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Abstract: The paper considers the problem of representation and extension of Appell’s hypergeomet-
ric functions by a special family of functions—branched continued fractions. Here, we establish new
symmetric domains of the analytical continuation of Appell’s hypergeometric function F2 with real
and complex parameters, using their branched continued fraction expansions whose elements are
polynomials in the space C2. To do this, we used a technique that extends the domain of convergence
of the branched continued fraction, which is already known for a small domain, to a larger domain, as
well as the PC method to prove that it is also the domain of analytical continuation. A few examples
are provided at the end to illustrate this.
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1. Introduction

This paper considers the Appell’s hypergeometric function F2 defined as (see, [1,2])

F2(α, β, β′; γ, γ′; z) =
+∞

∑
p,q=0

(α)p+q(β)p(β′)q

(γ)p(γ′)q

zp
1

p!
zq

2
q!

, |z1|+ |z2| < 1,

where α, β, β′, γ, γ′ ∈ C, γ, γ′ ̸∈ {0,−1,−2, . . .}, (·)k is the Pochhammer symbol, z =
(z1, z2) ∈ C2.

Appell’s hypergeometric function F2 surprisingly appears in various applications,
in particular, in materials science for the compute of the canonical partition function of
the model of heteropolymer in the form of a freely jointed chain [3], in probability theory
and statistics for the study of the compound gamma bivariate distribution [4], in the
theory of the quantum Hall effect for the explicit evaluation of the matrix elements of
the Coulomb interaction of two-body [5], in the quantum field theory for the evaluation
of Feynman integrals [6] and a two-loop diagram of the propagator-type (the so-called
propagator seagull) [7], in the spectral theory of atom, molecule and plasma for the compute
of multipole matrix elements [8].

Many works are devoted to the study of the Appell’s hypergeometric function F2
itself, in particular, to the establishment of recurrence relations [9,10], reduction and trans-
formation formulas [11], to the construction of analytic continuations [12–14], integral
representations [15,16] and asymptotic expansions [16–20]. We also note the work [21],
which presents the Mathematica package AppellF2.wl, dedicated to the evaluation of the
Appell’s hypergeometric function F2.

This paper discusses the representation and analytical extension of the Appell’s hy-
pergeometric function F2 due a special family of functions—branched continued fractions.
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Domains of analytical continuation will be symmetric domains of convergence of co-called
confluent branched continued fractions.

Research in the direction mentioned above was started in [22], where a formal
branched continued fraction expansion was constructed for the following ratio

F2(α, β, β′; γ, γ′; z)
F2(α + 1, β, β′; γ + 1, γ′; z)

.

In [23], the following formal branched continued fraction expansion

F2(α, β, β′; β, γ′; z)
F2(α + 1, β, β′; β, γ′ + 1; z)

= 1 − z1 −
h1z2

1 − h2z2

1 − z1 −
h3z2

1 − h4z2

1 − z1 −
h5z2

1 − . . .

, (1)

where

h2k−1 =
(β′ + k − 1)(γ′ − α + k − 1)
(γ′ + 2k − 2)(γ′ + 2k − 1)

and h2k =
(α + k)(γ′ − β′ + k)
(γ′ + 2k − 1)(γ′ + 2k)

, k ≥ 1, (2)

was considered, and it was shown that

Ψd,h =

{
z ∈ C2 : z1 ̸∈ [1 − d,+∞), z2 ̸∈

[
d

4h
,+∞

)}
, h > 0, 0 < d < 1,

is the domain of the analytical continuation of the function on the left side of (1) provided
that 0 < hk ≤ h for all k ≥ 1.

The following theorem holds:

Theorem 1. Suppose that α, β′, and γ′ are complex constants such that

|hk| − Re(hk) ≤ pq, k ≥ 1, (3)

where hk, k ≥ 1, are given in (2) herewith γ′ ̸∈ {0,−1,−2, . . .},

p > 0 and 0 < q < 1. (4)

Then, the following statements hold:

(A) The branched continued fraction

1 − z1 +
h1z2

1 +
h2z2

1 − z1 +
h3z2

1 +
h4z2

1 − z1 +
h5z2

1 + . . .

(5)

converges uniformly on every compact subset of the domain

Ωd,h
p,q = Ωp,q

⋃
Ωd,h, (6)

where
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Ωp,q =

{
z ∈ C2 : Re(z1e−(i/2) arg(z2)) < (1 − q) cos

(
arg(z2)

2

)
, |z2| <

1 + cos(arg(z2))

4p

}
(7)

and

Ωd,h =

{
z ∈ C2 : |z1| <

1 − d
2

, |z2| <
d(1 − d)

2h

}
, (8)

where

h = sup
k∈N

|hk| and 0 < d < 1, (9)

to the function f (z) holomorphic in the domain Ωd,h
p,q.

(B) The function f (z) is an analytic continuation of the function

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)
(10)

in the domain (6).

This paper is organized as follows. In Section 2, we give the necessary definitions and
statements and prove Theorem 2, the result of which is a certain contribution to the theory
of branched continued fractions. In the next section, we prove Theorem 1 and several
important consequences from it. In Section 4, we give some examples. Finally, we collect
our conclusions in Section 5.

2. Definitions and Auxiliary Results

Let us recall the necessary concepts of convergence in the theory of branched continued
fractions (see, [24,25]).

We set i(0) = 0, I0 = {0}, and

Ik = {i(k) : i(k) = (i1, i2, . . . , ik), 1 ≤ ir ≤ 2, 1 ≤ r ≤ k}, k ≥ 1.

By Bodnar ([25], p. 15) for each r ≥ 1 the symbol u(r) denotes a vector in C2r
with

components uj(r), j(r) ∈ Ir; for each r ≥ 1, k ≥ 1 and for each multiindex i(k) ∈ Ik the

symbol u(r)
i(k) is a vector in C2r

with components ui(k),j(r), i(k) ∈ Ik, 1 ≤ js ≤ 2, 1 ≤ s ≤ r,
j0 = ik, with the following order of components:

(i) un(r) ≺ um(r) (ui(k),n(r) ≺ ui(k),m(r)), if n(r) ≺ m(r);
(ii) n(r) ≺ m(r), if n1 < m1 or there exists index s, 1 ≤ s < r, such that np = mp,

1 ≤ p ≤ s, and ns+1 < ms+1.

Let the ordered pair of sequences

⟨{ai(k)}i(k)∈Ik , k∈N, {bi(k)}i(k)∈Ik , k∈N0
⟩,

of complex numbers such that:

(*) ai(k) ̸= 0 for all i(k) ∈ Ik, k ≥ 1;
(**) if for k ≥ 1 there exists a multiindex i(k) ∈ Ik such that bi(k) = 0, then bi(k−1),j ̸= 0 for

1 ≤ j ≤ 2 and j ̸= ik,

gives rise to sequence {si(k)(w
(1)
i(k))}i(k)∈Ik , k∈N0

herewith w(1)
0 = w(1) and {Sk(w(k+1))}k∈N0

of two-dimensional linear fractional transformations

s0(w(1)) = b0 + w1 + w2, vi(k) = si(k)(w
(1)
i(k)) =

ai(k)

bi(k) + wi(k),1 + wi(k),2
, i(k) ∈ Ik, k ≥ 1,
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and

S0(w(1)) = s0(w(1)), Sk(w
(k+1)) = Sk−1(v

(k)), k ≥ 1,

and to a sequence { fk}k∈N0 , given by

fk = Sk(0
(k+1)) ∈ Ĉ, k ≥ 0,

where 0(k+1) = (0, 0, . . . , 0) is a vector in C2k+1
.

Definition 1. The ordered pair

⟨⟨{ai(k)}i(k)∈Ik ,k∈N, {bi(k)}i(k)∈Ik ,k∈N0
⟩, { fk}k∈N0⟩

is the branched continued fraction denoted by symbols

b0 +
2

∑
i1=1

ai(1)

bi(1) +
2

∑
i2=1

ai(2)

bi(2) + . . .
+

2

∑
ik=1

ai(k)

bi(k) + . . .

.

The numbers b0, ai(k), and bi(k) are called elements of the branched continued fraction. The value

fk = b0 +
2

∑
i1=1

ai(1)

bi(1) +
2

∑
i2=1

ai(2)

bi(2) + . . .
+

2

∑
ik=1

ai(k)

bi(k)

,

is called the kth approximant of the branched continued fraction.

Note that a new and more general so-called sets approach to the concept of a branched
continued fraction was proposed by Antonova in [26].

Next, considering the branched continued fractions, we admit confluent case where
there are no constraints (*). Without reducing the generality, we will give the following
definitions with approximant sequences { fk}k∈N.

Definition 2. A branched continued fraction

⟨⟨{ai(k)}i(k)∈Ik ,k∈N, {bi(k)}i(k)∈Ik ,k∈N0
⟩, { fk}k∈N⟩ (11)

converges if, at most, a finite number of its approximants don’t make sense and if the limit of its
sequence of approximants

lim
n→∞

fn

exists and is finite.

Definition 3. A branched continued fraction (11) converges absolutely if its sequence of approxi-
mants such that

∞

∑
n=1

| fn+1 − fn| < +∞.

Definition 4. A branched continued fraction

⟨⟨{âi(k)}i(k)∈Ik ,k∈N, {b̂i(k)}i(k)∈Ik ,k∈N0
⟩, { f̂k}k∈N⟩
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is a majorant of a branched continued fraction (11) if there exist a natural number n0 and a positive
constant M such that for n ≥ n0 and k ≥ 1 the following relation holds

| fn+k − fn| ≤ M| f̂n+k − f̂n|.

Again, without reducing the generality, let us put b0 = 0.

Definition 5. A convergence set Ω is a set Ω ̸= ∅ and Ω ⊆ C×C such that: if ⟨ai(k), bi(k)⟩ ∈ Ω
for all i(k) ∈ Ik, k ≥ 1, then a branched continued fraction

⟨⟨{ai(k)}i(k)∈Ik ,k∈N, {bi(k)}i(k)∈Ik ,k∈N⟩, { fk}k∈N⟩ (12)

converges.

Definition 6. A uniform convergence set Ω is a convergence set to which there corresponds a
sequence {εn}n∈N of positive numbers depending only on Ω and converging to 0 such that

| fn+k − fn| ≤ εn, n ≥ 1, k ≥ 1,

for every branched continued fraction (12) with all ⟨ai(k), bi(k)⟩ ∈ Ω.

Reasoning similarly as in the proof of Theorem 2 [24], we will prove the following result:

Theorem 2. Suppose that m0,k, k ≥ 1, are constants such that

0 < m0,k ≤ 1, k ≥ 1. (13)

Then, the following statements hold:

(A) The branched continued fraction

1 − z1,0 +
m0,1z0,1

1 +
m0,2(1 − m0,1)z0,2

1 − (1 − m0,2)z1,2 +
m0,3(1 − m0,2)z0,3

1 +
m0,4(1 − m0,3)z0,4

1 − (1 − m0,4)z1,4 +
m0,5(1 − m0,4)z0,5

1 + . . .

(14)

converges absolutely and uniformly for

|z1,2k| ≤
1
2

, |z0,2k+1| ≤
1
2

and |z0,2k+2| ≤ 1, k ≥ 0; (15)

(B) The values of the branched continued fraction (14) and of its approximants are in the closed disk

|w − 1| ≤ 1. (16)
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Proof. Let us show that the majorant of branched continued fraction (14) is

1
2
−

m0,1

2

1 − m0,2(1 − m0,1)

1 − (1 − m0,2)

2
−

m0,3(1 − m0,2)

2

1 − m0,4(1 − m0,3)

1 − (1 − m0,4)

2
−

m0,5(1 − m0,4)

2
1 − . . .

. (17)

We set

Q(n)
n = Q̂(n)

n = 1, n ≥ 1, (18)

and

Q(n)
k = 1 − (1 − m0,k)δ(k)

+
m0,k+1(1 − m0,k)z0,k+1

1 + . . .−(1 − m0,n−2)δ(n − 2) +
m0,n−1(1 − m0,n−2)z0,n−1

1 − (1 − m0,n−1)δ(n − 1) + m0,n(1 − m0,n−1)z0,n

,

Q̂(n)
k = 1 − (1 − m0,k)δ̂(k)

−
m0,k+1(1 − m0,k)

1 + 2δ̂(k + 1)
2

1 − ...
−(1 − m0,n−2)δ̂(n − 2)−

m0,n−1(1 − m0,n−2)
1 + 2δ̂(n − 1)

2

1 − (1 − m0,n−1)δ̂(n − 1)− m0,n(1 − m0,n−1)
1 + 2δ̂(n)

2

,

where, n ≥ 2, 1 ≤ k ≤ n − 1, and, for x ∈ N,

δ(x) =

{
z1,x, if x is even,
0, if x is odd,

δ̂(x) =

{
1/2, if x is even,
0, if x is odd.

(19)

Then

Q(n)
k = 1 − (1 − m0,k)δ(k) +

m0,k+1(1 − m0,k)z0,k+1

Q(n)
k+1

, (20)

Q̂(n)
k = 1 − (1 − m0,k)δ̂(k)−

m0,k+1(1 − m0,k)(1 + 2δ̂(k + 1))

2Q̂(n)
k+1

, (21)

where n ≥ 2, 1 ≤ k ≤ n − 1.
Thus, for each n ≥ 1 we write the nth approximants of (14) and (17) as

fn = 1 − z1,0 +
m0,1z0,1

Q(n)
1

, f̂n =
1
2
− m0,1

2Q̂(n)
1

,

respectively.
Using relations (13), (15), and (18)–(21), for an arbitrary n ≥ 1 by induction on k,

1 ≤ k ≤ n, we show that
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|Q(n)
k | ≥ Q̂(n)

k ≥ m0,k. (22)

For k = n inequalities (22) are obvious (see, (13) and (18)). By induction hypothesis
that (22) hold for k = r + 1, where r + 1 ≤ n, we prove (22) for k = r. Indeed, use of
inequalities (15) and (19)–(21) lead to

|Q(n)
r | =

∣∣∣∣∣∣1 − (1 − m0,r)δ(r) +
m0,r+1(1 − m0,r)z0,r+1

Q(n)
r+1

∣∣∣∣∣∣
≥ 1 − (1 − m0,r)|δ(r)| −

m0,r+1(1 − m0,r)|z0,r+1|
|Q(n)

r+1|

≥ 1 − (1 − m0,r)δ̂(r)−
m0,r+1(1 − m0,r)(1 + 2δ̂(r + 1))

2Q̂(n)
r+1

= Q̂(n)
r .

It is easy to see that

δ̂(r) +
1 + 2δ̂(r + 1)

2
= 1.

By virtue of estimates (22), Q̂(n)
r+1 ̸= 0. Therefore, replacing m0,r+1 by Q̂(n)

r+1, inequalities (22)
are obtained for k = r.

From (13) and (22) it follows that Q(n)
k ̸= 0 and Q̂(n)

k > 0 for all n ≥ 1 and 1 ≤ k ≤ n.
Applying the method suggested in ([25], p. 28) and the relations (18) and (20) we find the
formula for the difference of two approximants of the branched continued fraction (14). For
n ≥ 1 and k ≥ 1 on the first step we obtain

fn+k − fn = 1 − z1,0 +
m0,1z0,1

Q(n+k)
1

−
(

1 − z1,0 +
m0,1z0,1

Q(n)
1

)

= − m0,1z0,1

Q(n+k)
1 Q(n)

1

(Q(n+k)
1 − Q(n)

1 ).

Let r be arbitrary integer number, moreover 1 ≤ r ≤ n − 1, n ≥ 2. Then for n ≥ 2 and
k ≥ 1 we have

Q(n+k)
r − Q(n)

r = 1 − (1 − m0,r)δ(r) +
m0,r+1(1 − m0,r)z0,r+1

Q(n+k)
r+1

−

1 − (1 − m0,r)δ(r) +
m0,r+1(1 − m0,r)z0,r+1

Q(n)
r+1


= −m0,r+1(1 − m0,r)z0,r+1

Q(n+k)
r+1 Q(n)

r+1

(Q(n+k)
r+1 − Q(n)

r+1). (23)

Applying recurrence relation (23) and taking into account that

Q(n+k)
n − Q(n)

n = −(1 − m0,n)δ(n) +
m0,n+1(1 − m0,n)z0,n+1

Q(n+k)
n+1

,

after nth step we obtain

fn+k − fn = (−1)n+1

(1 − m0,n)δ(n)−
m0,n+1(1 − m0,n)z0,n+1

Q(n+k)
n+1

 n

∏
r=1

m0,r(1 − m0,r−1)z0,r

Q(n+k)
r Q(n)

r

,
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where m0,0 = 0.
Using (19) and (22), we get the following

| fn+k − fn| ≤
n

∏
r=1

m0,r(1 − m0,r−1)|z0,r|
|Q(n+k)

r ||Q(n)
r |

×

(1 − m0,n)|δ(n)|+
m0,n+1(1 − m0,n)|z0,n+1|

|Q(n+k)
n+1 |


≤ 1

2n

n

∏
r=1

m0,r(1 − m0,r−1)(1 + 2δ̂0,r)

Q̂(n+k)
r Q̂(n)

r

×

(1 − m0,n)δ̂(n) +
m0,n+1(1 − m0,n)(1 + 2δ̂0,n+1)

2Q̂(n+k)
n+1


= −( f̂n+k − f̂n),

where n ≥ 1, k ≥ 1, and m0,0 = 0. Thus,

| fn+k − fn| ≤ f̂n − f̂n+k, n ≥ 1, k ≥ 1. (24)

It follows that the sequence { f̂n}n∈N is monotonically decreasing and due to inequalities
(22) is bounded from below. Indeed, for n ≥ 1 we have

f̂n =
1
2
− m0,1

2Q̂(n)
1

≥ 0.

Therefore, there exists a limit
f̂ = lim

n→∞
f̂n.

Now, using the relation (24), we obtain for k ≥ 1

k

∑
n=1

| fn+1 − fn| ≤ −
k

∑
n=1

( f̂n+1 − f̂n)

=
1 − m0,1

2
− f̂k+1.

If k → ∞ it follows that the branched continued fraction (14) converges absolutely and
uniformly for z1,2k and z0,k, k ≥ 1, which satisfies the inequalities (15). This proves (A).

Finally, by (22) for any n ≥ 1 we obtain

| fn − 1| ≤ |z1,0|+
m0,1|z0,1|
|Q(n)

1 |

≤ 1
2
+

1
2

= 1,

which proves (B).

Note that Theorem 2 is an analogue to Theorem 11.1 in [27]. Moreover, it can be
proved in another way, using a generalization of the Sleshinsky-Pringsheim criterion ([28],
Proposition 1).

We will also need the convergence continuation theorem, which follows from Theo-
rem 2.17 [25] (see also ([27], Theorem 24.2)).
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Theorem 3 (Convergence Continuation Theorem). Suppose that { fn(z)}n∈N is a sequence
of functions holomorphic in the domain Ω, Ω ⊂ C2, uniformly bounded on every compact subset
of Ω. Suppose that this sequence converges at each point of the set Θ, Θ ⊂ Ω, which is the real
neighborhood of the point z0 in Ω. Then the sequence { fn(z)}n∈N converges uniformly on every
compact subset of the domain Ω to a function holomorphic in this domain.

Next, we recall the necessary concepts of the PC method in the theory of branched
continued fractions, which will be used to establish the analytical continuation of the
function (see, [29,30]).

Let

L(z) =
+∞

∑
p,q=0

ap,qzp
1 zq

2,

where ap,q ∈ C, p ≥ 0, q ≥ 0, z ∈ C2, be a formal double power series at z = 0. Let f (z) be
function holomorphic in a neighbourhood of the origin z = 0. Let the mapping Λ : f (z) →
Λ( f ) associate with f (z) its Taylor expansion in a neighbourhood of the origin.

Definition 7. A sequence { fn(z)}n∈N of functions holomorphic at the origin corresponds to a
formal double power series L(z) at z = 0 if

lim
n→+∞

λ(L − Λ( fn)) = +∞,

where λ is the function defined as follows: λ : L → Z≥0 ∪ {+∞}; if L(z) ≡ 0 then λ(L) = +∞;
if L(z) ̸≡ 0 then λ(L) = n, where n is the smallest degree of homogeneous terms for which ap,q ̸= 0,
that is n = p + q.

If { fn(z)}n∈N corresponds at z = 0 to a formal double power series L(z), then the
order of correspondence of fn(z) is defined to be

νn = λ(L − Λ( fn)).

By the definition of λ, the series L(z) and Λ( fn) agree for all homogeneous terms up to and
including degree (νn − 1).

Definition 8. A branched continued fraction whose elements are polynomials in the space C2 cor-
responds to a formal double power series L(z) at z = 0 if its sequence of approximants corresponds
to L(z).

Finally, we present the well-known Weierstrass’ theorem ([31], p. 23) and the principle
of analytic continuation ([32], p. 39).

Theorem 4 (Weierstrass’ Theorem). Suppose that { fn(z)}n∈N is a sequence of holomorphic
functions in a domain Ω, Ω ⊂ C2, converges to a function f (z) uniformly on each compact subset
in the domain Ω. Then f (z) is a holomorphic in Ω, and for any p ≥ 0, q ≥ 0,

∂p+q fn(z)
∂zp

1 ∂zq
2

→ ∂p+q f (z)
∂zp

1 ∂zq
2

as n → +∞

on each compact subset in the domain Ω.

Theorem 5 (Principle of Analytic Continuation). Suppose that f1(z) and f2(z) are functions
holomorphic in the domains Ω1, Ω1 ⊂ C2, and Ω2, Ω2 ⊂ C2, respectively, and suppose that
Ω1 ∩ Ω2 is a domain. Next, suppose that in the real neighborhood of the point z0, z0 ∈ Ω1 ∩ Ω2,
the functions f1(z) and f2(z) coincide. Then these functions are an analytic continuation of one
another, i.e., there is a unique function f (z) that is holomorphic in Ω1 ∪ Ω2 and coincides with
f1(z) in Ω1 and with f2(z) in Ω2.
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3. Convergence and Analytical Continuation

Proof of Theorem 1. We prove (A). Let

Q(n)
n (z) = 1, n ≥ 1, (25)

and

Q(2n)
2k−1(z) = 1 +

h2kz2

1 − z1 +
h2k+1z2

1 + . . .−z1 +
h2n−1z2

1 + h2nz2

,

Q(2n)
2k−2(z) = 1 − z1 +

h2k−1z2

1 +
h2kz2

1 + . . .−z1 +
h2n−1z2

1 + h2nz2

,

Q(2n+1)
2k−1 (z) = 1 +

h2kz2

1 − z1 +
h2k+1z2

1 + . . .+
h2nz2

1 − z1 + h2n+1z2

,

Q(2n+1)
2k (z) = 1 − z1 +

h2k+1z2

1 +
h2k+2z2

1 + . . .+
h2nz2

1 − z1 + h2n+1z2

,

where n ≥ 1, 1 ≤ k ≤ n. Then the following relations hold

Q(2n)
2k−1(z) = 1 +

h2kz2

Q(2n)
2k (z)

, Q(2n)
2k−2(z) = 1 − z1 +

h2k−1z2

Q(2n)
2k−1(z)

, (26)

and

Q(2n+1)
2k−1 (z) = 1 +

h2kz2

Q(2n+1)
2k (z)

, Q(2n+1)
2k (z) = 1 − z1 +

h2k+1z2

Q(2n+1)
2k+1 (z)

, (27)

where n ≥ 1, 1 ≤ k ≤ n, and, thus, for each n ≥ 1 we write the nth approximants of (5) as

fn(z) = 1 − z1 +
h1z2

Q(n)
1 (z)

. (28)

Let n be an arbitrary natural number, arg(z2) = α, and z be an arbitrary fixed point
from (7). By induction on k, 1 ≤ k ≤ n, we show the following

Re(Q(2n)
2k−1(z)e

−iα/2) >
cos(α/2)

2
≥ c > 0 (29)

and

Re(Q(2n+1)
2k−1 (z)e−iα/2) >

cos(α/2)
2

≥ c > 0. (30)

By virtue of an arbitrary fixed point z, z ∈ Ωp,q it follows that for its arbitrary neigh-
borhood, there exists δ, 0 < δ ≤ π/2, such that |α/2| ≤ π/2 − δ and, thus,

cos(α/2) ≥ cos(π/2 − δ) = sin(δ) = 2c > 0.
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Let us prove the inequalities (29). From (26) we have

Q(2n)
2k−1(z)e

−iα/2 = e−iα/2 +
h2kz2e−iα

Q(2n)
2k (z)e−iα/2

, (31)

where 1 ≤ k ≤ n, and

Q(2n)
2k (z)e−iα/2 = e−iα/2 − z1e−2iα/2

e−iα/2 +
h2k+1z2e−iα

Q(2n)
2k+1(z)e

−iα/2
, (32)

where 1 ≤ k ≤ n − 1. Using (3), (7), (25), (31), and Corollary 2 in [29], for k = n we obtain

Re(Q(2n)
2n−1(z)e

−iα/2) ≥ cos(α/2)− (|h2n| − Re(h2n))|z2|
2 Re(Q(2n)

2n (z)e−iα/2)

> cos(α/2)− 2pq
2 cos(α/2)

1 + cos(α)
4p

> cos(α/2)− cos(α/2)
2

=
cos(α/2)

2
.

Let the inequalities (29) hold for k = r + 1 such that r + 1 ≤ n. Then, by (3), (7), Corol-
lary 2 in [29], and the induction hypothesis, from (31) and (32) for k = r we have

Re(Q(2n)
2r (z)e−iα/2) ≥ cos(α/2)− Re(z1e−iα/2)− (|h2r+1| − Re(h2r+1))|z2|

2 Re(Q(2n)
2r+1(z)e

−iα/2)

> cos(α/2)− (1 − q) cos(α/2)− 2pq
2 cos(α/2)

1 + cos(α)
4p

= cos(α/2)− (1 − q) cos(α/2)− q cos(α/2)
2

=
q cos(α/2)

2

and

Re(Q(2n)
2r−1(z)e

−iα/2) ≥ cos(α/2)− (|h2r| − Re(h2r))|z2|
2 Re(Q(2n)

2r (z)e−iα/2)

> cos(α/2)− 2pq
2q cos(α/2)

1 + cos(α)
4p

= cos(α/2)− cos(α/2)
2

=
cos(α/2)

2
,

respectively.
Similarly, we obtain the inequalities (30).
Thus, Q(n)

1 (z) ̸= 0 for n ≥ 1 and for all z ∈ Ωp,q, i.e., that each approximant (28) is a
holomorphic function in the domain (7).

Let Γ be an arbitrary compact subset of (7). Then there exists an open bi-disk

Θr = {z ∈ C2 : |z1| < r, |z2| < r}
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of radius r, r > 0, such that Γ ⊂ Θr. Moreover, for any n ≥ 1 and z ∈ Ωp,q
⋂

Θr from (25),
(29), and (30) we have

| fn(z)| ≤ 1 + r +
|h1|r

Re(Q(n)
1 (z)e−iα/2)

< 1 + r +
2hr

cos(α/2)

= C(Ωp,q
⋂

Θr),

where h is defined in (9), i.e., the sequence { fn(z)}n∈N is uniformly bounded on every
compact subset of Ωp,q.

It is obvious that for every l such that

0 < l < min
{

1 − d
2

,
d(1 − d)

2h
, 1 − q,

1
4p

}
, (33)

where p and q are defined in (4), h and d are defined in (9), the domain

Υl = {z ∈ R2 : 0 < z1 < l, 0 < z2 < l}

contained in (7), in particular Υl/2 ⊂ Ωp,q. Using (9) and (33), for any z ∈ Υl , Υl ⊂ Ωp,q, we
obtain that

0 < z1 <
1 − d

2
and for any k ≥ 1

|hkz2| <
hd(1 − d)

2h

=
d(1 − d)

2
,

i.e., the elements of (5) satisfy the Theorem 1, with m0,k = d, k ≥ 1. It means that branched
continued fraction (5) converges for all z ∈ Υl , Υl ⊂ Ωp,q. Therefore, according to the
Theorem 3, the convergence of (5) is uniform on compact subsets of the domain (7).

From (A) of Theorem 1, with m0,k = d, k ≥ 1, 0 < d < 1, it follows that the branched
continued fraction (5) converges for all z ∈ Ωd,h, where Ωd,h is defined by (8), and from
(B) of the same theorem it follows that all approximants of (5) lie in the closed disk (16) if
z ∈ Ωd,h. Hence, by Theorem 3, the branched continued fraction (5) converges uniformly
on compact subsets of the domain (8). This is a complete proof of (A).

Now, we prove (B). Let

G(2n)
2n (z) =

F2(α + n, β, β′ + n; β, γ′ + 2n; z1,−z2)

F2(α + n + 1, β, β′ + n; β, γ′ + 2n + 1; z1,−z2)
,

G(2n+1)
2n+1 (z) =

F2(α + n + 1, β, β′ + n; β, γ′ + 2n + 1; z1,−z2)

F2(α + n + 1, β, β′ + n + 1; β, γ′ + 2n + 2; z1,−z2)
,
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and

G(2n)
2k−1(z) = 1 +

h2kz2

1 − z1 +
h2k+1z2

1 + . . .−z1 +
h2n−1z2

G(2n)
2n (z)

,

G(2n)
2k−2(z) = 1 − z1 +

h2k−1z2

1 +
h2kz2

1 + . . .−z1 +
h2n−1z2

G(2n)
2n (z)

,

G(2n+1)
2k−1 (z) = 1 +

h2kz2

1 − z1 +
h2k+1z2

1 + . . .+
h2nz2

G(2n+1)
2n+1 (z)

,

G(2n+1)
2k (z) = 1 − z1 +

h2k+1z2

1 +
h2k+2z2

1 + . . .+
h2nz2

G(2n+1)
2n+1 (z)

,

where n ≥ 1 and 1 ≤ k ≤ n. Then

G(2n)
2k−1(z) = 1 +

h2kz2

G(2n)
2k (z)

, G(2n)
2k−2(z) = 1 − z1 +

h2k−1z2

G(2n)
2k−1(z)

, (34)

and

G(2n+1)
2k−1 (z) = 1 +

h2kz2

G(2n+1)
2k (z)

, G(2n+1)
2k (z) = 1 − z1 +

h2k+1z2

G(2n+1)
2k+1 (z)

, (35)

where n ≥ 1, 1 ≤ k ≤ n.
It follows (see also [22]) that for each n ≥ 1

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)
= 1 − z1 +

h1z2

1 +
h2z2

1 + . . .−z1 +
h2n−1z2

1 +
h2nz2

G(2n)
2n (z)

= 1 − z1 +
h1z2

G(2n)
1 (z)

and

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)
= 1 − z1 +

h1z2

1 +
h2z2

1 + . . .+
h2nz2

1 − z1 +
h2n+1z2

G(2n+1)
2n+1 (z)

= 1 − z1 +
h1z2

G(2n+1)
1 (z)

.
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Since G(n)
k (0) = 1 and Q(n)

k (0) = 1 for any 1 ≤ k ≤ n, n ≥ 1, then the 1/G(n)
k (z) and

1/Q(n)
k (z) have formal Taylor expansions in a neighborhood of the origin. It is clear that

G(n)
k (z) ̸≡ 0 and Q(n)

k (z) ̸≡ 0 for all 1 ≤ k ≤ n and n ≥ 1. Applying the method suggested
in ([25], p. 28) and (25)–(27), (34), and (35), for each n ≥ 1 we have

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)
− f2n−1(z) = −

h2nz2n
2

G(2n)
2n (z)

2n−1

∏
r=1

hr

G(2n)
r (z)Q(2n−1)

r (z)

and

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)
− f2n(z) = −z2n

2

z1 −
h2n+1z2

G(2n+1)
2n+1 (z)

 2n

∏
r=1

hr

G(2n+1)
r (z)Q(2n)

r (z)
.

Hence, in a neighborhood of origin for any n ≥ 1, we have

Λ
(

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)

)
− Λ( fn) = ∑

p+q≥n+1
p≥0, q≥0

a(n)p,q zp
1 zq

2,

where a(n)p,q , p ≥ 0, q ≥ 0, p + q ≥ n + 1, are some coefficients. It follows that

λ

(
Λ
(

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)

)
− Λ( fn)

)
= n + 1

tends monotonically to +∞ as n → +∞.
Thus, the branched continued fraction (5) corresponds at z = 0 to a formal double

power series

Λ
(

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)

)
.

Let ∆ be a neighborhood of the origin contained (6), and in which

Λ
(

F2(α, β, β′; β, γ′; z1,−z2)

F2(α + 1, β, β′; β, γ′ + 1; z1,−z2)

)
=

+∞

∑
p,q=0

ap,qzp
1 zq

2. (36)

From (A), it follows that the sequence of approximants of (5) converges uniformly
on each compact subset of ∆ to function f (z) holomorphic in the domain ∆. Then, by
Theorem 3, for arbitrary p + q, p ≥ 0, q ≥ 0, we have

∂p+q fn(z)
∂zp

1 ∂zq
2

→ ∂p+q f (z)
∂zp

1 ∂zq
2

as n → +∞

on each compact subset of ∆. And now, due to the above proven, the expansion of each ap-
proximant of (5) into formal double power series and series (36) agree for all homogeneous
terms up to and including degree n. Then, for any p + q, p ≥ 0, q ≥ 0, we have

lim
n→+∞

(
∂p+q fn

∂zp
1 ∂zq

2
(0)

)
=

∂p+q f
∂zp

1 ∂zq
2
(0) = p!q!ap,q.

Hence,

f (z) =
+∞

∑
p,q=0

1
p!q!

(
∂p+q f
∂zp

1 ∂zq
2
(0)

)
zp

1 zq
2 =

+∞

∑
p,q=0

ap,qzp
1 zq

2

for all z ∈ ∆.
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Finally, (B) follows from Theorem 4.

Note that in the same way the domains of the analytical continuation of the ratios
of Horn’s hypergeometric functions H4, H6, and H7 were obtained in the works [33–35],
respectively. Another approach using the PF Method (see, [29]) is applied in [36].

Corollary 1. Suppose that β′ and γ′ are complex constants such that satisfy inequality (3), where

h1 =
β′

γ′ , h2k =
k(γ′ − β′ + k − 1)

(γ′ + 2k − 2)(γ′ + 2k − 1)
, and h2k+1 =

(β′ + k)(γ′ + k − 1)
(γ′ + 2k − 1)(γ′ + 2k)

, k ≥ 1, (37)

herewith γ′ ̸∈ {0,−1,−2, . . .}, and where p > 0 and 0 < q < 1. Then the branched continued
fraction

1

1 − z1 +

β′

γ′ z2

1 +

(γ′ − β′)

γ′(γ′ + 1)
z2

1 − z1 +

(β′ + 1)γ′

(γ′ + 1)(γ′ + 2)
z2

1 +

2(γ′ − β′ + 1)
(γ′ + 2)(γ′ + 3)

z2

1 + . . .

(38)

converges uniformly on every compact subset of the domain (6) to the function f (z) holomor-
phic in this domain, in addition, the function f (z) is an analytic continuation of the function
F2(1, β, β′; β, γ′; z1,−z2) in the domain Ωh,l

p,q.

Graphical illustrations of domains for variables z1 and z2 in (6) are shown in Figure 1a–c.

Re(z1)

Im(z1)

max{1−q,(1−d)/2}

(a) Domain for z1.

Re(z2)

Im(z2)

(b) Domain for z2 if h = pd(1 − d).

1/(2p)

Re(z2)

Im(z2)

−d(1−d)/(2h)

1/(2p)

(c) Domain for z2 if h > pd(1 − d).

Figure 1. Domains for variables z1 and z2 in (6).

By using Theorem 1, we obtain the following result:
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Theorem 6. Suppose that α, β′, and γ′ are real constants such that

0 < hk ≤ h, k ≥ 1, (39)

where hk, k ≥ 1, are given in (2) herewith γ′ ̸∈ {0,−1,−2, . . .}, h is a positive number. Then the
branched continued fraction (5) converges uniformly on every compact subset of the domain

Φh =

{
z ∈ C2 : z1 ̸∈ [1,+∞), z2 ̸∈

(
−∞,− 1

8h

]}
(40)

to the function f (z) holomorphic in this domain, in addition, the function f (z) is an analytic
continuation of the function (10) in the domain Φh.

Proof. If hk > 0 for all k ≥ 1, then it is clear that inequality (3) is true for all p > 0. Let Γ
be an arbitrary compact subset of the domain (40). Since 0 < q < 1 and 0 < d < 1, the
inclusions Γ ⊆ Ωd,h

p,q ⊆ Φh hold for d = 1/2 and certain fairly small p and q for which the
set Ωd,h

p,q is the domain (6). Thus, this theorem is a direct corollary of Theorem 1.

Corollary 2. Suppose that α, β′, and γ′ are real constants such that satisfy inequality (39), where
hk, k ≥ 1, are given in (37) herewith γ′ ̸∈ {0,−1,−2, . . .}, h is a positive number. Then the
branched continued fraction (38) converges uniformly on every compact subset of the domain (40)
to the function f (z) holomorphic in this domain, in addition, the function f (z) is an analytic
continuation of the function F2(1, β, β′; β, γ′; z) in the domain Φh.

Note that (40) is the Cartesian product of the plane cut along the real axis from 1 to
+∞ and the plane cut along the real axis from −1/(8h) to −∞, where h is a positive number
satisfying (39).

By using Theorem 5, we directly obtain the following result from Theorem 2.2 in [23]
and Theorem 6:

Theorem 7. Suppose that α, β′, and γ′ are real constants such that satisfy inequality (39), where hk,
k ≥ 1, are given in (2) herewith γ′ ̸∈ {0,−1,−2, . . .}, h is a positive number. Then the branched
continued fraction (1) converges uniformly on every compact subset of the domain

Ξh =

{
z ∈ C2 : z1 ̸∈ [1,+∞), z2 ̸∈

[
1

4h
,+∞

)}
(41)

to the function f (z) holomorphic in the this domain, in addition, the function f (z) is an analytic
continuation of the function on the left side of (1) in the domain Ξh.

Corollary 3. Suppose that α, β′, and γ′ are real constants such that satisfy inequality (39), where
hk, k ≥ 1, are given in (37) herewith γ′ ̸∈ {0,−1,−2, . . .}, h is a positive number. Then the
branched continued fraction

1

1 − z1 −

β′

γ′ z2

1 −

(γ′ − β′)

γ′(γ′ + 1)
z2

1 − z1 −

(β′ + 1)γ′

(γ′ + 1)(γ′ + 2)
z2

1 −

2(γ′ − β′ + 1)
(γ′ + 2)(γ′ + 3)

z2

1 − . . .
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converges uniformly on every compact subset of the domain (41) to the function f (z) holomorphic
in the this domain, in addition, the function f (z) is an analytic continuation of the function
F2(1, β, β′; β, γ′; z) in the domain Ξh.

4. Examples

As an example, by Corollary 3 we get

ln
(

1 +
z2

1 + z1

)
= z2F2(1, β, 1; β, 2;−z1,−z2)

=
z2

1 + z1 +

1
2

z2

1 +

1
6

z2

1 + z1 +

1
3

z2

1 +

1
5

z2

1 + . . .

, (42)

where the branched continued fraction converges and represents a single-valued branch of
the analytic function on the left side of (42) in the domain

Ξ1/2 =

{
z ∈ C2 : z1 ̸∈ (−∞,−1], z2 ̸∈

(
−∞,−1

2

]}
.

One more example, by Corollary 3 we obtain

arctan
√

z2

1 + z1
=
√

z2(1 + z1)F2

(
1, β,

1
2

; β,
3
2

;−z1,−z2

)
=

√
z2(1 + z1)

1 + z1 +

1
3

z2

1 +

4
15

z2

1 + z1 +

9
35

z2

1 +

16
63

z2

1 + . . .

, (43)

where the branched continued fraction converges and represents a single-valued branch of
the analytic function on the left side of (43) in the domain

Ξ1/3 =

{
z ∈ C2 : z1 ̸∈ (−∞,−1], z2 ̸∈

(
−∞,−3

4

]}
.

5. Conclusions

In this paper, we discussed the representation and extension of the analytic functions
due branched continued fractions as a special family of functions. Our results are new
symmetric domains of analytical extension of the Appell’s hypergeometric function F2
with certain conditions on its real and complex parameters. In particular, we obtained
the domain of analytical continuation, which is the Cartesian product of the plane cut
along the real axis from 1 to +∞ and the plane cut along the real axis from −1/(4h) to −∞,
where and h is a positive number satisfying (39). However, the problem of establishing
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the domains of the analytical extension of the Appell’s hypergeometric functions F2 with
arbitrary parameters remains open.

The results of the study of branched continued fraction expansions of the Appel’s
hypergeometric functions F1, F3 and F4 can be found in [37–40].

Further studies of branched continued fraction expansions consist in the use of new
parabolic [41–43] and angular [44,45] domains of convergence of branched continued frac-
tions. Other directions of research are truncation errors analysis [46–50] and computational
stability [51–53]. Finally, taking into account the efficiency of approximation of functions by
branched continued fractions [23,34,36] and the breadth of application of hypergeometric
function, the applied direction of research is natural and intriguing.
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