50 0.9574 0.958 0.9576 0.9582 0.9488 0.9422 0.9478 0.9498 0.9502 0.5124 0.5171 0.5124 0.5149 0.5142 0.4983 0.5241 0.5147 0.5381

(0.0639) (0.0677) (0.0639) (0.0643) (0.0656) (0.0657) (0.0788) (0.0659) (0.0723)
70 0.9554 0.9576 0.9552 0.9562 0.9504 0.9454 0.9514 0.9516 0.9516 0.4303 0.4336 0.4303 0.4319 0.431 0.4213 0.4373 0.4313 0.4443

(0.046) (0.0481) (0.046) (0.0462) (0.0472) (0.0458) (0.0522) (0.0467) (0.05)
100 0.9528 0.9544 0.9528 0.9538 0.9484 0.945 0.9502 0.9486 0.9478 0.3589 0.361 0.3589 0.3599 0.3593 0.3534 0.3633 0.3593 0.3666

(0.0323) (0.0334) (0.0323) (0.0324) (0.0334) (0.0321) (0.0359) (0.0326) (0.0347)

t—standard t confidence interval, modt—modified t confidence interval, johnsn—Johnson’s t confidence interval, shik—Shi-Kibria’s t confidence interval), tboot—bootstrap t-confidence
interval, mhall—modified Hall’s confidence interval, bhall—bootstrap Hall’s confidence interval, mnew—modified new confidence interval, bnew—bootstrap new confidence interval.
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Figure 5. The comparison of the performance of interval estimators that achieved nominal cover-
age probability for at least one sample size for random samples from gamma G(4, 1) distribution
(γ = 1, k = 1.5). Abbreviations: shik—Shi- Kibria’s t confidence interval, tboot—bootstrap t confi-
dence interval, mnew—modified new confidence interval, bnew—bootstrap new confidence interval.

Figure 6. The comparison of the performance of interval estimators that achieved nominal cover-
age probability for at least one sample size for random samples from gamma G(1, 1) distribution
(γ = 2, k = 6). Abbreviations: shik—Shi- Kibria’s t confidence interval, tboot—bootstrap t confidence
interval, mnew—modified new confidence interval, bnew—bootstrap new confidence interval.

As expected, similar performance of the first four ranked methods is observed for
negatively skewed distributions, with slightly worse performance of the t and bootstrap t
confidence intervals for beta B(10, 1) distribution than their positively skewed counterparts
(see Table A1 in the Appendix A).

For symmetric distributions, bootstrap new confidence intervals attained nominal
coverage probability for all sample sizes. One exception is the logistic distribution, which
has a higher peak and heavier tails than a normal distribution with the same variance
(k = 1.2). In this case, the proposed bootstrap confidence interval fell below 95% for sample
sizes n = 30 and n = 100, but with very little deviation (the lowest estimated coverage
probability was 94.78%). Shi-Kibria’s t confidence interval achieved a nominal coverage
probability for all sample sizes from the logistic distribution and for most sample sizes
from other symmetric distributions. Johnson’s confidence interval ranked third in terms
of coverage, except in the case of uniform distribution (k = −1.2), where its performance
was behind the bootstrap t and modified new confidence intervals. The new modified
confidence interval reached the nominal coverage probability for the majority of the sample
sizes, except for the logistic distribution, where it managed to attain 95% for only one
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sample size (the lowest estimated coverage probability was 94.54%). The coverage of
the bootstrap t confidence interval was poorer, whereas the other t and Hall’s confidence
intervals showed better coverage compared to skewed distributions. An example of the
graphical comparisons of the confidence intervals for the random samples from the uniform
distribution is shown in Figure 7.

Figure 7. The comparison of the performance of interval estimators that achieved nominal coverage
probability for at least one sample size for random samples from beta B(1, 1) (standard uniform)
distribution (γ = 0, k = −1.2). Abbreviations: t—standard t confidence interval, modt—modified t
confidence interval, johnsn—Johnson’s t confidence interval, shik—Shi-Kibria’s t confidence interval),
tboot—bootstrap t-confidence interval, mhall—modified Hall’s confidence interval, bhall—bootstrap
Hall’s confidence interval, mnew—modified new confidence interval, bnew—bootstrap new confi-
dence interval.

We displayed a simple summary of the confidence intervals’ performance in terms of
coverage probability on the horizontal barplot. For each confidence interval, we counted
how many times the estimated coverage probability was at least the nominal coverage
probability. We repeated the procedure for symmetric and skewed distributions, taking into
account all sample sizes or only small samples (n = 10 and n = 20). Figure 8 represents a
barplot of the confidence intervals’ percentages of success for skewed distributions.

The proposed bootstrap confidence interval had a percentage of success of 100% for
all sample sizes and also for small samples from skewed distributions. For all sample sizes,
it was followed by a modified new confidence interval with a percentage of success of
50%, then by the bootstrap t confidence interval with 45%, and by Shi-Kibria’s t confidence
interval with 36.7%. In this group of four best-ranked methods, Shi-Kibria’s t confidence
interval had the shortest mean length for 51.4% samples, the modified new confidence
interval for 34.7%, and the bootstrap t confidence interval for 13.9%. In small samples,
the bootstrap t confidence interval had the second highest percentage of success (30%),
followed by the modified new confidence interval (20%) and Shi-Kibria’s t confidence
interval (15%). Comparing four best-ranked methods, Shi-Kibria’s t confidence interval
had the shortest mean length for 70% of the sample sizes and the modified new confidence
interval for 30% of them.

Figure 9 represents a barplot of the confidence intervals’ percentages of success for
symmetric distributions.

The proposed bootstrap confidence interval had a percentage of success of 93.3% for
all sample sizes from symmetric distributions. It was followed by Shi-Kibria’s t confidence
interval with a percentage of success of 80%, then by Johnson’s t confidence interval with
56.7%, and by the modified new confidence interval with 53.3%. In this group of four
best-ranked methods, Johnson’s t confidence interval had the shortest mean length for
82.8% samples, the modified new confidence interval for 16.1%, and the Shi-Kibria’s t
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confidence interval for 1.1%. In small samples, the bootstrap new confidence interval had
the highest percentage of success (100%), followed by Shi-Kibria’s (80%) and Johnson’s t
(60%) confidence intervals, and modified new confidence interval (40%). Comparing four
best-ranked methods, Johnson’s t confidence interval had the shortest mean length for 85%
of the sample sizes and the modified new confidence interval for 15% of them.

Figure 8. The comparison of the confidence intervals’ performance in terms of coverage probability
for skewed distributions. Abbreviations: t—standard t confidence interval, modt—modified t con-
fidence interval, johnsn—Johnson’s t confidence interval, shik—Shi-Kibria’s t confidence interval),
tboot—bootstrap t-confidence interval, mhall—modified Hall’s confidence interval, bhall—bootstrap
Hall’s confidence interval, mnew—modified new confidence interval, bnew—bootstrap new confi-
dence interval.

Figure 9. The comparison of the confidence intervals’ performance in terms of coverage probability
for symmetric distributions. Abbreviations: t—standard t confidence interval, modt—modified t
confidence interval, johnsn—Johnson’s t confidence interval, shik—Shi-Kibria’s t confidence interval),
tboot—bootstrap t-confidence interval, mhall—modified Hall’s confidence interval, bhall—bootstrap
Hall’s confidence interval, mnew—modified new confidence interval, bnew—bootstrap new confi-
dence interval.

6. Discussion

The proposed bootstrap Edgeworth-based confidence interval demonstrated superior
coverage probability for both small and large random samples from diverse symmetric
and skewed distributions. This confidence interval managed to attain nominal coverage
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probability for all considered distributions and all sample sizes, except for some medium-
sized samples from symmetric logistic distribution, with the lowest estimated coverage
probability of 94.78%. However, the mean and standard deviation of the interval lengths
were the highest of all the confidence intervals, with large values for small samples (n = 10).
Bootstrap t confidence interval is reported in the literature to produce long intervals for
small samples [13,28]. A large standard deviation of the length shows that bootstrap
confidence intervals produce both short and long intervals for small samples (i.e., the
length is not consistently long). Approximation of the distribution of the test statistics can
be poorer for small samples, as these samples provide much less information about the
values of the variable of interest.

In the cases of no or small skewness, the modified new Edgeworth-based confidence
interval achieved nominal coverage probability for at least half of the sample sizes. For
moderate to high skewness, this confidence interval achieved 95% for at least one sample
size with the lowest estimated coverage probability of 92.9%. The mean and standard
deviation of its length are smaller than for the proposed bootstrap confidence interval.
However, overall results show that the bootstrap distribution of the statistic T is much closer
to the exact distribution than the Edgeworth expansion with the normal distribution as the
baseline. The difference between these two methods is most apparent for small samples,
where the modified new confidence interval manages to achieve nominal probability in only
40% samples from symmetric distributions and 20% samples from skewed distributions.

Johnson’s and Shi-Kibria’s t confidence intervals attain nominal coverage probability
for a majority of samples from symmetric distributions. However, their performance is not
satisfactory enough in skewed distributions, achieving 95% only occasionally and with the
lowest estimated coverage probability around 90%. Bootstrap t confidence interval man-
aged to achieve the nominal coverage probability for half of the samples from symmetric
distributions and 45% of the samples from skewed distributions. Normal, Hall’s modified,
and Hall’s bootstrap confidence intervals underperformed by achieving nominal coverage
probability for only one (normal) or just a few sample sizes (Hall) in total.

7. Conclusions

Previous research showed that finding an interval estimator for the population mean
that performs well in the cases of highly skewed distributions poses a real challenge [17].
We have analyzed four types of confidence intervals for the population mean: normal
confidence interval, t confidence intervals, bootstrap t confidence interval and confidence
intervals based on Edgeworth expansion. The exact or approximate distribution of the

statistic T = X−µ

ŜEM
is used for the construction of these confidence intervals. We proposed

a new confidence interval for the population mean, which is based on the Edgeworth
expansion of the second order of the distribution of the statistic T. This expansion corrects
the normal approximation by incorporating information about the skewness and kurtosis
of the population distribution. We have created two additional versions of the proposed
interval estimator. The modified version includes the bias-corrected estimates of the
skewness and kurtosis, while the bootstrap version uses the bootstrap distribution of the
statistic T as the baseline.

We conducted a simulation study to compare various interval estimators by generating
random samples of different sizes from symmetric and skewed distributions with varying
levels of kurtosis. We measured the performance using the coverage probability, mean,
and standard deviation of the interval length. The overall comparison of the confidence
intervals included the modified versions of the Edgeworth-based confidence intervals,
which had a slight advantage over the non-modified ones.

The proposed bootstrap confidence interval achieved a nominal coverage probability
for all sample sizes from both symmetric and skewed distributions. One exception is the
heavy-tailed logistic distribution, where the proposed bootstrap confidence interval fell
below 95% for some samples but with very little deviation (the lowest estimated coverage
probability was 94.78%). However, the main drawbacks of this method are the high values
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of the mean and standard deviation for small samples (n = 10). A large standard deviation
of the length shows that the proposed bootstrap method produces intervals of both small
and large length.

For symmetric or lightly skewed distributions, the proposed modified Edgeworth-
based confidence interval achieved nominal coverage probability for the majority of sample
sizes. For moderate to high positive skewness, this confidence interval attained 95% for
at least one sample size with the lowest estimated coverage probability of 92.9%. In
skewed distributions, bootstrap t confidence interval was generally ranked third in terms of
coverage (the lowest estimated coverage probability of 93.7%), and Shi-Kibria’s t confidence
interval was ranked fourth (with the lowest value of estimated coverage probability of
90.78%). These three methods generally provide shorter intervals than the proposed
bootstrap confidence interval, but their overall coverage is not at the satisfactory level. For
all sample sizes, the second-ranked modified new confidence interval achieves the nominal
coverage probability in 50% of the samples. In small samples, the difference between the
first and second-ranked methods is even more drastic. The second-ranked bootstrap t
confidence interval manages to attain 95% in only 30% samples. The percentage of success
is even lower for other confidence intervals when considering all or only small samples.
For symmetric distributions, the situation improves in terms of identifying a method with
adequate coverage and a shorter interval length. Shi-Kibria’s confidence interval has a
percentage of success of 80% when considering both all sample sizes or only small samples.

The new bootstrap Edgeworth-based confidence interval for the population mean can
be recommended for use in general practice for both symmetric and skewed distributions
based on its superior coverage performance. If a researcher is concerned with the length of
the confidence interval for samples up to size 20, we can make the following recommenda-
tions. For a small sample from symmetric distribution, we can recommend Shi-Kibria’s
confidence interval. If the small sample comes from a skewed distribution, we cannot rec-
ommend any of the other confidence intervals, as they do not provide satisfactory coverage.

In our future work, we plan to focus on developing a modified version of our bootstrap
Edgeworth-based confidence interval for the population mean, which will have both
excellent coverage and a shorter mean length.
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Appendix A

Table A1. Confidence intervals’ coverage, mean length and standard deviation of length for negatively skewed distributions.

n
Estimated Coverage Probability Mean Length (Standard Deviation)

t modt johnsn shik tboot mhall bhall mnew bnew t modt johnsn shik tboot mhall bhall mnew bnew

beta B(2, 1) (γ = −0.57, k = −0.6)
10 0.94 0.9336 0.9408 0.944 0.962 0.9324 0.945 0.9512 0.9822 0.3307 0.3156 0.3307 0.3415 0.3725 0.3071 0.4201 0.3376 0.6509

(0.0691) (0.0655) (0.0691) (0.0743) (0.1065) (0.1058) (0.2984) (0.0744) (0.8186)
20 0.9494 0.9462 0.9506 0.9522 0.9644 0.9498 0.9546 0.9606 0.9842 0.2183 0.214 0.2183 0.2242 0.2252 0.204 0.212 0.2213 0.2624

(0.0308) (0.0292) (0.0308) (0.0335) (0.0331) (0.0304) (0.0458) (0.0312) (0.0468)
30 0.95 0.948 0.952 0.9552 0.9622 0.949 0.9528 0.961 0.9768 0.1752 0.173 0.1752 0.1793 0.1781 0.167 0.169 0.177 0.1952

(0.0195) (0.0187) (0.0195) (0.0212) (0.0204) (0.0185) (0.0178) (0.0196) (0.0235)
50 0.9474 0.9458 0.9486 0.9508 0.9552 0.9462 0.9456 0.9548 0.9678 0.1334 0.1324 0.1334 0.136 0.1345 0.1295 0.1302 0.1342 0.1415

(0.0114) (0.0111) (0.0114) (0.0123) (0.0118) (0.011) (0.0109) (0.0114) (0.0126)
70 0.942 0.9416 0.9424 0.9456 0.9504 0.9448 0.9448 0.9502 0.9618 0.112 0.1114 0.112 0.114 0.1126 0.1097 0.11 0.1125 0.1166

(0.0081) (0.0079) (0.0081) (0.0088) (0.0085) (0.0079) (0.008) (0.0081) (0.0089)
100 0.9516 0.9514 0.9522 0.9556 0.9562 0.953 0.9532 0.9566 0.9644 0.0933 0.093 0.0933 0.0949 0.0937 0.092 0.0922 0.0936 0.096

(0.0056) (0.0055) (0.0056) (0.0061) (0.006) (0.0055) (0.0058) (0.0056) (0.0062)

beta B(10, 1) (γ = −1.52, k = 2.78)
10 0.9106 0.9048 0.9144 0.9206 0.9486 0.904 0.9238 0.9376 0.9766 0.1121 0.1138 0.1121 0.1178 0.1478 0.1321 0.2044 0.1264 0.5854

(0.0392) (0.0455) (0.0392) (0.0427) (0.0867) (0.0805) (0.1596) (0.0562) (2.3048)
20 0.923 0.9278 0.9256 0.9302 0.9464 0.9268 0.9364 0.9458 0.9656 0.0754 0.0783 0.0754 0.0789 0.0848 0.0861 0.1077 0.0825 0.1276

(0.0185) (0.0217) (0.0185) (0.0202) (0.0265) (0.0416) (0.0741) (0.0244) (0.0944)
30 0.9356 0.9392 0.9372 0.9426 0.9502 0.9386 0.9416 0.9506 0.9632 0.0608 0.0629 0.0608 0.0635 0.0654 0.0656 0.0729 0.065 0.0828

(0.0123) (0.0141) (0.0123) (0.0135) (0.0153) (0.0251) (0.0391) (0.0152) (0.031)
50 0.9438 0.9472 0.9442 0.9498 0.947 0.9388 0.943 0.9474 0.9562 0.0467 0.0478 0.0467 0.0487 0.0487 0.0478 0.0494 0.0487 0.0554

(0.0073) (0.008) (0.0073) (0.008) (0.0084) (0.0106) (0.014) (0.0083) (0.0122)
70 0.9404 0.9444 0.9428 0.9494 0.951 0.9454 0.9492 0.9526 0.9604 0.0393 0.0401 0.0393 0.041 0.0405 0.0396 0.0402 0.0405 0.0442

(0.0052) (0.0055) (0.0052) (0.0057) (0.0057) (0.0058) (0.0064) (0.0057) (0.0073)
100 0.9466 0.9486 0.9464 0.953 0.9476 0.9464 0.946 0.9504 0.9528 0.0327 0.0332 0.0327 0.0341 0.0334 0.0328 0.0331 0.0334 0.0355

(0.0035) (0.0037) (0.0035) (0.0039) (0.0038) (0.0037) (0.0039) (0.0038) (0.0045)
beta B(100, 1) (γ = −1.94, k = 5.54)

10 0.9018 0.9022 0.9054 0.9084 0.9424 0.905 0.922 0.9306 0.975 0.013 0.0135 0.013 0.0137 0.0181 0.016 0.0249 0.0152 0.0936
(0.0053) (0.0065) (0.0053) (0.0058) (0.0128) (0.0106) (0.0199) (0.0082) (0.402)

20 0.9192 0.9246 0.9212 0.927 0.9484 0.9272 0.9364 0.9458 0.967 0.0088 0.0094 0.0088 0.0092 0.0103 0.011 0.0141 0.01 0.018
(0.0026) (0.0033) (0.0026) (0.0028) (0.0041) (0.0064) (0.0102) (0.0039) (0.0184)

30 0.9286 0.9364 0.9306 0.9354 0.9504 0.9368 0.9416 0.9482 0.9606 0.0071 0.0075 0.0071 0.0074 0.0079 0.0083 0.0097 0.0078 0.0109
(0.0017) (0.0021) (0.0017) (0.0019) (0.0024) (0.0042) (0.0065) (0.0024) (0.0072)

50 0.9354 0.9412 0.9374 0.944 0.9494 0.9398 0.9448 0.9488 0.9548 0.0055 0.0057 0.0055 0.0057 0.0058 0.006 0.0064 0.0059 0.007
(0.001) (0.0012) (0.001) (0.0011) (0.0013) (0.0023) (0.0032) (0.0013) (0.0024)

70 0.9418 0.946 0.9418 0.9492 0.9476 0.9436 0.9448 0.9502 0.9554 0.0046 0.0048 0.0046 0.0048 0.0048 0.0049 0.0051 0.0049 0.0055
(0.0007) (0.0009) (0.0007) (0.0008) (0.0009) (0.0014) (0.0019) (0.0009) (0.0015)

100 0.9416 0.9456 0.9416 0.9514 0.949 0.9456 0.9476 0.9498 0.9528 0.0039 0.004 0.0039 0.004 0.004 0.004 0.004 0.004 0.0044
(0.0005) (0.0006) (0.0005) (0.0006) (0.0006) (0.0008) (0.001) (0.0006) (0.0008)

t—standard t confidence interval, modt—modified t confidence interval, johnsn—Johnson’s t confidence interval, shik—Shi-Kibria’s t confidence interval), tboot—bootstrap t-confidence
interval, mhall—modified Hall’s confidence interval, bhall—bootstrap Hall’s confidence interval, mnew—modified new confidence interval, bnew—bootstrap new confidence interval.
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