
Citation: Lin, S.-Q.; Hsu, Y.-H.; Su,

K.-W.; Liang, H.-C.; Chen, Y.-F.

Exploring the Multiplication of

Resonant Modes in Off-Center-Driven

Chladni Plates from Maximum

Entropy States. Symmetry 2024, 16,

1460. https://doi.org/10.3390/

sym16111460

Academic Editors: Stefano Profumo

and Alberto Ruiz Jimeno

Received: 1 October 2024

Revised: 28 October 2024

Accepted: 1 November 2024

Published: 3 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Exploring the Multiplication of Resonant Modes in
Off-Center-Driven Chladni Plates from Maximum Entropy States
Song-Qing Lin 1, Yu-Hsin Hsu 1, Kuan-Wei Su 1 , Hsing-Chih Liang 2 and Yung-Fu Chen 1,*

1 Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
songqinglin634.sc11@nycu.edu.tw (S.-Q.L.); yuhsin.sc10@nycu.edu.tw (Y.-H.H.);
sukuanwei@nycu.edu.tw (K.-W.S.)

2 Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
hcliang@nycu.edu.tw

* Correspondence: yfchen@nycu.edu.tw

Abstract: In this study, the resonant characteristics of the off-center-driven Chladni plates were
systematically investigated for the square and equilateral triangle shapes. Experimental results
reveal that the number of the resonant modes is considerably increased for the plates under the
off-center-driving in comparison to the on-center-driving. The Green’s functions derived from the
nonhomogeneous Helmholtz equation are exploited to numerically analyze the information entropy
distribution and the resonant nodal-line patterns. The experimental resonant modes are clearly
confirmed to be in good agreement with the maximum entropy states in the Green’s functions.
Furthermore, the information entropy distribution of the Green’s functions can be used to reveal that
more eigenmodes can be triggered in the plate under the off-center-driving than the on-center-driving.
By using the multiplication of the resonant modes in the off-center-driving, the dispersion relation
between the experimental frequency and the theoretical wave number can be deduced with more
accuracy. It is found that the deduced dispersion relations agree quite well with the Kirchhoff–Love
plate theory.

Keywords: Chladni patterns; vibrating plates; information entropy; geometry; Green’s function

1. Introduction

Ernst Chladni (1756–1827) was a physicist and musician who invented an appealing
experiment to demonstrate various vibration modes on a surface [1,2]. He published
this experiment in his book “Entdeckungen über die Theorie des Klanges” in 1787 [3].
This experiment involved drawing a bow over a thin plate whose surface was lightly
covered with sand. When the plate was bowed to reach modal resonance, the sand was
caused to jump and localize on the nodal-lines, manifesting mode structures as splendid
patterns [4]. Nowadays, the nodal-line patterns are called Chladni figures or Chladni
patterns. Nevertheless, Chladni’s demonstration was associated with earlier experiments
made by Robert Hooke in 1680, who exploited a bow to vibrate a glass plate covered with
some flour and observed the formation of nodal patterns [5]. However, Galileo Galilei [6],
in 1632, had mentioned the observed patterns when he was scraping a brass plate with a
sharp iron chisel to remove some spots from it. Scraping with the chisel repeatedly, Galilei
found that it was only when the plate yielded hissing sounds that some traces of marks
were left upon it. Even earlier, Leonardo da Vinci recorded this resonant phenomenon
after observing how the dust on his worktable moved as he vibrated the table in the late
1400s [7].

Several different wave equations and solutions have been proposed to theoretically
study the nodal-line patterns. For instance, Kirchhoff [8–10] took the effects of deforma-
tion and stresses into account to analyze the resonant modes of a circular vibrating plate.
This approach was then applied to the square plate for free [9] and clamped [9,11] edges.
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Nevertheless, Wah [12] found that the plates seem to behave as if they have boundary con-
ditions between the theoretical simple support and clamped edge conditions. Furthermore,
Wah [12] also noticed that it is almost impossible to simulate the results of clamped edges
in the laboratory. Our research group [13] verified that the experimental resonant modes
do not correspond to theoretical eigenmodes for more complex boundary conditions, and
thus the nonhomogeneous Helmholtz equation should be used to solve them. Additionally,
Waller [14–16] originally noticed that the nodal-line patterns at higher frequencies usually
contain two or more mixed nodes due to the effects of degeneracy and damping. We also
identified [17] that the formation of the resonant mode by a superposition of several degen-
erate or nearly degenerate eigenmodes is referred to as mode mixing. Up to now, the most
successful method in the analysis of nodal-line patterns is that of the nonhomogeneous
Helmholtz equation. Our group [18–20] employed the Green’s function solved from the
nonhomogeneous Helmholtz equation to find the response function for a vibrating wave
on a thin plate as a function of the driving wave number. By substituting the theoretical
wave numbers into the Green’s function, the experimental nodal-line patterns have been ex-
cellently reconstructed for both the square and equilateral triangle plates [13,17–20]. More
intriguingly, our research group [21] confirmed that the wave numbers corresponding
to experimental resonant modes are well-related to the maximum entropy states for the
square and equilateral triangle plates under the on-center-driving. Recently, the maximum
entropy states have been realized as resonant modes, allowing us to arrive at a universal
understanding of the relation between frequency and wave propagation within spatial
boundaries under the on-center-driving [22].

In this work, we experimentally and theoretically explore the resonant phenomena of
the square and equilateral triangle plates under the off-center-driving. Comparing them to
the results obtained under the on-center-driving, the number of the resonant modes is found
to be significantly increased for the plates under the off-center-driving. In theory, we exploit
the Green’s functions solved from the nonhomogeneous Helmholtz equation to analyze
the experimental observations. From the theoretical reconstruction of the experimental
nodal-line patterns, the resonant frequency spectrum is found to have excellent consistency
with the maximum entropy states of the Green’s functions. Additionally, the numerical
analyses reveal that the off-center-driving can lead more eigenmodes to participate in the
Green’s function than the on-center-driving. Having more eigenmodes to participate in the
Green’s function causes the multiplication of the resonant modes in the off-center-driving.
By using the off-center-driving, the increased resonant modes can be used to determine the
dispersion relation between the experimental frequency and the theoretical wave number
more accurately. The overall trend of the present dispersion relation is confirmed to be in
good agreement with the Kirchhoff–Love plate theory [23].

2. Experimental Setup and Theoretical Model

We developed an innovative way to precisely determine the resonant frequencies
at which Chladni patterns can be quickly formed, by measuring the impedance of the
mechanical oscillator as a function of frequency [24]. Following our previous work [24], we
determine the resonant mode frequencies by measuring the impedance of the mechanical
wave driver, with and without a plate attached. Figure 1 shows the experimental setup
for measuring the resonant frequency spectrum. A power amplifier was connected in
series with a mechanical oscillator and a digital galvanometer. The mechanical oscillator
was driven by the amplifier that generated a sinusoidal wave over the frequency range of
200–2500 Hz. The galvanometer took measurements of the impedance with a resolution of
~0.1 Hz. First of all, the measurements of the impedance were carried out without attaching
the plate to the mechanical oscillator. Then, the measurements of the impedance were taken
by placing the plate onto the mechanical oscillator. Two different shapes of the plates were
used to explore the difference between resonant frequency spectra and nodal-line patterns
between the on-center and off-center-driving. One shape is an equilateral triangle plate
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with a side length of 365 mm; the other shape is a square plate with a side length of 320 mm.
All plates were made with aluminum sheets of 1.0 mm thickness.
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Figure 1. Experimental setup for measuring the resonant frequency spectrum and resonant patterns
of a modern Chladni plate.

It has been theoretically confirmed that when the aspect ratio of the thickness to the
lateral dimension for the thin plate is smaller than 0.02, the eigenmodes can be calculated
by using the two-dimensional (2D) Helmholtz equation [25]. Although Rayleigh [26]
noticed that the free edge boundary conditions make the problem particularly difficult, the
eigenmodes can be modelled by approximating that every point of the circumference is
free to move along lines that are perpendicular to the plane of the plate. In other words, the
boundary condition can be simplified as the Neumann boundary condition with ∂ψ/∂n = 0
on the periphery. It has been confirmed [15] that the Neumann boundary condition can be
employed to successfully calculate experimental Chladni figures. Based on this success, the
Neumann boundary condition with a point vibration source is used to analyze the modern
Chladni figures under the on-center and off-center-driving.

The 2D Helmholtz equation for the eigenvalues kn and eigenfunctions ψn with the
indices of n = 1, 2, 3 · · · for the domain Ω with the boundary shape dΩ can be expressed as(

∇2
2D + k2

n

)
ψn(r) = 0. (1)

For exploring the modern Chladni plate, we use the nonhomogeneous Helmholtz equation
with a point source at rs and a driving amplitude of A that is given by(

∇2
2D + k2

)
Ψ(r, rs; k) = A δ(r − rs), (2)

Based on the property of the complete set, the eigenfunctions { ψn(r) } (n = 1, 2, 3 · · · )
can be used to expand the source function δ(r − rs) and the response function Ψ(r, rs; k) in
Equation (2). Consequently, we have
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δ(r − rs) = lim
N→∞

N

∑
n=1

ψ∗
n(rs) ψn(r), (3)

Ψ(r, rs; k) = lim
N→∞

N

∑
n=1

an(rs; k) ψn(r). (4)

The coefficients an(rs; k) in Equation (4) can be derived by substituting Equations (3) and (4)
into Equation (2) and using Equation (1) for solving. The result can be obtained as

an(rs; k) = A
ψ∗

n(rs)

k2 − k2
n

. (5)

In fact, the response function is just proportional to the Green’s function G(r, rs; k), as given
by Ψ(r, rs; k) = A G(r, rs; k), where the Green’s function is given by

G(r, rs; k) = lim
N→∞

N

∑
n=1

ψ∗
n(rs) ψn(r)

k2 − k2
n

. (6)

A finite upper limit N is chosen in the numerical computation. Physically, the use of a finite
limit N can be considered as a truncated basis. Nevertheless, the numerical calculation
revealed that the calculated results for the entropy analyses and the nodal-line patterns can
be utterly not affected when the limit N is sufficient large.

For the bipartite states, the information entropy has been employed to analyze the
degree of spatial entanglement [27–30]. For the modern Chladni experiment with the
on-center-driving, the information entropy distribution of the response function has been
verified to be greatly useful in identifying the resonant modes [17,20]. From the Shannon
theory, the information entropy distribution for the response function Ψ(r, rs; k) can be
found in terms of the coefficients an(rs; k) to be given by [31,32]

S(rs; k) = −
N

∑
n=1

pn(rs; k) ln[pn(rs; k)], (7)

where the probability distribution pn(rs; k) is expressed as

pn(rs; k) =
|an(rs; k)|2

N
∑

n=1
|an(rs; k)|2

. (8)

So far, the correspondence between the information entropy distribution and the resonant
frequency spectrum is confirmed for the case with the on-center-driving. In this work,
the information entropy distributions are further explored to confirm whether they are
also highly associated with the resonant frequency spectra for the square and equilateral
triangle plates under the off-center-driving.

The eigenfunctions and the eigenvalues for a square-shaped plate with the region in
0 ≤ x, y ≤ L are given by

ψn,m(r) =
2
L

cos
(nπ

L
x
)

cos
(mπ

L
y
)

, (9)

kn,m =
π

L

√
n2 + m2. (10)

From Equations (5) and (8), the probability for the component ψn,m(r) in the response
function with a given upper index of N is given by
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pn,m(rs; k) =

[
N

∑
n=1

N

∑
m=1

| ψn,m(rs) |2(
k2 − k2

n,m
)2

]−1
| ψn,m(rs) |2(
k2 − k2

n,m
)2 . (11)

Substituting Equation (11) into Equation (7), the information entropy can be given by

S(rs; k) = −
N

∑
n=1

N

∑
m=1

pn,m(rs; k) ln[pn,m(rs; k)]. (12)

On the other hand, the even-symmetry eigenfunctions for the equilateral triangle plate
with vertices at (0, 0), (L/2,

√
3L/2) and (−L/2,

√
3L/2) are given by [33]

ψ̃n,m(r) =
√

16
L23

√
3

{
cos

[ 2π
3L (2n − m)x

]
cos

(
2π√

3L
m y

)
+ cos

[ 2π
3L (2m − n)x

]
cos

(
2π√

3L
n y

)
+ cos

[ 2π
3L (n + m)x

]
cos

[
2π√

3L
(n − m)y

]} (13)

for m ≥ 2n. The corresponding eigenvalue is given by

k̃n,m =
4π

3L

√
n2 + m2 − n m. (14)

Similarly, the information entropy distribution for the equilateral triangle plate with an
upper index of N can be given by

S(rs; k) = −
N

∑
n=1

N

∑
m=2n

pn,m(rs; k) ln[pn,m(rs; k)], (15)

pn,m(rs; k) =

 N

∑
n=1

N

∑
m=2n

∣∣ ψ̃n,m(rs)
∣∣2(

k2 − k̃2
n,m

)2


−1 ∣∣ ψ̃n,m(rs)

∣∣2(
k2 − k̃2

n,m

)2 . (16)

The information entropy can be exploited to evaluate the effective number Ne f f of partici-
pated eigenfunctions in the response function, given by Ne f f = exp[S(rs; k)]. It has been
verified that the resonant wave numbers can be properly attained from local maxima of the
spectrum Neff [17,20].

3. Experimental Results and Theoretical Analyses

For the equilateral triangle case, two plates were prepared to explore the difference
of resonant characteristics between the on-center- and off-center-driven oscillations. As
shown in Figure 2, the center position is at (0,

√
3L/3) for the equilateral triangle plate,

with vertices specified at (0, 0), (L/2,
√

3L/2) and (−L/2,
√

3L/2). The plate for the off-
center-driven oscillation was to set the driving position at (0,

√
3L/2.72). Figure 3a plots

the experimental results for the resonant frequency spectrum by measuring the difference
of the impedance as a function of the driving frequency for the equilateral triangle plate
under the on-center-driving. The resonant frequencies can be reproducibly identified
from the peaks of the frequency spectrum. The corresponding nodal-line patterns for the
resonant modes are also illustrated in Figure 3a. Experimental results reveal that there
are nine resonant modes to be evidently obtained for the driving frequency in the range
of 300–2300 Hz. On the other hand, the experimental results for the off-center-driving
are depicted in Figure 3b. Comparing them to the results in Figure 3a, the number of
the resonant modes can be seen to be increased more than two times. Furthermore, the
resonant frequencies for the off-center-driving are significantly different to those obtained
from the on-center-driving.
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In theoretical analyses, the Green’s function in Equation (6) is used to reconstruct the
experimental nodal-line patterns for both of the on-center and off-center cases. Figure 4a,b
show the calculated nodal-line patterns corresponding to the experimental results. By
using Equation (16), the information entropy distribution for the equilateral triangle plate
is calculated as a function of the wave number for both of the on-center and off-center cases,
as shown in Figure 4a and b, respectively. From the best reconstructions of the experimental
patterns, the theoretical wave numbers corresponding to resonant frequencies are marked
in the information entropy distribution. It can be clearly seen that most of the resonant
wave numbers are positioned near the peaks of the entropy distribution. In other words, the
resonant modes almost correspond to the Green’s functions with maximal entropy states.
More importantly, the multiplication of the resonant modes can also be manifested from
the information entropy distribution. This finding indicates that the maximum entropy
states play a critical role not only in the on-center but also the off-center cases. To be brief,
the peaks of the information entropy distribution can be exploited to determine the number
of the resonant modes, as well as the resonant wave numbers.
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4. Discussion

The multiplication of the resonant modes can be comprehended from the effective
number of the participated eigenmodes in the Green’s function. From Equation (16), the
probability coefficients of the participated eigenmodes in the Green’s function are propor-
tional to

∣∣ ψ̃n,m(rs)
∣∣2. For the on-center-driving, the source point is at rs = (0,

√
3L/3),

which leads the relative probability coefficients to be given by

∣∣ ψ̃n,m(rs)
∣∣2 =

∣∣∣∣∣
√

16
L23

√
3

{
cos

(
2π

3
m
)
+ cos

(
2π

3
n
)
+ cos

[
2π

3
(n − m)

]}∣∣∣∣∣
2

(17)

From Equation (17), it can be verified that the probability coefficients of the eigenstates
vanish when the indices (m,n) satisfy m − n = 3s + 1 for s to be any positive integer. On
the other hand, the source point for the off-center-driving is at rs = (0,

√
3L/2.72), which

leads the relative probability coefficients to be given by

∣∣ ψ̃n,m(rs)
∣∣2 =

∣∣∣∣∣
√

16
L23

√
3

{
cos

(
2π

2.72
m
)
+ cos

(
2π

2.72
n
)
+ cos

[
2π

2.72
(n − m)

]}∣∣∣∣∣
2

(18)

All of the probability coefficients of the eigenstates can be confirmed to be nonzero.
Figure 5a,b depict the relative probability coefficients calculated with Equations (17) and (18),
respectively, for the indices in the range of 1 ≤ m, n ≤ 20. It can be clearly seen that the
off-center-driving can lead more eigenmodes to participate in the Green’s function than the
on-center case. The more eigenmodes that participate in the Green’s function, the more
resonant modes that can be produced.
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Figure 5. Relative probability coefficients calculated with Equations (17) and (18), respectively, for
the indices in the range of 1 ≤ m, n ≤ 20 for (a) on-center-driving and (b) off-center-driving. Colors
for manifesting amplitudes.

The good agreement between the resonant modes and the maximum entropy states
can be traced back to the principle of energy equipartition in statistical mechanics. The
applications of the maximum entropy principle have included the maximum emission of
the multimode laser systems [34], the self-organization of the complex systems [35], the
wave localization of the disordered systems [36] and the phase transitions of open quantum
systems [37]. In this work, we clearly demonstrate that the maximum entropy principle
can be applied to the modern Chladni plates, not only for the on-center-driving, but also
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for general off-center cases. This demonstration paves an intriguing way for using the
off-center-driving to develop novel applications related to the vibrating plates.

From the analyses of the resonant nodal-line patterns, the dispersion relation between
the experimental frequency f and the theoretical wave number k can be obtained. Since the
off-center-driving can significantly increase the number of the resonant modes, the disper-
sion relation between f and k can be deduced more accurately. Based on the Kirchhoff–Love
plate theory [23], the dispersion relation between the frequency and wave number for the
flexural wave of the plate can be derived as

f (k) =

√
D
ρh

1
2π

k2 (19)

where h is the thickness of the plate, ρ is the mass density, and D is the flexural rigidity. The
flexural rigidity is given by

D =
Eh3

12(1 − ν2)
(20)

E is the Young’s modulus and ν is the Poisson ratio. Equation (19) can be simply expressed
as f (k) = A k2, where A is the proportional coefficient. The theoretical value of the coef-
ficient A can be calculated from the properties of aluminum, as follows [38]: E = 68 GPa,
ν = 0.33, ρ = 2700 kg/m3 and h = 1 mm. As a result, the theoretical value is A = 0.244.
Figure 6 plots the theoretical dispersion relation and the present results deduced from
the correspondence between the resonant frequencies f and the resonant wave numbers
k. The overall trend between the theoretical and present results can be seen to be rather
consistent. For the best fitting to the present results, the proportional coefficient is 0.215,
which is slightly smaller than the theoretical value. The discrepancy between the theoret-
ical and present results may come from the assumption and approximation in deriving
Equation (19).
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Figure 6. Theoretical dispersion relation and the present results deduced from the correspondence
between the resonant frequencies f and the resonant wave numbers k. Symbols: triangles obtained
from on-center driving; circles obtained from off-center driving.

Finally, we further confirm the practicability of the maximum entropy states by explor-
ing the square plate under the off-center-driving. For the square plate with the vertices at
(0, 0), (0, L), ( L, 0) and (L, L), the center position can be found to be at (L/2, L/2). For
the investigation of the off-center-driving, the mechanical oscillator was set at (4L/7, 3L/7),
along the diagonal line. The experimental results for the resonant frequency spectrum
and the resonant nodal-line patterns for this off-center-driving square plate are shown in
Figure 7. The number of the resonant modes for the off-center-driving is also found to
be considerably increased, similar to the results observed in the equilateral triangle plate.
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Figure 8 shows the calculated results for the information entropy distribution, correspond-
ing to the experimental case. The theoretical wave numbers marked in the information
entropy distribution to correspond to resonant modes are obtained by using the Green’s
function to reconstruct the experimental nodal-line patterns. Once again, most of the reso-
nant wave numbers can be clearly seen to be well-localized near the peaks of the entropy
distribution. This further confirmation indicates that the maximum entropy states can be
exploited to analyze the number of the resonant modes, as well as the resonant nodal-line
patterns for any driving positions.
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5. Conclusions

We have experimentally and theoretically studied the resonant characteristics of
the off-center-driven Chladni plates for the square and equilateral triangle shapes. We
experimentally found that the number of the resonant modes under the off-center-driving
is substantially increased in comparison to the plate under the on-center-driving. The
origin of appearing to have more resonant modes under the off-center-driving is confirmed
to be from the result that more eigenmodes can be excited to participate in the response
function. Additionally, we theoretically used the Green’s functions of the nonhomogeneous
Helmholtz equation to analyze the experimental nodal-line patterns. It is confirmed
that the experimental resonant modes are nicely consistent with the maximum entropy
states in the information entropy distribution of the Green’s functions. Furthermore, we
exploited the multiplication of the resonant modes in the off-center-driving to analyze
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the dispersion relation between the experimental frequency and the theoretical wave
number. The analyzed dispersion relations are found to be in good agreement with the
theorical formula. The present finding may pave an insight into some applications, such
as biomedical engineering to harmonize organic systems. On the other hand, the present
exploration provides a way to reduce information dispersion in systems that interact from
the atomic level. It is worthwhile to mention that the maximum entropy principle is
expected to be appliable to the polygon plates, and not only the present showing cases.
However, the challenge of exploring the generation for polygons consists of the lack of
analytical mathematical forms for the eigenmodes. The further exploration of polygon
plates is thus underway.
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