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Abstract: According to recent research, discrete-time fractional-order models have greater potential
to investigate behaviors, and chaotic maps with fractional derivative values exhibit rich dynamics.
This manuscript studies the dynamics of a new fractional chaotic map-based three functions. We
analyze the behaviors in commensurate and incommensurate orders, revealing their impact on
dynamics. Through the maximum Lyapunov exponent (LEmax), phase portraits, and bifurcation
charts. In addition, we assess the complexity and confirm the chaotic features in the map using
the approximation entropy ApEn and C0 complexity. Studies show that the commensurate and
incommensurate derivative values influence the fractional chaotic map-based three functions, which
exhibit a variety of dynamical behaviors, such as hidden attractors, asymmetry, and symmetry.
Moreover, the new system’s stabilizing employing a 3D nonlinear controller is introduced. Finally,
our study validates the research results using the simulation MATLAB R2024a.

Keywords: symmetry–asymmetry; chaotic dynamics; functions; discrete fractional calculus; complexity

1. Introduction

Sigmoidal-based maps with non-integer and integer orders have newly been sug-
gested [1–3]. Over the last few years, sigmoidal functions have attracted a lot of interest
from researchers and have advanced a number of fields, including neuromorphic sys-
tems [4], computing [5], and secure communication [6]. Their ability to smoothly transition
between two asymptotic values, along with the coexistence of attractors and multiple
stability, makes them useful in dynamic chaotic maps.

In the field of fractional order, researchers’ focus has shifted to discrete chaotic systems
with fractional order and their applications [7]. Moreover, sensitivity to alterations in
fractional orders, as well as small perturbations in initial conditions and parameters, is one
of the unique advantages of fractional derivative maps. In addition, the rich dynamics and
simple forms of fractional maps make them useful for numerical computation and system
analysis. Topics covered in fractional calculus include fractional derivatives and fractional
difference operators. Nevertheless, because of its outstanding applications in numerous
domains, this field has only recently undergone extensive and intense exploration [8]. Khen-
naoui et al. [9] presented additional evidence for chaotic attractors in the Stefanski, Wang,
and Rössler fractional maps. Upon searching for chaos events in dynamical systems, a great
deal of work has been conducted to completely investigate the behaviors of fractional and
classical maps [10]. Moreover, the creation of pseudorandom sequences and improved
data encryption are made possible by the chaotic systems’ randomness, unpredictability,
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and sensitivity to initial conditions [11,12]. The intrinsic benefits of chaotic behaviors have
led to notable advancements in a number of domains, such as data encryption, secure
communications, picture and signal processing, optimization methods, and others. Chaotic
maps include many intricate dynamic phenomena, including multistability, bifurcation,
coexisting attractors, and hidden attractors [13].

In the literature on chaos, the analysis of chaotic fractional maps without equilibrium
has received a lot of attention up to this point because of its usefulness in engineering sys-
tems. These systems’ associated attractors are referred to as “hidden attractors”. Nonlinear
systems without a fixed point, those with line-fixed points, and nonlinear systems with just
stable points all exhibit these types of attractors [14]. The mathematical representation of
real-life system occurrences is demonstrated to benefit from the concepts and implementa-
tion of these systems. There are not many studies on “hidden attractors” in chaotic maps.
Currently, there are a few published manuscripts on this discussion topic. Both the approx-
imation entropy computation and the complexity test have been used to show that chaotic
hidden attractors exist in system dynamics. Later, a fractional map’s intricate dynamic with
hidden attractors was studied using bifurcation charts, maximum Lyapunov exponents,
and complexity in these two references [15,16]. Additionally, a great deal of study has been
carried out on the control and synchronization of such types of systems [17–20]. This has
led us to investigate the issue and create suitable control fundamentals for coexisting types.
Jiang et al. [17] examined the bidirectional coupling problem for N-coupled fractional-order
chaotic systems with ring connection synchronization, whereas [18] studied N-coupled
fractional-order complex chaotic systems with ring connection synchronization and an-
tisynchronization. Chen et al. [19] analyzed multiple chaotic systems with uncertainty
and disturbances synchronized via sliding mode. In [20] tackling stabilizing sampled data
for nonlinear chaotic models. However, based on the selected fractional values, such as
commensurate and incommensurate orders, these studies have shown that the system’s
behaviors are complex, with coexisting chaos [21]; specifically, Hamadneh et al. discussed
the commensurate and incommensurate orders of the new chaotic model and analyzed its
behaviors in these two cases. For future research on fractional dynamics, this area presents
an intriguing direction [22].

Recently, research on symmetry and asymmetry maps has been ongoing in order
to find new uses and comprehend complex dynamics, as they are useful in the analysis
of chaotic maps [23–25]. In reference [23], Elaskar discussed symmetry and chaos in the
behavior of nonlinear systems. Meanwhile, [24] explored symmetry-based modulation
in a chaotic communication model by Karimov et al. Additionally, in [25], constructed a
three-dimensional chaotic system based on conditional symmetry. The traits that draw
attention in chaotic maps include asymmetric and symmetry coexisting bifurcations and
multistability. For example, in [26], Pratiwi et al. introduce the best model of artificial neural
networks using sigmoid. Yang et al. [27] designed rotationally multiwing symmetric models
that have either no equilibrium point or just stable equilibria. Encryption and asymmetric
chaotic memristor-coupled neural networks were investigated by Lin et al. [28]. In [29],
novel research directions regarding artificial neural networks are suggested by memristive
neural networks. This work seeks to advance the field by presenting a novel fractional
chaotic map based on three functions. Among the unique features of the designed systems
is the coexistence of several chaotic hidden attractors. Through numerical techniques, our
study opens up new avenues for research and practical applications in the domains of
nonlinear dynamics and chaos theory.

The manuscript is organized in the following manner: Section 2 offers a few prelim-
inary on fractional calculus and a new fractional chaotic map based on three functions,
demonstrating the asymmetry and absence of fixed points. In Section 3, the analysis of the
nonlinear dynamics is illustrated, focusing on commensurate- and incommensurate-order
scenarios through the highest Lyapunov exponents, bifurcation plots, and phase portraits
applied to illuminate the intricate behavior of the created map. In Section 4, a complexity
test, such as ApEn, and C0 complexity are employed to verify and quantify the complexity
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of the chaos in the novel model. In Section 5, the nonlinear stability controller is proposed,
aimed at forcing the map to converge asymptotically towards zero points. The results of
our study are summarized in Section 6, along with ideas for future research.

2. Basic Concepts and Fractional Order Map

To explain our framework, we first give an overview of discrete fractional calculus.
Specifically, the goal of this research is to build a new fractional chaotic map based on three
functions using a Caputo-like operator.

2.1. Fractional Discrete Operators

This part goes over some of the basic concepts and terminology concerning the Caputo-
like operator.

Definition 1 ([30]). The fractional sum ∆−Υ
t is defined as

∆−Υ
t ψ(s) =

1
Γ(Υ)

s−Υ

∑
l=Υ

(s − ε − 1)(Υ−1)ψ(ε), Υ > 0, s ∈ (N)t+Υ. (1)

Definition 2 ([31]). The Υ-th Caputo-like difference operator C∆Υ
t is characterized as

C∆Υ
t ψ(s) = ∆−(ε−Υ)

t ∆εψ(s)

=
1

Γ(ε − Υ)

s−(ε−Υ)

∑
s=t

(s − ε − 1)(ε−Υ−1)∆εψ(s).
(2)

s ∈ (N)t−Υ+ε and l = ⌈Υ⌉ + 1. The falling factorial function (s − ε − 1)(ε−Υ−1) and the
Υth-integer differences operator ∆Υψ(s) have the following expressions:

∆εψ(s) = ∆(∆ε−1ψ(s)) =
ε

∑
t=0

(
ℓ
t

)
(−1)ε−tψ(s + t), (3)

and

(s − 1 − ε)(ε−Υ−1) =
Γ(s − l)

Γ(s + 1 − ε − t + Υ)
. (4)

The following theorem is next applied to attain the numerical formula for fractional
discrete systems.

Theorem 1 ([32]). The solution of the following system{
C∆Υ

t ψ(s) = g(s − 1 + Υ, ψ(s + Υ − 1))
∆ȷψ(s) = ψj, ε = ⌈Υ⌉+ 1, ȷ = 0, 1, . . . , ε − 1,

(5)

is given by

ψ(s) = ψ0(t) +
1

Γ(Υ)

s−Υ

∑
l=t+s−Υ

(s − ε)(Υ−1)g(ε + Υ − 1, ψ(ε + Υ − 1)), s ∈ Nt+ε, (6)

where

ψ0(t) =
ε−1

∑
ȷ=0

(s − t)ȷ

Γ(ȷ + 1)
∆ȷψ(t). (7)

Take t = 0, ȷ = Υ − 1 + ε, s = 1 and for Υ ∈ (0, 1], (s − ε − 1)(Υ−1) = Γ(s−ε)
Γ(s−ε−Υ+1) . The

way to write numerical formula (6) is as follows:
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ψ(s) = ψ(0) +
1

Γ(Υ)

s−1

∑
ȷ=0

Γ(s − ȷ + Υ − 1)
Γ(s − ȷ)

g(ȷ, ψ(ȷ)). (8)

2.2. A Three-Dimensional Fractional Map

The sigmoidal function is known to be capable of approaching −1 and 1, which
changes an input into an output, especially since they are known for their distinctive nonlin-
ear behavior and capacity to modify data. Moreover, quadratic and absolute value functions
have been proposed by researchers utilizing differential modeling theories (x3(n))2 − 1
and η|x2(n)| − 1, respectively. In [33,34], the dynamics of discrete-time integer-order
system-based various functions were explored, which are known for their distinctive non-
linear behavior and capacity to change data, where the sigmoidal function is defined by
F(x) = 1

1+e−βx1(n)
. The S-shaped curve of the sigmoidal function and initial-relied pinched

hysteresis loops of quadratic and absolute value maps illustrated in Figure 1 demonstrate
the nonlinear sigmoidal function input values into a limited range, while other functions
generate a hysteresis loop.

(a) Quadratic hysteresis loops (b) Absolute value hysteresis loops

(c) Sigmoidal curve

Figure 1. (a,b) Initial-relied pinched hysteresis loops, (c) S-shaped sigmoidal function.
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Through this paper, we produce new fractional chaotic map-based three functions,
using the difference operator C∆Υi

t , represented by 3D fractional difference equations
as follow: 

C∆Υ
t x1(s) =

σ1

1 + e−βx1(θ)
+ σ2σ3x1(θ)(η|x2(θ)| − 1)((x3(θ))

2 − 1)

− x1(θ),
C∆Υ

t x2(s) = x1(θ),
C∆Υ

t x3(s) = σ2x1(θ)(η|x2(θ)| − 1),

(9)

where θ = s − 1 + Υ, σ1, and β are the controller parameters of the sigmoidal function, σ2
and η are the controller parameters of absolute value, and σ3 is the controller parameter
of quadratic maps. The equilibrium points (EP) (x∗1 , x∗2 , x∗3 , ) of the new fractional chaotic
map-based three functions (9) can be determined by solving the following:

σ1

1 + e−βx∗1
+ σ2σ3x∗1(η|x∗2 | − 1)((x∗3)

2 − 1))− x∗1 = 0,

x∗1 = 0,

σ2x∗1(η|x∗2 | − 1) = 0.

(10)

Clearly, from Equation (2) of (10), x∗1 = 0, replacing x∗1 in Equatios (1) and (3), when
σ1 ̸= 0 the system (10), there are no (EP). Then, every attractor of the new fractional chaotic
map-based three functions (9) are hidden and show asymmetry if σ1 ̸= 0, as displayed in
Figure 2.

(a) σ1 = 0 (b) σ1 ̸= 0

Figure 2. (a) Symmetry for σ1 = 0, β = 1, σ2 = −1.7, σ3 = 1.15, and η = 0.35. (b) Asymmetry for
σ1 = −0.2, β = 1, σ2 = −1.7, σ3 = 1.15, and η = 0.35.

3. Bifurcation and Hidden Chaos

Here, the behaviors of the new fractional chaotic map-based three functions (9) are
analyzed. We conduct the analysis in both commensurate and incommensurate orders.
Various numerical tools are utilized, including phase portrait visualization, bifurcation
illustration, and maximum Lyapunov exponent (LEmax) estimation.
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3.1. The Commensurate-Order Case

The focus of this subsection is studying the dynamics of the new fractional chaotic
map-based three functions (9) under commensurate order. It is crucial to understand
that equations with the same orders constitute a commensurate-order fractional map. We
describe the numerical formula of (9) based on Theorem 1 in the following manner:

x1(s) = x1(0) + 1
Γ(Υ)

s
∑

ȷ=0

Γ(s−1+Υ−ȷ)
Γ(s−ȷ)

(
σ1

1+e−βx1(ȷ) + σ2σ3x1(ȷ)(η|x2(ȷ)| − 1)((x3(ȷ))2 − 1)− x1(ȷ)
)

,

x2(s) = x2(0) + 1
Γ(Υ)

s
∑

ȷ=0

Γ(s−1+Υ−ȷ)
Γ(s−ȷ) (x1(ȷ)),

x3(s) = x3(0) + 1
Γ(Υ)

s
∑

ȷ=0

Γ(s−1+Υ−ȷ)
Γ(s−ȷ) (σ2x1(ȷ)(η|x2(ȷ)| − 1)). s = 1, 2, 3, · · ·

(11)

We ascertain the LEmax of the fractional map using the Jacobin matrix approach [35],
so the Jς is define by

Jς =

 W1(ς) W2(ς) W3(ς)
V1(ς) V2(ς) V3(ς)
R1(ς) R2(ς) R3(ς)

, (12)

where

Wi(ς) = Wi(0) + 1
Γ(Υ)

ς−1
∑

ȷ=0

Γ(Υ+ς−ȷ−1)
Γ(ς−ȷ)

(
( βσ1e−βx1(ȷ)

(1+e−βx(ȷ))2)
+ σ2σ3(η|x2(ȷ)| − 1)((x3(ȷ))2 − 1))Wi(ȷ)

+(ησ2σ3x1(ȷ)((x3(ȷ))2 − 1))Vi(ȷ) + (σ2σ3x1(ȷ))(η|x2(ȷ)| − 1)(2x3(ȷ)Ri(ȷ)− Wi(ȷ)
)

,

Vi(ς) = Vi(0) + 1
Γ(Υ)

ς−1
∑

ȷ=0

Γ(Υ+ς−ȷ−1)
Γ(ς−ȷ)

(
Wi(ȷ)

)
,

Ri(ς) = Ri(0) + 1
Γ(Υ)

ς−1
∑

ȷ=0

Γ(Υ+ς−ȷ−1)
Γ(ς−ȷ)

(
(σ2(η|x2(ȷ)| − 1))Wi(ȷ) + (ησ2x1(ȷ))Vi(ȷ)

)
,

(13)

i = 1, 2, 3. Then, for s = 1, 2, 3, the LEs can be given by

LEs = lim
ς→∞

1
ς

ln |λ(ς)
s |, for (14)

where λ
(ς)
s are the eigenvalues of Jς.

Set σ1 = −0.2, σ2 = −1.7, and σ3 = 1.15, (x1(0), x2(0), x3(0)) = (0.01, 0.01, 0.01),
β = 1, η = 0.35, and (IN), to better understand the impact of commensurate derivative
orders on the dynamics of the new fractional chaotic map-based three functions (9); we alter
the values of the commensurate orders Υ such that the chaotic region expands. In Figure 3,
we created charts of the bifurcation, as well as the associated plots LEmax versus Υ ∈ [0.65, 1];
when Υ decreases, the map shows a divergence towards infinity. On the other hand, this
indicates that the states become completely chaotic in [0.88, 1], where the LEmax are positive.

Now, Figure 4 portrays the bifurcation charts for the commensurate values Υ = 0.85
when the controller parameters are σ1 ∈ [−0.6, 0.8] , σ2 ∈ [−2, 0] ,σ3 ∈ [0, 1.2] , η ∈ [0.2, 1.4].
We can see that the states of the three commensurate map-based functions (9) change
the dynamics from periodic to totally chaotic and show a divergence in the motion of
infinity in some points. Additionally, Figure 5 displays the LEmax that was computed with
MATLAB R2024a code, confirming the outcomes of the bifurcation displayed in Figure 4.
This indicates non-chaotic behavior, since the LEmax values are negative. In contrast, when
the LEmax values are positive, the map displays a chaotic region. It is apparent that the
behaviors of the three commensurate map-based functions (9) are influenced by the system
factors, and variations in the commensurate derivative Υ have an influence on the rich
dynamics of the map (9).
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(a) (b)

Figure 3. (a) Bifurcation of (9) for Υ ∈ [0.65, 1]. (b) The associated LEmax.

(a) σ1 ∈ [−0.6, 0.8] (b) σ2 ∈ [−2, 0]

(c) σ3 ∈ [0, 1.2] (d) η ∈ [0.2, 1.4]

Figure 4. Bifurcation of (9) versus the controller parameters for Υ = 0.85.
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(a) σ1 ∈ [−0.6, 0.8] (b) σ2 ∈ [−2, 0]

(c) σ3 ∈ [0, 1.2] (d) η ∈ [0.2, 1.4]

Figure 5. The LEmax of (9) associated with Figure 4 for Υ = 0.85.

The evolution states of the three commensurate map-based functions (9) for Υ = 0.85
are shown in Figure 6 to be comprehensive. Additionally, Figure 7 illustrates the hidden
asymmetry of chaotic attractors for various commensurate orders Υ. These results thus
demonstrate that commensurate orders determine the hidden attractors form on (9).

3.2. The Incommensurate-Order Case

In the ensuing part, we evaluate the behaviors of the new fractional chaotic map-based
three functions with incommensurate order. Using various fractional derivative values for
each equation in the map, which is the concept of incommensurate derivative values, leads
to the new incommensurate fractional chaotic map-based three functions.

C∆Υ1
t x1(s) =

σ1

1 + e−βx1(θ1)
+ σ2σ3x1(θ1)(η|x2(θ1)| − 1)((x3(θ1))

2

− 1)− x1(θ1),
C∆Υ2

t x2(s) = x1(θ2),
C∆Υ3

t x3(s) = σ2x1(θ3)(η|x2(θ3)| − 1),

(15)
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where θ1 = s + Υ1 − 1, θ2 = s + Υ2 − 1, and θ3 = s + Υ3 − 1. Based on Theorem 1, we
express the following numerical formula of (15):

x1(s) = x1(0) + 1
Γ(Υ1)

s
∑

ȷ=0

Γ(s−1+Υ1−ȷ)
Γ(s−ȷ)

(
σ1

1+e−βx1(ȷ) + σ2σ3x1(ȷ)(η|x2(ȷ)| − 1)((x3(ȷ))2 − 1)− x1(ȷ)
)

,

x2(s) = x2(0) + 1
Γ(Υ2)

s
∑

ȷ=0

Γ(s−1+Υ2−ȷ)
Γ(s−ȷ) (x1(ȷ)),

x3(s) = x3(0) + 1
Γ(Υ3)

s
∑

ȷ=0

Γ(s−1+Υ3−ȷ)
Γ(s−ȷ) (σ2x1(ȷ)(η|x2(ȷ)| − 1)). s = 1, 2, 3, · · ·

(16)

Firstly, Figure 8 represents the evolution states for the three proposed incommensurate
map-based functions (15) when (Υ1, Υ2, Υ3) = (1, 0.8, 0.9), while Figure 9 illustrates the
hidden attractors via various incommensurate orders (Υ1, Υ2, Υ3) with (IN).

(a) Evolution of x1-t (b) Evolution of x2-t

(c) Evolution of x3-t

Figure 6. Time evolution of (9) for Υ = 0.85.
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(a) Υ = 0.83 (b) Υ = 0.85 (c) Υ = 0.9

(d) Υ = 0.95 (e) Υ = 0.98 (f) Υ = 1

Figure 7. Hidden attractors of (9) for different Υ values.

(a) Evolution of x1-t (b) Evolution of x2-t

Figure 8. Cont.
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(c) Evolution of x3-t

Figure 8. Time evolution of (15) for (Υ1, Υ2, Υ3) = (1, 0.8, 0.9).

(a) (Υ1, Υ2, Υ3) = (0.9, 0.1, 0.6) (b) (Υ1, Υ2, Υ3) = (0.6, 0.1, 0.9) (c) (Υ1, Υ2, Υ3) = (0.75, 0.1, 0.9)

(d) (Υ1, Υ2, Υ3) = (1, 0.8, 0.9) (e) (Υ1, Υ2, Υ3) = (0.9, 0.1, 0.2) (f) (Υ1, Υ2, Υ3) = (1, 0.5, 0.9)

Figure 9. Hidden attractors of (15) for different (Υ1, Υ2, Υ3) values.

To comprehend the impact of incommensurate derivative orders on the dynamics of
the novel chaotic fractional map-based three functions (15), we created a diagram of the
bifurcation, as well as the associated plots LEmax versus the incommensurate-order values
Υ1 and Υ2 and Υ3. From Figure 10, Υ1 ∈ [0.4, 1], and we choose Υ2 = 0.1, Υ3 = 0.9. We can
see that the states exhibit a divergence towards infinity in [0.4, 0.57] and become chaotic
in Υ1 ∈ [0.58, 0.9], where the LEmax values are positive, when it increases close to 1 the
state become periodic which is evident from the negative values of LEmax. Additionally,
Figure 11, versus Υ2 ∈ (0, 1] and fixed the incommensurate derivative by Υ1 = 1 and
Υ3 = 0.9, shows the states of the map are periodic windows appear in [0, 0.41] and chaotic
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when Υ2 ∈ (0.42, 1] through a four period-doubling bifurcation. Furthermore, in Figure 12,
we fixed Υ1 = 0.9, Υ2 = 0.1, and versus Υ3 between 0 and 1; we can see the appearance and
disappearance of chaotic behavior within an area of the three proposed incommensurate
map-based functions (15). It is observed that the LEmax fluctuates between positive and
negative when Υ3 ∈ [0, 1]. Consequently, there are variations in the incommensurate
derivative influence the dynamics of (15).

(a) (b)

Figure 10. (a) Bifurcation of (15) for Υ1 ∈ [0.4, 1], Υ2 = 0.1, Υ3 = 0.9. (b) The associated LEmax.

(a) (b)

Figure 11. (a) Bifurcation of (15) for Υ2 ∈ (0, 1] and Υ1 = 1,Υ3 = 0.9. (b) The associated LEmax.

Figure 13 shows the bifurcation diagram for the incommensurate derivative
(Υ1, Υ2, Υ3) = (0.9, 0.1, 0.2), when σ1 ∈ [−1, 1], σ2 ∈ [−2, 0] , σ3 ∈ [0, 1.2] , η ∈ [0, 1.5];
obviously, the map changes the dynamics from periodic to totally chaotic and shows a di-
vergence in the motion of infinity in some points where the LEmax in Figure 14 corresponds
to Figure 13, further confirming these findings with fluctuations in the values in the range
of positive and negative. It is obvious that the behaviors of the three proposed incommen-
surate map-based functions (15) are influenced by the system factors and variations in the
incommensurate derivative have an influence on the dynamics of (15).
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(a) (b)

Figure 12. (a) Bifurcation of (15) for Υ3 ∈ (0, 1], Υ1 = 0.9, Υ2 = 0.1. (b) The associated LEmax.

(a) σ1 ∈ [−1, 1] (b) σ2 ∈ [−2, 0]

(c) σ3 ∈ [0, 1.2] (d) η ∈ [0, 1.5]

Figure 13. Bifurcation of (15) for (Υ1, Υ2, Υ3) = (0.9, 0.1, 0.2).
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(a) σ1 ∈ [−1, 1] (b) σ2 ∈ [−2, 0]

(c) σ3 ∈ [0, 1.2] (d) η ∈ [0, 1.5]

Figure 14. The LEmax of (15) associated with Figure 13.

4. Complexity Analysis

In this section, analyzing the dynamic of chaotic maps can also be performed us-
ing the complexity of chaotic features. As the complexity of the model increases, it be-
comes increasingly chaotic. The complexity of the new fractional-chaotic map-based
three functions (9), (15) is ascertained using the C0 measure and the approximate entropy
ApEn approach.

4.1. Entropy Test

In this part, the degree of complexity in the new fractional-chaotic maps-based three
functions (9) and (15) in the time sequence created may be measured using the approxima-
tion entropy (ApEn) [36]. It corresponds to more chaotic behavior with higher ApEn. In
theory, for m = 2, the embedding dimension of the ApEn algorithm is defined by

ApEn = Φm(r)− Φm+1(r), (17)



Symmetry 2024, 16, 1447 15 of 23

where r = 0.2std(Z) is the tolerance so that std(Z) is the standard deviation, and Φm(r) is
noted as

Φm(r) =
1

n − m + 1

n−m+1

∑
ι=1

log Cm
ι (r). (18)

The ApEn results for σ1 = −0.2, σ2 = −1.7, σ3 = 1.15, β = 1, η = 0.35, and (IN) of the
three commensurate map-based functions (9), as well as the incommensurate (15) when
the values of commensurate and incommensurate orders are offered in Figure 15. Clearly,
the higher values in the ApEn findings indicate a higher level of chaos in the maps. This
result thus validates the appearance of chaos in the maps (9), (15) and is consistent with the
maximum Lyapunov exponent results previously shown in Figures 3 and 10–12.

(a) (b)

(c) (d)

Figure 15. The ApEn complexity of the maps (9) and (15) with (a) Υ ∈ [0.65, 1], (b) Υ1 ∈ [0.4, 1] and
Υ2 = 0.1, Υ3 = 0.9, (c) Υ2 ∈ (0, 1] and Υ1 = 1,Υ3 = 0.9 , (d) Υ3 ∈ (0, 1] and Υ1 = 0.9,Υ2 = 0.1.

4.2. C0 Complexity

Here, using the C0 complexity algorithm [37], we calculate the complexity of the new
fractional chaotic map-based three functions (9) and (15); this comes from the Fourier
inverse transform. The C0 algorithm is described in detail for {ϕ(γ), γ = 1, . . . , B − 1}:

• ϕ(γ) is defined as the Fourier transform by

XB(γ) =
1
B

B−1

∑
γ=0

ϕ(a) exp−2πi( kj
B ), a = 0, 1, . . . , B − 1. (19)
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• We detailed the mean square of XB(γ) with GB = 1
B ∑N−1

γ=0 |XB(γ)|2 and set

X̄B(γ) =

{
XB(γ) if ∥XB(γ)∥2 > rGB,
0 if ∥XB(γ)∥2 ≤ rGB.

(20)

• The inverse Fourier transform may be found as

ξ(ȷ) =
1
B

B−1

∑
γ=0

X̄B(γ) exp2πi( ȷγ
B ), ȷ = 0, 1, . . . , B − 1. (21)

• Applying the following formula yields the C0 complexity

C0 =
∑B−1

ȷ=0 ∥ξ(ȷ)− ϕ(ȷ)∥

∑B−1
ȷ=0 ∥ϕ(ȷ)∥2

. (22)

We evaluate C0 complexity numerically for the new fractional chaotic map-based three
functions (9) and (15), where σ1 = −0.2, σ2 = −1.7, σ3 = 1.15, β = 1, η = 0.35, and (IN).
Figure 16 illustrates changes in the derivative fractional orders Υ, Υ1, Υ2, and Υ3. The maps
exhibit more complexity, as shown by the higher C0 complexity outcome. These results
agree with (LEmax).

(a) (b)

(c) (d)

Figure 16. The C0 complexity of the maps (9) and (15) with (a) Υ ∈ [0.65, 1], (b) Υ1 ∈ [0.4, 1] and
Υ2 = 0.1, Υ3 = 0.9, (c) Υ2 ∈ [0, 1] and Υ1 = 1,Υ3 = 0.9 , (d) Υ3 ∈ [0, 1] and Υ1 = 0.9,Υ2 = 0.1.
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5. Chaotic Control

Now, we suggest the control laws for stabilizing the three commensurate map-based
functions (9) and the incommensurate map (15). This ensures that the map states are forced
to zero in enough time.

5.1. Commensurate-Order Control

Here, we create an adaptive controller to stabilize the three commensurate map-based
functions (9) and guarantee that every state approaches zero asymptotically. In [38], the
authors described several properties of a nonlinear controller for fractional-order discrete-
time chaotic systems, and particularly those driving all map states asymptotically toward
zero. We achieve this objective based on the following Lemma.

Lemma 1 ([39]). The following linear commensurate system has an asymptotically stable
zero equilibrium

C∆Υ
t ψ(m) = Aψ(s − 1 + Υ). (23)

Let ψ(s) = (ψ1(s), ..., ψn(s))T , 0 < Υ < 1 and ∀s ∈ Nt+1−Υ. A ∈ Rn×n, if

λj ∈
{

ρ ∈ C : |ρ| <
(

2 cos
|argρ| − π

2 − Υ

)Υ

and |argρ| > Υπ

2

}
, (24)

for all λj of A.

The controlled map of the commensurate order is defined by

C∆Υ
t x1(s) =

σ1

1 + e−βx1(θ)
+ σ2σ3x1(θ)(η|x2(θ)| − 1)((x3(θ))

2 − 1)

− x1(θ) + T1(θ),
C∆Υ

t x2(s) = x1(θ) + T2(θ),
C∆Υ

t x3(s) = σ2x1(θ)(η|x2(θ)| − 1) + T3(θ),

(25)

where (T∗
1 , T∗

2 , T∗
3)

T is the adaptive controllers, based on Lemma 1, which can give the
proposition below that designs the adaptive controller to control the commensurate-map-
based three functions (9).

Proposition 1. The following 3D control law can stabilize the commensurate map (9)

T1(θ) = −σ2σ3x1(s − 1 + Υ)(η|x2(θ)| − 1)((x3(θ))
2 − 1)−

σ1

1 + e−βx1(θ)
,

T2(θ) = −1
2

x2(θ)

T3(θ) = −σ2x1(θ)(η|x2(θ)|)−
1
2

x3(θ).

(26)

Proof. Substituting (26) into (25), we obtain

C∆Υ
t X̄ = AX̄(θ), (27)

where X̄ = (x1, x2, x3)
T and

A =

 −1 0 0
1 − 1

2 0
1.7 0 − 1

2

. (28)
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Therefore, the λj satisfies

|λȷ| <
(

2 cos
|argλȷ| − π

2 − Υ

)Υ

and |λȷ| >
Υπ

2
.

Thus, the (0, 0, 0) equilibrium of (26) is asymptotically stable.

To display the results, numerical simulations were run with Proposition 1. Figure 17
displays the evolution of the controlled map (25) for Υ = 0.85, with σ1 = −0.2, σ2 = −1.7,
σ3 = 1.15, β = 1, η = 0.35, and (IN). Observably, the three commensurate map-based
functions (9) are stabilized.

(a) σ1 = −0.2 (b) σ2 = −1.7

(c) σ3 = 1.15 (d) Attractor

Figure 17. The evolution states of the controller three commensurate map-based functions (25) for
Υ = 0.85.
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5.2. Incommensurate-Order Control

In this part, we provide the stability requirement that every state converges to zero,
thereby stabilizing the three proposed incommensurate map-based functions (15) using the
following Lemma.

Lemma 2 ([40]). Consider the system

c∆Υ1
t x1(s) = ψ1(x(Υ1 + s − 1)),

c∆Υ2
t x2(s) = ψ2(x(Υ2 + s − 1)), s = 0, 1, · · · ,

...
c∆Υm

t xm(s) = ψm(x(Υm + s − 1)).

(29)

where ψ = (ψ1, ..., ψm) : Rm → Rm and x(s) = (x1(s), ..., xm(s))T ∈ Rm; consider Υi ∈ (0, 1],
i = ¯1 . . . m, and let M be (LCM) of the denominators µ̄i of Υi added to Υi = ūiµ̄i, (µ̄i, ūi) = 1,
ūi, µ̄i ∈ Z+, ∀i = 1, m.

det(diag(λMΥ1 , · · · , λMΥm)− (1 − λM)A) = 0, (30)

where A is the Jacobian matrix of (29). If each root of (30) is included in C/Kδ, the zero solution of
(29) is asymptotically stable, where

Kδ =

{
ρ ∈ C : |ρ| ≤

(
2 cos

|argρ|
δ

)δ

and |argρ| ≤ ρπ

2

}
, (31)

and δ = 1
M .

The controlled map of the incommensurate order is defined by

C∆Υ1
t x1(s) =

σ1

1 + e−βx1(θ1)
+ σ2σ3x1(θ1)(η|x2(θ1)| − 1)((x3(θ1))

2 − 1)

− x1(θ1) + T1(θ1),
C∆Υ2

t x2(s) = x1(θ2) + T2(θ2),
C∆Υ3

t x3(s) = σ2x1(θ3)(η|x2(θ3)| − 1) + T3(θ3),

(32)

Proposition 2. The following 3D control law can stabilize the incommensurate map (15)

T1(θ1) = −σ2σ3x1(θ1)(η|x2(θ1)| − 1)((x3(θ1))
2 − 1)−

σ1

1 + e−βx1(θ1)
,

T2(θ2) = −1
2

x2(θ2),

T3(θ3) = −σ2x1(θ3)(η|x2(θ3)|)−
1
2

x3(θ3).

(33)

Proof. Substituting (33) into (32) we get:
C∆Υ1

t x1(s) = −x1(θ1),

C∆Υ2
t x2(s) = x1(θ2)−

1
2

x2(θ2),

C∆Υ3
t x3(s) = −σ2x1(θ3)−

1
2

x3(θ3).

(34)
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So,
det(diag(λMΥ1 , λMΥ2 , λMΥ3))− (1 − λM)A) = 0

where M = 10, and

A =

 −1 0 0
1 − 1

2 0
1.7 0 − 1

2

, (35)

for (Υ1, Υ2, Υ3) = (1, 0.8, 0.9)

det

 λ1 0 0 .
0 λ8 0
0 0 λ9

−
(

1 − λ10
)

A

 = 0,

⇔

− 0.25λ30 + 0.5λ29 + 0.5λ28 − λ27 + 0.25λ21 + 0.25λ20 − 1.5λ19 + λ17 − 0.5λ11 − 0.25λ10 + λ9+

0.5λ8 + 0.25λ + 0.25 = 0.

(36)

Based on Lemma 2, realizing that λj ∈ C/K
1
10 , (j = 1, . . . , 30), which the map (32) asymp-

totically stabilizes towards (0, 0, 0) equilibrium.

In Figure 18, display the stabilization of controller map (32) for (Υ1, Υ2, Υ3) = (1, 0.8, 0.9)
with (IN). Hence, we can see that the three new incommensurate map-based functions (15)
are stabilized.

(a) Y1 = 1 (b) Y2 = 0.8

Figure 18. Cont.
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(c) Y3 = 0.9 (d) Attractor

Figure 18. The evolution states of the controller’s three incommensurate map-based functions (32)
for (Υ1, Υ2, Υ3) = (1, 0.8, 0.9).

6. Conclusions and Future Works

A new fractional chaotic map-based three functions are introduced, and we thoroughly
investigated their dynamics in commensurate as well as incommensurate derivative orders,
adding to their influence on the map’s behavior. Our work provides significant insights into
the intricate dynamics of discrete systems based on nonlinear functions under fractional
orders through this method, paving the way for further study and real-world applications
in the fields of nonlinear dynamics and chaos theory.

First, the analysis of the system with no fixed point also varied the parameters and
derivative fractional values, revealing that there is asymmetry, further highlighting that the
system is able to display a wide range of complex hidden dynamical behaviors. Second,
the approximation entropy ApEn and C0 complexity confirmed the quantitative assess-
ment of the system’s complexity. Third, producing effective control laws can force the
new fractional chaotic map-based three function states to approach asymptotic zero and
guarantee their stabilization.

Lastly, numerical simulations with MATLAB R2024a are run to illustrate the results.
Such a phenomenon in encryption and secure communication maps based on mathematical
functions will be used in subsequent work. So, we will be designing relevant physical
device realizations to validate the numerical simulation results.
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