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Abstract: This article investigates the environmental contamination and antibiotic exposure effect
on the transmission dynamics of the Methicillin-Resistant Staphylococcus aureus (MRSA) model in
hospitals using the fractional Adams–Bashforth–Moulton Method (ABMM). This epidemic model
simulates the dynamics of patient populations, bacterial contamination, and healthcare worker safety
under varying conditions. This model provides critical insights into the interactions between hospital
practices, environmental factors, and infection dynamics, demonstrating the importance of symmetry
in balancing hospital admission and discharge rates to manage infection spread effectively. The
analysis extends to the impact of environmental bacterial density and hospital admission rates on
patient colonization. Increasing admission rates introduce more susceptible patients, exacerbating
infection spread when bacterial density is high. Conversely, lower admission rates and bacterial
density result in a more controlled infection environment. The model further investigates how varying
discharge rates influence colonization dynamics, highlighting that effective discharge practices can
mitigate infection spread, especially in high-bacterial density scenarios. It must be noted that
this model is studied fractionally for the first time. Overall, this model provides critical insights
into the interactions between hospital practices, environmental factors, and infection dynamics,
offering valuable guidance for infection control strategies and hospital policy formulation. By
adjusting fractional order constant (σ) values and analyzing different scenarios, this research aids
in understanding and managing bacterial infections in healthcare settings. The proposed method
is able to provide the results presented in the figures within this study considering the influence of
many factors.

Keywords: Methicillin-resistant Staphylococcus aureus; Adams–Bashforth–Moulton method; Antibiotic
exposure; Admission rate; Discharge rate

1. Introduction

Nosocomial infections (NIs) are major contributors to morbidity and mortality. These
infections significantly prolong hospital stays and escalate healthcare costs [1]. According
to the Centers for Disease Control and Prevention (CDC), “every year, at least 2 mil-
lion Americans become infected with antibiotic-resistant bacteria, with approximately
23,000 people dying as a direct result of these infections” (CDC, 2018) [2]. In this context,
NIs are catheter-associated urinary tract infections (CAUTIs), surgical site infections (SSIs),
central line-associated bloodstream infections (CLABSIs), and ventilator-associated pneu-
monia (VAP). Primary sources of bacterial NIs have been identified, including surgical
procedures and invasive devices like catheters and ventilators [3]. These infections are
a significant concern for public health due to their prevalence, the potential for severe
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outcomes, and the difficulty in treating some cases because of antibiotic resistance. They
contribute significantly to healthcare costs and can prolong hospital stays, and reducing
their incidence requires strict adherence to infection control measures across all healthcare
settings [4].

Several bacterial pathogens have been associated with NIs, with Methicillin-Resistant
Staphylococcus Aureus (MRSA) being a major cause in healthcare systems [5]. MRSA is con-
sidered an essential reason for hospital-associated infections, particularly among newborns
and patients in intensive care units (CDC, 2019) [6]. This pathogen causes a wide range of
infections, including skin and soft tissue infections, bloodstream infections, pneumonia,
brain abscesses and endophthalmitis (CDC, 2018) [2]. Also, MRSA colonization can occur
in different body parts, such as the axillae, groin, perineum, rectum, and anterior nares.
These infections are associated with two significant challenges: the growing resistance
of bacteria to available antibiotics and the difficulty in controlling their spread. Effective
control is hindered by the frequent contamination of surfaces in healthcare facilities and the
sharing of medical equipment, which often leads to outbreaks in these environments [7].

Worldwide, the common treatment for staph bacterial infections is the use of antibiotics.
However, the overuse of antibiotics has led to MRSA becoming resistant to common
antibiotics [8]. Up to 50% of antibiotic use in hospitalized patients is unnecessary or
inappropriate (CDC, 2018). MRSA prevalence increased from 4% in the 1980s to 50% in
the late 1990s, with MRSA strains accounting for up to 80% of all S. aureus strains, as in
the NNISS report in [9,10]. In fact, about 64% of MRSA-infected patients are likely to die
compared to non-resistant bacterial infection patients (WHO, 2014) [11]. Furthermore,
MRSA has emerged as a major pathogen outside of healthcare settings, spreading within
local communities and causing infections in healthy individuals [12].

MRSA changes at a constant rate and adapts to newly developed antibiotics, making
it challenging for researchers to cope with it. Another perspective for controlling the
spread of MRSA is to understand the association between patients’ antibiotic exposure
and their treatment outcomes. Many studies have observed that patients exposed to
antibiotics are more likely to contract MRSA, which results in longer hospital stays, higher
chances of treatment failure, increased healthcare costs, greater bacterial shedding into
the environment, and higher mortality rates [13,14]. Hence, it is important to consider
antibiotic exposure and the uncontrolled use of antibiotics in hospitals as influential factors
in the transmission of MRSA. From this perspective, previous works presented a strong
correlation between antibiotic use and MRSA infection in healthcare systems [14–17].

Another important factor to consider in studying MRSA is its ability to survive on
different environmental surfaces including door handles, healthcare facility equipment,
and healthcare workers’ gloves [18,19]. This environmental persistence underlines the
necessity of also examining environmental contamination as an important factor in the
transmission of MRSA in hospital settings and healthcare systems.

Considering these factors, mathematical modeling is commonly employed to enhance
our understanding of how nosocomial pathogens spread within hospital settings. Such
models can help quantify the infectiousness of MRSA and predict its transmission dynamics
within healthcare environments so that new control measurements can be deployed. From
this perspective, several models were developed to analyze the effect of different factors
contributing to MRSA infection in healthcare systems [19–31]. These models have fore-
casted the impact of infection control measures on reducing nosocomial cross-transmission
and helping control MRSA outbreaks in healthcare facilities. For instance, one major fac-
tor identified for the direct transmission of MRSA was the contamination of healthcare
worker’s hands [32–37]. Other models have analyzed the effects of antibiotic exposure on
MRSA transmission within healthcare systems [13]. However, many of these models have
focused on the impact of individual factors on MRSA spread and transmission without
considering the combined effects of multiple factors. Therefore, this study aims to develop
a fractional model to examine the effect of environmental contamination combined with
antibiotic exposure on the transmission dynamics of MRSA in hospitals. In recent years,
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FDEs have emerged as a significant tool in mathematical modeling [38]. These equations
are at least as stable as their integer-order counterparts, namely ordinary differential equa-
tions [39]. As a result, fractional-order calculus has garnered substantial attention across
various scientific fields [40–44]. Biology, in particular, provides a rich source of mathemati-
cal concepts, as many biological systems exhibit memory or after-effects. Modeling such
systems with FDEs offers advantages over traditional integer-order models, which often
overlook these effects [40], making FDEs especially suitable for studying infectious diseases
in hospital environments.

2. Mathematical Models and Preliminaries

Mathematical modeling research improves our knowledge about practical applica-
tions [45], disease spread predictions [46], epidemiology [47], and systems biology [48].
Fractional-order models are used to describe the spread of infectious diseases, captur-
ing long-term dependencies and memory effects in disease transmission. For example,
they have been applied to model the spread of COVID-19, influenza, and Ebola [49–53].
Also, Zeng et al. [54] demonstrated the use of a fractional system in understanding the
dynamics of antibiotic resistance by considering historical antibiotic usage and resistance
development over time. Hospitals are critical settings for the transmission of infectious
diseases, and fractional-order models can significantly enhance the understanding and
management of infection control in these environments. Fractional-order models help in
analyzing the spread of HAIs, such as MRSA and C. difficile, considering the complex
interactions and memory effects of patient-to-patient transmission and environmental
contamination [55,56].

To mathematically describe the transmission of MRSA, a deterministic model is de-
rived based on the following descriptions and assumptions:

CDσ
t Pu = θu(γuPu + γcPc + γvPuA + γdPcA)− αpβp(1 − η)Pu Hc − κpPuBe − (γu + ϵ)Pu,

CDσ
t Pc = θc(γuPu + γcPc + γvPuA + γdPcA) + αpβp(1 − η)Pu Hc + κpPuBe − (γc + ϵ)Pc,

CDσ
t PuA = θv(γuPu + γcPc + γvPuA + γdPcA)− αpβpA(1 − η)PuAHc − κqPuABe − γvPuA + ϵPu,

CDσ
t PcA = θd(γuPu + γcPc + γvPuA + γdPcA) + αpβpA(1 − η)PuA Hc + κqPuABe − γdPcA + ϵPc,

CDσ
t Hu = −αpβh(1 − η)PcHu − αpβhA(1 − η)PcAHu − κh HuBe + µcHc,

CDσ
t Hc = αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κh HuBe − µcHc,

CDσ
t Be = vpPc + vqPcA + vh Hc − γbBe.

(1)

We categorize the patients (P), healthcare workers (HCWs), and free-living bacteria
in the environment into the following seven sections [43]; Pu(t)—number of uncolonized
patients without antibiotic exposure at time t; PuA(t)—number of uncolonized patients
with antibiotic exposure at time t; Pc(t)—number of colonized patients without antibiotic
exposure at time t; PcA(t)—number of colonized patients with antibiotic exposure at time
t; Hu(t)—number of uncontaminated healthcare workers at time t; Hc(t)—number of
contaminated healthcare workers at time t; Be(t)—density of the free-living bacteria in the
environment at time t, that are demonstrated in Figure 1.

The parameters used in the deterministic model are are demonstrated in Figure 1
as follows. σ typically represents the transition rate of various patient populations and
healthcare worker transitions over time, including colonization rate (the rate at which
uncolonized patients become colonized), contamination rate (the rate at which healthcare
workers become contaminated), and recovery rate (the rate at which patients recover from
colonization or contamination). The hospital admission rate θ (the rate at which new
patients are admitted to the hospital) and discharge rate λ (the rate at which patients
are discharged from the hospital) were studied to develop more effective prevention and
control strategies.
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Figure 1. Flowchart of the seven sections in the model: Pu(t), PuA(t), Pc(t), PcA(t), Hu(t), Hc(t)
and Be(t).

In epidemiological models, σ often represents the rate at which patients transition
from being susceptible to becoming colonized. Adjusting σ in deterministic epidemic
models provides critical insights into the dynamics of patient populations, the spread of
contamination among healthcare workers, and the environmental persistence of bacteria.
By simulating various scenarios with different σ values, healthcare professionals can better
understand the processes at play, evaluate the effectiveness of treatment and infection con-
trol strategies, and make informed decisions to manage and mitigate unwanted outcomes
in healthcare settings. This approach enhances our knowledge of epidemic dynamics
as well as information about the aids in the development of targeted interventions to
improve patient safety and infection control [57–59]. The number of colonized patients
without antibiotic exposure Pc(t) increases as susceptible individuals become colonized.
Antibiotics reduce the number of uncolonized patients Pu(t) transitioning to colonized
states. PuA(t) and PcA(t) provide a clearer picture of how antibiotic use impacts MRSA
dynamics. Studies such as those by [16,60] support our findings that antibiotic use can
increase the prevalence of MRSA colonization. Antibiotics can disrupt normal flora and
reduce competition, allowing MRSA to colonize more easily. The peak number of colonized
patients (both with and without antibiotic exposure) occurs at different times. The peak
for Pc(t) typically occurs earlier and is higher compared to PcA(t) due to the absence of
antibiotics slowing down the spread. Over time, the model reaches a steady state where
the number of new colonizations balances out with recoveries and isolation. This steady
state shows the long-term impact of antibiotics on reducing the prevalence of colonized
patients. The rapid spread among patients not exposed to antibiotics leads to an earlier and
higher peak in colonization. Without antibiotics, MRSA can spread more quickly among
patients because antibiotics would otherwise kill susceptible bacteria, potentially reducing
the spread. The density of MRSA bacteria in the environment B(t) increases as the number
of colonized patients rises. Rapid initial rise due to high transmission rates from colonized
patients. The peak density of bacteria corresponds closely with the peak prevalence of
colonized patients, which indicates the importance of controlling patient colonization to
manage environmental contamination. The maximum environmental bacterial load is
observed when the highest number of patients are colonized, indicating a strong temporal
correlation. There is a direct correlation between the number of patients carrying MRSA
and the bacterial load in the environment [19]. Colonized patients shed MRSA through skin
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cells, nasal secretions, and other bodily fluids, contaminating surfaces and the air around
them. Colonized individuals can spread MRSA through direct contact or indirectly via
contaminated surfaces and objects, leading to a quick escalation in environmental bacterial
density. It is essential to maintain a clean and MRSA-free environment to prevent the
further spread of the bacteria, protecting uncolonized patients and staff [18,61].

Deterministic epidemic models are invaluable tools in epidemiology for understanding
the complex interactions between environmental factors and patient populations. Specif-
ically, these models can explore how environmental bacterial density influences patient
colonization under varying hospital admission and discharge rates. By adjusting parame-
ters related to bacterial density and hospital dynamics, these models provide insights into
infection control and patient management in healthcare settings. In deterministic models,
environmental bacterial density can be modeled as a time-dependent function or a constant
parameter. For example, the model might include a term where the rate of transition from
susceptible to colonized is proportional to the bacterial density in the environment. This
approach allows researchers to simulate various scenarios, such as increased bacterial load
due to insufficient cleaning or environmental contamination [62]. This study emphasizes
the impact of environmental bacterial load on infection rates and supports the use of
models to understand these dynamics. On the other hand, hospital admission rates affect
the influx of new patients who are either susceptible to colonization or already colonized.
Deterministic models incorporate admission rates to simulate the impact of varying patient
inflow on overall colonization rates. High admission rates can lead to increased patient
turnover and a higher risk of introducing and spreading infections within the hospital [63].
This paper discusses how varying hospital admission rates impact infection dynamics and
supports the use of modeling to evaluate these effects. Hospital discharge rates influence
the turnover of patients who are either colonized or susceptible. High discharge rates can
affect the overall number of colonized patients in the hospital and influence the spread
of infections. For instance, rapid discharges may lead to an increased risk of patients
carrying infections being released into the community or other healthcare settings [64]. This
research explores how different discharge practices influence infection spread, highlighting
the relevance of discharge rate modeling by integrating varying hospital admission and
discharge rates with environmental bacterial density in deterministic models, which allows
researchers to gain a comprehensive view of how these factors interact to influence patient
colonization. For example, a scenario with high bacterial density and high admission
rates might show a rapid increase in colonized patients, while high discharge rates could
mitigate this effect by reducing patient numbers. Understanding these interactions helps in
formulating effective infection control strategies. For instance, a hospital facing high bacte-
rial density might need to enhance cleaning protocols or adjust admission and discharge
practices to manage infection risks more effectively [65]. This review discusses the interplay
between environmental factors and hospital practices, emphasizing the importance of such
modeling approaches.

There have been several recent proposals for fractional calculus topics, including
different definitions [66,67].

Definition 1. The fractional integral operator of order σ > 0, of a function P(t) ∈ Cι, ι ≥ −1 is
denoted by Iσ

a and defined as follows:Iσ
a P(t) = 1

Γ(σ+1)

t∫
a

P(t)(dt)σ = 1
Γ(σ)

t∫
a
(t − ξ)σ−1P(ξ)dξ, t, σ > 0

I0
a P(t) = P(t).

(2)

Definition 2. The definition of the Caputo operator may be expressed as follows:

CDσ
t P(t) =

∂σP(t)
∂tσ

=
1

Γ(m − σ)

t∫
0

(t − ξ)m−σ−1 ∂mP(t)
∂ξm dξ, (m − 1 < σ ≤ m, m ∈ N). (3)
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3. Mathematical Algorithm

Many practical and physical applications created using fractional PDEs are not exactly
solvable. Still, in science and engineering, a numerical estimate of the solution is often
enough to solve the issue. This approach may be used to register a solution for the Adams–
Bashforth–Moulton method, utilizing the indicator corrector PECE methodology. To show
the potentiality, commonality, and supremacy of our method, we investigate the integer
order model, defining the transition between compartments under the Caputo fractional
derivative in this section. All analytical and numerical calculations were performed during
the calculation period using the MATLAB software program.

The Caputo fractional derivative is used to analyze the following generic fractional
differential equation with fading memory:{

CDσ
t A(t) = Υ(t, A(t)),

A(0) = A0.
(4)

By stratifying the essential theorem of calculus, we transform Equation (4) into the following:

A(t)− A(0) =
1

Γ(σ)

t∫
0

Υ(χ, A(χ))(t − χ)σ−1dχ, (5)

so that, at t = tn+1, n = 1, 2, · · · , we obtain

A(tn+1)− A(0) =
1

Γ(σ)

tn+1∫
0

Υ(t, A(t))(tn+1 − t)σ−1dt, (6)

and

A(tn)− A(0) =
1

Γ(σ)

tn∫
0

Υ(t, A(t))(tn − t)σ−1dt. (7)

By subtracting (7) from (6), we obtain the following:

A(tn+1)− A(tn) =
1

Γ(σ)

tn+1∫
0

Υ(t, A(t))(tn+1 − t)σ−1dt +
1

Γ(σ)

tn∫
0

Υ(t, A(t))(tn − t)σ−1dt (8)

This suggests the following:

A(tn+1)− A(tn) = Aσ + Bσ, (9)

where

Aσ =
1

Γ(σ)

tn+1∫
0

Υ(t, A(t))(tn+1 − t)σ−1dt,

and

Bσ =
1

Γ(σ)

tn∫
0

Υ(t, A(t))(tn − t)σ−1dt.
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By applying the Lagrange interpolation on the function Υ(t, A(t)), we obtain

P(t) ∼=
t − tn−1

tn − tn−1
Υ(tn, An) +

t − tn

tn−1 − tn
Υ(tn−1, An−1)

=
Υ(tn, An)

h
(t − tn−1) +

Υ(tn−1, An−1)

h
(t − tn). (10)

Then, we have

Aσ =
Υ(tn, An)

hΓ(σ)

tn+1∫
0

(t − tn−1)(tn+1 − t)σ−1dt +
Υ(tn−1, An−1)

hΓ(σ)

tn+1∫
0

(t − tn)(tn+1 − t)σ−1dt

=
Υ(tn, An)

hΓ(σ)

tn+1∫
0

(tn+1 − A − tn−1)Aσ−1dA +
Υ(tn−1, An−1)

hΓ(σ)

tn+1∫
0

(tn+1 − A − tn)Aσ−1dt. (11)

Subsequently,

Aσ =
Υ(tn, An)

hΓ(σ)

{
2htσ

n+1
σ

−
tσ+1
n+1

σ + 1

}
− Υ(tn−1, An−1)

hΓ(σ)

{
htσ

n+1
σ

−
tσ+1
n+1

σ + 1

}
. (12)

Similarly, we obtain

Bσ =
Υ(tn, An)

hΓ(σ)

tn∫
0

(t − tn−1)(tn − t)σ−1dt +
Υ(tn−1, An−1)

hΓ(σ)

tn∫
0

(t − tn)(tn − t)σ−1dt

=
Υ(tn, An)

hΓ(σ)

tn∫
0

(tn − A − tn−1)Aσ−1dA +
Υ(tn−1, An−1)

hΓ(σ)

(
tσ+1
n
σ

)
. (13)

Subsequently,

Bσ =
Υ(tn, An)

hΓ(σ)

{
2htσ

n
σ

− tσ+1
n

σ + 1

}
− Υ(tn−1, An−1)

hΓ(σ)

(
tσ+1
n
σ

)
. (14)

Thus, the approximate solution is given as

A(tn+1) = A(tn) +
Υ(tn, An)

hΓ(σ)

{
2htσ

n+1
σ

−
tσ+1
n+1

σ + 1
+

2htσ
n

σ
− tσ+1

n
σ + 1

}
− Υ(tn−1, An−1)

hΓ(σ)

{
htσ

n+1
σ

−
tσ+1
n+1

σ + 1
+

tσ+1
n
σ

}
. (15)

Consequently, the solution of the model (1) is

An+1 = An +
1

hΓ(σ)
{

Θn
{

θu(γu An + γcBn + γvCn + γdDn)− Λ1 AnFn − κp AnGn − (γu + ϵ)An

−Θn−1
{

θu(γu An−1 + γcBn−1 + γvCn−1 + γdDn−1)− Λ1 An−1Fn−1 − κp An−1Gn−1 − (γu + ϵ)An−1
}

(16)

Bn+1 = Bn +
1

hΓ(σ)
{

Θn
{

θc(γu An + γcBn + γvCn + γdDn) + Λ1 AnFn + κp AnGn − (γc + ϵ)Bn
}

−Θn−1
{

θc(γu An−1 + γcBn−1 + γvCn−1 + γdDn−1) + Λ1 An−1Fn−1 + κp An−1Gn−1 − (γc + ϵ)Bn−1
}}

(17)

Cn+1 = Cn +
1

hΓ(σ)
{

Θn
{

θv(γu An + γcBn + γvCn + γdDn)− Λ2CnFn − κqCnGn − γvCn + ϵAn
}

−Θn−1
{

θv(γu An−1 + γcBn−1 + γvCn−1 + γdDn−1)− Λ2Cn−1Fn−1 − κqCn−1Gn−1 − γvCn−1 + ϵAn−1
}}

(18)
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Dn+1 = Dn +
1

hΓ(σ)
{

Θn
{

θd(γu An + γcBn + γvCn + γdDn) + Λ2CnFn + κqCnGn − γdDn + ϵBn
}

−Θn−1
{

θd(γu An−1 + γcBn−1 + γvCn−1 + γdDn−1) + Λ2Cn−1Fn−1 + κqCn−1Gn−1 − γdDn−1 + ϵBn−1
}}

(19)

En+1 = En +
1

hΓ(σ)
{Θn{−Λ3BnEn − Λ4DnEn − κhEnGn + µcFn}

−Θn−1{−Λ3Bn−1En−1 − Λ4Dn−1En−1 − κhEn−1Gn−1 + µcFn−1}} (20)

Fn+1 = Fn +
1

hΓ(σ)
{Θn{Λ3BnEn + Λ4DnEn + κhEnGn − µcFn}

−Θn−1{Λ3Bn−1En−1 + Λ4Dn−1En−1 + κhEn−1Gn−1 − µcFn−1}} (21)

Gn+1 = Gn +
1

hΓ(σ)
{

Θn
{

vpBn + vqDn + vhFn − γbGn
}
−Θn−1

{
vpBn−1 + vqDn−1 + vhFn−1 − γbGn−1

}}
(22)

where An = An(tn), An−1 = An−1(tn−1), Θn =
2htσ

n+1
σ − tσ+1

n+1
σ+1 + 2htσ

n
σ − tσ+1

n
σ+1 , Θn−1 =

htσ
n+1
σ −

tσ+1
n+1

σ+1 +
tσ+1
n
σ , Λ1 = αpβp(1− η), Λ2 = αpβpA(1− η) , Λ3 = αpβh(1− η), Λ4 = αpβhA(1− η),

A = Pu, B = Pc, C = PuA, D = PcA, E = Hu, F = Hc, and G = Be.

4. Numerical Manipulations

Here, the numerical simulation is studied over 200 days, and for more detail, a period
of 5 days is considered too. The data were collected from Beijing Tongren Hospital, where
the emergency ward had 23 initially full beds, and the initial amount of patients and health-
care workers was estimated. We assume the initial density of bacteria is 1000 ACC/cm2.
The data used in this paper were taken from reference [41]. The initialvalues were set as
(Pu0 = 4; PuA0 = 6, Pc0 = 7, PcA0 = 6, Hu0 = 17, Hc0 = 6, and Be0 = 1000).

In this context, by understanding patient behavior in a healthcare setting, we can ana-
lyze how different populations such as uncolonized patients, colonized patients, or health-
care workers evolve over time under varying conditions. The fractional order σ plays a
crucial role in this analysis. To better understand the impact of different σ values on these
populations, we create plots that show how each population evolves over time. The follow-
ing plots will help you see how quickly or slowly the population increases or decreases
under different conditions.

The solutions of uncolonized patients without antibiotic exposure Pu(t), with initial
values (Pu0 = 4), and with different values of the fractional order σ are given in Figure 2.
The parameters have been considered in history [41].

Figure 2. Pu(t) as a function of time for different fractional order σ.
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The model predicts an exponential increase in the number of patients, peaking at
approximately 40 days with approximately 25% of the population infected when σ equals
one, and the number of uncolonized patients decreases rapidly when σ values become
smaller as in Figure 2.

The uncolonized patients with antibiotic exposure solutions PuA(t), with initial values
(PuA0 = 6), and with different values of the parameter σ are shown in Figure 3.

Figure 3. PuA(t) as a function of time with different values of the fractional order σ.

For the uncolonized patients with antibiotic exposure PuA, the higher σ values might
lead to faster depletion of the uncolonized population, as shown in Figure 3.

The solutions of colonized patients without antibiotic exposure Pc(t), considering
(Pc0 = 7) as the initial value for different values of the parameter σ, are plotted in Figure 4.

Figure 4. Pc(t) as a function of time for different fractional order σ.

For colonized patients, and if σ is small, the population Pc(t) decreases slowly, meaning
patients remain colonized longer, and if σ is large, the colonized population Pc(t) decreases
rapidly, leading to a quicker decline in the number of colonized patients as in Figure 4.

The solutions of colonized patients with antibiotic exposure PcA(t), with initial values
(PcA0 = 6), and with different values of the parameter σ are represented in Figure 5.

In Figure 5, if σ is small, the colonized population with antibiotic exposure PcA(t) de-
creases slowly, indicating that patients remain colonized longer despite antibiotic exposure,
and if σ is large, the colonized population with antibiotic exposure PcA(t) decreases rapidly,
leading to a quick decline, possibly due to effective antibiotic treatment or other factors.
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Figure 5. PcA(t) as a function of time for different fractional order σ.

Moreover, the solutions of uncontaminated healthcare workers, with an initial value
(H0 = 17) at any time t and with different values of the parameter σ, are considered in
Figure 6.

For the number of uncontaminated healthcare workers H(t) in this model with an
initial value H0 = 17 and different values of the parameter σ, with an increase in the value
of sigma (if σ is large), the number of uncontaminated healthcare workers H(t) decreases
rapidly, indicating that contamination occurs quickly as in Figure 6.

Now, the solutions to the contaminated healthcare worker number with initial value
(H0 = 17) with different values of the parameter σ are shown in Figure 7.

Figure 6. Uncontaminated healthcare workers as a function of time for different fractional order σ.

In Figure 7, the number of contaminated healthcare workers Hc(t) increases slowly
with small values of σ, meaning contamination spreads at a slower rate, and the number of
contaminated healthcare workers Hc(t) increases rapidly with large values of σ, indicating
fast contamination

The solutions of free-living bacteria density in the environment as a function of time (t)
with initial value (B0 = 1000) and with different values of the parameter σ are represented
in Figure 8.

In Figure 8, the number density of bacteria B(t) grows slowly at small values of σ,
and the bacterial density grows rapidly with large values of σ. By adjusting σ values in
this model, you can simulate various scenarios, assess the impact of different treatment
strategies on the population of colonized patients, understand the spread of contamination
among healthcare workers, and predict the environmental persistence of bacteria. This
model provides valuable insights into the dynamics of patient populations and other related
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factors in healthcare settings. By analyzing how these populations evolve over time with
different σ values, you can gain a deeper understanding of the processes at play and make
informed decisions to control or mitigate unwanted outcomes.

Figure 7. Contaminated healthcare workers as a function of time for different fractional order σ.

The deterministic epidemic model is often used in epidemiology to explore the effect
of environmental bacterial density on patient colonization with varying hospital admission
and discharge rates and helps to understand how changes in the environment and hospital
practices affect the spread of bacterial infections among patients. This can also be used to
explore how varying hospital admission rates affect patient colonization, considering the
impact of environmental bacterial density.

Figure 8. Number of free-living bacteria density in the environment as a function of time for different
fractional order σ.

Also, the prevalence of uncolonized patients without antibiotics, uncolonized patients
with antibiotic exposure, colonized patients without antibiotics, and colonized patients
with antibiotic exposure over time under the effect of the density number of the free-living
bacteria in the environment at time t at different hospital admission rates is studied in
Figure 9.
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Figure 9. The prevalence of uncolonized patients without antibiotics, uncolonized patients with
antibiotic exposure, colonized patients without antibiotics, and colonized patients with antibiotic ex-
posure over time under the effect of the density number of the free-living bacteria in the environment
at time t at different hospital admission rates.

In Figure 9, increasing the hospital admission rates introduces more susceptible pa-
tients into the system. This can lead to a higher number of infections if the bacterial density
is also high. Increasing the environmental bacterial density generally leads to higher rates
of patient colonization. This is because the probability of susceptible patients being exposed
to and colonized by bacteria is higher when the environmental density is elevated. Also,
when both admission rates and bacterial density are high, the system may experience a
rapid increase in infections. A large number of susceptible patients combined with high
exposure levels can lead to a significant outbreak. Conversely, low bacterial density and
low admission rates generally lead to a lower number of infections and a more controlled
spread. These results help in understanding how environmental factors and hospital prac-
tices interact to influence infection dynamics. They can guide hospital policies and infection
control strategies, such as optimizing cleaning schedules and managing patient admissions.

Finally, the prevalence of uncolonized patients without antibiotics, uncolonized pa-
tients with antibiotic exposure, colonized patients without antibiotics, and colonized pa-
tients with antibiotic exposure over time under the effect of the density number of the
free-living bacteria in the environment at time t at different hospital discharge rates is
shown in Figure 10.
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Figure 10. The prevalence of uncolonized patients without antibiotics, uncolonized patients with
antibiotic exposure, colonized patients without antibiotics, and colonized patients with antibiotic ex-
posure over time under the effect of the density number of the free-living bacteria in the environment
at time t at different hospital discharge rates.

In Figure 10, the deterministic epidemic model can also be used to explore how
varying hospital discharge rates affect patient colonization, considering the impact of
environmental bacterial density. Increased environmental bacterial density leads to higher
rates of colonization among susceptible patients, resulting in more infections. High bacterial
density combined with effective discharge practices can help control the spread of infection,
as patients who are at risk are promptly removed, and increased discharge rates reduce the
number of patients in the hospital, which can decrease the overall number of infectious
patients if the discharged patients are effectively removed from the system. On the other
hand, high bacterial density with ineffective discharge practices can exacerbate infection
rates, leading to outbreaks. These results help in understanding how environmental factors
and hospital practices interact to influence infection dynamics. They can guide hospital
policies and infection control strategies, such as optimizing cleaning schedules, managing
patient admissions, and setting discharge protocols.

5. Conclusions

This study presents a comprehensive deterministic epidemic model that effectively
simulates the complex interactions between patient populations, bacterial contamination,
and healthcare worker safety. Deterministic epidemic models using the fractional Adams–
Bashforth–Moulton method offer a robust framework for understanding hospital MRSA
transmission dynamics. This model integrates the effects of antibiotic exposure, envi-
ronmental contamination, and hospital admission and discharge rates to develop more
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effective prevention and control strategies. They enable a detailed analysis of how various
patient populations and healthcare workers transition between states over time, influenced
by parameters such as the fractional order constant σ and environmental bacterial density.
By simulating different scenarios and adjusting parameters, researchers and healthcare
professionals can evaluate the impact of treatment and infection control strategies, helping
to enhance patient safety and control MRSA outbreaks. The model underscores that higher
σ values facilitate quicker depletion of uncolonized patients, while lower σ values prolong
the duration of colonization, suggesting that recovery strategies must be tailored to these
dynamics. Environmental factors such as bacterial density and hospital admission rates are
significant; increased admissions in high-density environments exacerbate infection spread,
whereas lower rates contribute to a more controlled situation. The insights gained from
this study emphasize the importance of effective discharge practices and their role in miti-
gating infection spread in high bacterial density scenarios. Overall, this research provides
essential guidance for developing targeted infection control strategies and hospital policies,
contributing to improved healthcare outcomes and worker safety. By adjusting model
parameters fractional order constant σ and exploring various conditions, we can better
understand and manage bacterial infections in healthcare settings, ultimately enhancing
patient care and safety. Future research should focus on refining parameter estimates and
incorporating additional factors, such as patient movement and staff adherence to hygiene
protocols, to further improve the effectiveness of these models.

Author Contributions: Conceptualization, M.S. and A.H.; methodology, A.H.; validation, R.A. and
Z.A.; formal analysis, M.S., R.A. and A.H.; investigation, M.S.; resources, R.A.; data curation, R.A.
and Z.A.; writing—original draft preparation, M.S. and R.A.; writing—review and editing, M.S.,
R.A. and A.H.; visualization, R.A.; funding acquisition, Z.A. All authors have read and agreed to the
published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2024R518), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sousa, S.A.; Feliciano, J.R.; Pita, T.; Soeiro, C.F.; Mendes, B.L.; Alves, L.G.; Leitao, J.H. Bacterial nosocomial infections: Multidrug

resistance as a trigger for the development of novel antimicrobials. Antibiotics 2021, 10, 942. [CrossRef] [PubMed]
2. Center for Disease Control and Prevention (CDC), Antibiotic/Antimicrobial Resistance (AR/AMR). 2018. Available online:

https://www.cdc.gov/drugresistance/index.html (accessed on 22 September 2024).
3. Stygall, J.; Newman, S. Cambridge Handbook of Psychology, Health and Medicine, 2nd ed.; Hospital Acquired Infection; Cambridge

University Press: Cambridge, UK, 2014; pp. 736–738.
4. Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2022. (16 July 2014). 2022.

Available online: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/antimicrobial-resistance-threats-update-2022
-508.pdf (accessed on 22 September 2024).

5. Klein, E.; Smith, D.L.; Laxminarayan, R. Hospitalizations and deaths caused by methicillin resistant Staphylococcus aureus.
Emerg. Infect. Dis. 2007, 13, 1840–1846. [CrossRef] [PubMed]

6. Centers for Disease Control. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services,
CDC: Atlanta, GA, USA, 2019.

7. Ayobami, O.; Willrich, N.; Harder, T.; Okeke, I.N.; Eckmanns, T.; Markwart, R. The incidence and prevalence of hospital-
acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: A systematic review
and meta-analysis. Emerg. Microbes Infect. 2019, 8, 1747–1759. [CrossRef] [PubMed]

8. Alghamdi, B.A.; Al-Johani, I.; Al-Shamrani, J.M.; Alshamrani, H.M.; Al-Otaibi, B.G.; Almazmomi, K.; Yusof, N.Y. Antimicrobial
resistance in methicillin-resistant Staphylococcus aureus. Saudi J. Biol. Sci. 2023, 30, 103604. [CrossRef]

9. Marra, A.R.; Moura, D.F., Jr.; Paes, A.T.; dos Santos, O.F.; Edmond, M.B. Measuring rates of hand hygiene adherence in the
intensive care setting: A comparative study of direct observation, product usage, and electronic counting devices. Infect. Control
Hosp. Epidemiol. 2010, 31, 796–801. [CrossRef]

10. Stewardson, A.; Sax, H.; Longet-Di Pietro, S.; Pittet, D. Impact of observation and analysis methodology when reporting hand
hygiene data. J. Hosp. Infect. 2011, 77, 358–359. [CrossRef]

http://doi.org/10.3390/antibiotics10080942
http://www.ncbi.nlm.nih.gov/pubmed/34438992
https://www.cdc.gov/drugresistance/index.html
https://www.cdc.gov/antimicrobial-resistance/media/pdfs/antimicrobial-resistance-threats-update-2022-508.pdf
https://www.cdc.gov/antimicrobial-resistance/media/pdfs/antimicrobial-resistance-threats-update-2022-508.pdf
http://dx.doi.org/10.3201/eid1312.070629
http://www.ncbi.nlm.nih.gov/pubmed/18258033
http://dx.doi.org/10.1080/22221751.2019.1698273
http://www.ncbi.nlm.nih.gov/pubmed/31805829
http://dx.doi.org/10.1016/j.sjbs.2023.103604
http://dx.doi.org/10.1086/653999
http://dx.doi.org/10.1016/j.jhin.2010.12.008


Symmetry 2024, 16, 1454 15 of 16

11. World Health Organization (WHO). Antimicrobial Resistance—Global Report on Surveillance 2014; WHO: Geneva, Switzerland, 2014.
12. Shoaib, M.; Aqib, A.I.; Muzammil, I.; Majeed, N.; Bhutta, Z.A.; Kulyar, M.F.E.A.; Fatima, M.; Zaheer, C.N.F.; Muneer, A.; Murtaza,

M.; Kashif, M. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health
framework. Front. Microbiol. 2023, 13, 1067284. [CrossRef]

13. Chamchod, F.; Ruan, S. Modeling Methicillin-resistant staphylococcus aureus in hospitals: Transmission dynamics, antibiotic
usage and its history. Theor. Biol. Med. Model. 2012, 9, 25. [CrossRef]

14. Tacconelli, E. Antimicrobial use: Risk driver of multidrug resistant microorganisms in healthcare settings. Curr. Opin. Infect. Dis.
2009, 22, 352–358. [CrossRef]

15. Dancer, S.J. How antibiotics can make us sick: The less obvious adverse effects of antimicrobial chemotherapy. Lancet Infect. Dis.
2004, 4, 611–619. [CrossRef]

16. Tacconelli, E.; De Angelis, G.; Cataldo, M.A.; Pozzi, E.; Cauda, R. Does antibiotic exposure increase the risk of methicillin-resistant
Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J. Antimicrob. Chemother. 2008, 61, 26–38.
[CrossRef]

17. Samuel, P.; Kumar, Y.S.; Suthakar, B.J.; Karawita, J.; Kumar, D.S.; Vedha, V.; Shah, H.; Thakkar, K. Methicillin-resistant Staphylo-
coccus aureus colonization in intensive care and burn units: A narrative review. Cureus 2023, 15, e47139. [PubMed]

18. Boyce, J.M.; Potter-Bynoe, G.; Chenevert, C.; King, T. Environmental contamination due to methicillin-resistant Staphylococcus
aureus: Possible infection control implications. Infect. Control Hosp. Epidemiol. 1997, 18, 622–627. [CrossRef] [PubMed]

19. Dancer, S.J. Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: The case for hospital
cleaning. Lancet Infect. Dis. 2008, 8, 101–113. [CrossRef] [PubMed]

20. Fishbain, J.T.; Lee, J.C.; Nguyen, H.D.; Mikita, J.A.; Mikita, C.P.; Uyehara, C.F.; Hospenthal, D.R. Nosocomial transmission of
methicillin-resistant Staphylococcus aureus: A blinded study to establish baseline acquisition rates. Infect. Control Hosp. Epidemiol.
2003, 24, 415–421. [CrossRef]

21. Wang, J.; Wang, L.; Magal, P.; Wang, Y.; Zhuo, J.; Lu, X.; Ruan, S. Modelling the transmission dynamics of meticillin-resistant
Staphylococcus aureus in Beijing Tongren hospital. J. Hosp. Infect. 2011, 79, 302–308. [CrossRef]

22. Wang, L.; Ruan, S. Modeling nosocomial infections of methicillin-resistant Staphylococcus aureus with environment contamina-
tion. Sci. Rep. 2017, 7, 580. [CrossRef]

23. Wang, X.; Xiao, Y.; Wang, J.; Lu, X. A mathematical model of effects of environmental contamination and presence of volunteers
on hospital infections in China. J. Theor. Biol. 2012, 293, 161–173. [CrossRef]

24. D’Agata, E.M.; Horn, M.A.; Ruan, S.; Webb, G.F.; Wares, J.R. Efficacy of infection control interventions in reducing the spread of
multidrug-resistant organisms in the hospital setting. PLoS ONE 2012, 7, e30170. [CrossRef]

25. D’Agata, E.M.; Magal, P.; Olivier, D.; Ruan, S.; Webb, G.F. Modeling antibiotic resistance in hospitals: The impact of minimizing
treatment duration. J. Theor. Biol. 2007, 249, 487–499. [CrossRef]

26. Hall, I.M.; Barrass, I.; Leach, S.; Pittet, D.; Hugonnet, S. Transmission dynamics of methicillin-resistant Staphylococcus aureus in a
medical intensive care unit. J. R. Soc. Interface 2012, 9, 2639–2652. [CrossRef] [PubMed]

27. Huang, Q.; Huo, X.; Miller, D.; Ruan, S. Modeling the seasonality of methicillin-resistant Staphylococcus aureus infections in
hospitals with environmental contamination. J. Biol. Dyn. 2019, 13 (Suppl. S1), 99–122. [CrossRef] [PubMed]

28. Huang, Q.; Huo, X.; Ruan, S. Optimal control of environmental cleaning and antibiotic prescription in an epidemiological model
of methicillin-resistant Staphylococcus aureus infections in hospitals. Math. Biosci. 2019, 311, 13–30. [CrossRef]

29. Lipsitch, M.; Bergstrom, C.T.; Levin, B.R. The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions.
Proc. Natl. Acad. Sci. USA 2000, 97, 1938–1943. [CrossRef]

30. Smith, D.L.; Dushoff, J.; Perencevich, E.N.; Harris, A.D.; Levin, S.A. Persistent colonization and the spread of antibiotic resistance
in nosocomial pathogens: Resistance is a regional problem. Proc. Natl. Acad. Sci. USA 2004, 101, 3709–3714. [CrossRef]

31. Wang, X.; Xiao, Y.; Wang, J.; Lu, X. Stochastic disease dynamics of a hospital infection model. Math. Biosci. 2013, 241, 115–124.
[CrossRef]

32. Webb, G.F. Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units.
Discret. Contin. Dyn. Syst. B 2016, 22, 1145–1166.

33. Webb, G.F.; D’Agata, E.M.; Magal, P.; Ruan, S. A model of antibiotic-resistant bacterial epidemics in hospitals. Proc. Natl. Acad.
Sci. USA 2005, 102, 13343–13348. [CrossRef]

34. Weinstein, R.A.; Bonten, M.J.; Austin, D.J.; Lipsitch, M. Understanding the spread of antibiotic resistant pathogens in hospitals:
Mathematical models as tools for control. Clin. Infect. Dis. 2001, 33, 1739–1746.

35. Grundmann, H.; Hellriegel, B. Mathematical modelling: A tool for hospital infection control. Lancet Infect. Dis. 2006, 6, 39–45.
[CrossRef]

36. Temime, L.; Hejblum, G.; Setbon, M.; Valleron, A.J. The rising impact of mathematical modelling in epidemiology: Antibiotic
resistance research as a case study. Epidemiol. Infect. 2008, 136, 289–298. [CrossRef] [PubMed]

37. van Kleef, E.; Robotham, J.V.; Jit, M.; Deeny, S.R.; Edmunds, W.J. Modelling the transmission of healthcare associated infections:
A systematic review. BMC Infect. Dis. 2013, 13, 294. [CrossRef] [PubMed]

38. Debnath, L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 2003, 3413–3442.
[CrossRef]

http://dx.doi.org/10.3389/fmicb.2022.1067284
http://dx.doi.org/10.1186/1742-4682-9-25
http://dx.doi.org/10.1097/QCO.0b013e32832d52e0
http://dx.doi.org/10.1016/S1473-3099(04)01145-4
http://dx.doi.org/10.1093/jac/dkm416
http://www.ncbi.nlm.nih.gov/pubmed/38021721
http://dx.doi.org/10.1086/502213
http://www.ncbi.nlm.nih.gov/pubmed/12785411
http://dx.doi.org/10.1016/S1473-3099(07)70241-4
http://www.ncbi.nlm.nih.gov/pubmed/17974481
http://dx.doi.org/10.1086/502224
http://dx.doi.org/10.1016/j.jhin.2011.08.019
http://dx.doi.org/10.1038/s41598-017-00261-1
http://dx.doi.org/10.1016/j.jtbi.2011.10.009
http://dx.doi.org/10.1371/journal.pone.0030170
http://dx.doi.org/10.1016/j.jtbi.2007.08.011
http://dx.doi.org/10.1098/rsif.2012.0134
http://www.ncbi.nlm.nih.gov/pubmed/22572025
http://dx.doi.org/10.1080/17513758.2018.1510049
http://www.ncbi.nlm.nih.gov/pubmed/30131017
http://dx.doi.org/10.1016/j.mbs.2019.01.013
http://dx.doi.org/10.1073/pnas.97.4.1938
http://dx.doi.org/10.1073/pnas.0400456101
http://dx.doi.org/10.1016/j.mbs.2012.10.002
http://dx.doi.org/10.1073/pnas.0504053102
http://dx.doi.org/10.1016/S1473-3099(05)70325-X
http://dx.doi.org/10.1017/S0950268807009442
http://www.ncbi.nlm.nih.gov/pubmed/17767792
http://dx.doi.org/10.1186/1471-2334-13-294
http://www.ncbi.nlm.nih.gov/pubmed/23809195
http://dx.doi.org/10.1155/S0161171203301486


Symmetry 2024, 16, 1454 16 of 16

39. El-Saka, H.; El-Sayed, A. Fractional Order Equations and Dynamical Systems: Logistic Equation; Lap Lambert Academic Publishing:
Saarbrucken, Germany, 2013.
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