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Abstract: In Pareto-based many-objective evolutionary algorithms, performance usually degrades
drastically as the number of objectives increases due to the poor discriminability of Pareto optimality.
Although some relaxed Pareto domination relations have been proposed to relieve the loss of selection
pressure, it is hard to maintain good population diversity, especially in the late phase of evolution.
To solve this problem, we propose a symmetrical Generalized Pareto Dominance and Adjusted
Reference Vectors Cooperative (GPDARVC) evolutionary algorithm to deal with many-objective
optimization problems. The symmetric version of generalized Pareto dominance (GPD), as an
efficient framework, provides sufficient selection pressure without degrading diversity, no matter of
the number of objectives. Then, reference vectors (RVs), initially generated evenly in the objective
space, guide the selection with good diversity. The cooperation of GPD and RVs in environmental
selection in part ensures a good balance of convergence and diversity. Also, to further enhance
the effectiveness of RV-guided selection, we regenerate more RVs according to the proportion of
valid RVs; thereafter, we select the most valid RVs for adjustment after the association operation.
To validate the performance of GPDARVC, we compare it with seven representative algorithms
on commonly used sets of problems. This comprehensive analysis results in 26 test problems with
different objective numbers and 6 practical problems, which show that GPDARVC outperforms other
algorithms in most cases, indicating its great potential to solve many-objective optimization problems.

Keywords: evolutionary algorithms; generalized Pareto optimality; many-objective optimization;
reference vector; cooperative evolution

1. Introduction

Multi-objective optimization problems (MOPs) usually involve multiple conflicting
objectives that need to be optimized simultaneously. Many real-world problems from
engineering and science can be naturally modeled as MOPs [1,2], such as protein structure
prediction [3], neural architecture searches [4] and ship hull form designs [5]. Without loss
of generality, an MOP can be mathematically represented as follows:

minimize F(x) = ( f1(x), f2(x), . . . , fM(x)), subject to x∈Ω (1)

where Ω is the search space of decision variables with solution vector x = (x1, x2, . . . , xD).
D denotes the dimension of the decision variable and M represents the number of objectives.
When M is larger than 3, these problems are regarded as many-objective optimization prob-
lems (MaOPs). Over the past two decades, evolutionary algorithms have been dedicated to
dealing with MOPs, i.e., multi-objective evolutionary algorithms (MOEAs), have attracted
a lot of attention and achieved some developments and applications [5–7]. Nevertheless,
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existing MOEAs are still faced with huge challenges when dealing with MaOPs. As the
number of M increases, most individuals are non-dominated with each other, making it
hard to discern their dominant relations and resulting in a loss of selection pressure [8].
Moreover, individuals tend to spread sparsely in the exponentially expanded objective
space, posing challenges in maintaining population diversity.

Pareto-based evolutionary algorithms have shown great potential to solve MOPs [9],
but their performance deteriorates in high-dimensional objective spaces. To address this
issue, researchers have proposed various dominance-based many-objective evolutionary
algorithms (MaOEAs), which usually adopt enhanced dominance strategies or introduce
additional metrics to enhance selection pressure. Generally, these techniques can be divided
into four categories. The first group modifies the definition of Pareto optimality, which can
enhance selection pressure by designing a new domination relation [8], such as relaxed
Pareto dominance criteria—e.g., CDAS [10], generalized pareto optimality (GPO) [11], and
dual-distance dominance [12]. The principle of GPO is to expand the dominance area by en-
larging the dominance angle and increasing the selection pressure. The dual-distance-based
dominance relation combines with a niche technique that is based on the angle between
individuals, where the niche size is dynamically adjusted according to the number of objec-
tives and the evolution status. The second class of dominance-based MaOEAs incorporates
additional convergence metrics that increase the selection pressure on the Pareto frontier.
For example, Pi-MOEA [13] combines Pareto dominance and diversity estimation based
on density [14] to maintain diversity and preserve convergence. KnEA [15] proposed a
knee-point-driven strategy that could maintain diversity through a non-dominated solu-
tion’s bias towards knee-points. The third group of methods, like NSGA-III [16,17] and
MOEA/DD [18], introduce reference vectors to manage non-dominated solutions, which
aim to make up for poor selection pressure by maintaining population diversity. Apart
from the above, some extra strategies and mechanisms have been employed to improve the
performance of original MOEAs on MaOPs, which can be considered the fourth group of
dominance-based MaOEAs. For instance, evolutionary algorithms with multiple stages
can obtain promising performance [19,20], since they focus on convergence in one phase
and diversity in the other phase, which is beneficial in striking a good balance throughout
the whole evolutionary process.

In comparison to the traditional Pareto dominance relation, relaxed Pareto dominance
techniques expand domination regions to better discriminate non-dominated solutions. As
discussed above, most existing Pareto-dominance evolutionary algorithms mainly focus
on improving population convergence while ignoring their diversity. However, Multi-
GPO [21], as a parameter-free evolutionary framework, enhances selection pressure by
adopting the generalized Pareto dominance relation [11]. Moreover, multiple symmetrical
generalized Pareto optimalities are used in MultiGPO to maintain population diversity
well [21]. Furthermore, reference vector-based MaOEAs [20,22,23] have achieved some suc-
cess in solving MaOPs due to their ability to preserve population diversity. However, these
algorithms perform worse when dealing with complex problems, especially those with
irregular PFs. Therefore, we propose a symmetrical Generalized Pareto Dominance and
Adjusted Reference Vector Cooperative (GPDARVC) evolutionary algorithm for MaOPs.
The main contributions of our work are as follows:

(1) We propose a new evolutionary algorithm framework based on both symmetrical
generalized Pareto dominance (GPD) and anadjusted reference vector cooperative
strategy to deal with MaOPs more effectively, where the former enhances selection
pressure and the latter maintains population diversity.

(2) To effectively address problems with different Pareto front (PF) shapes, we design
an adjusted reference vector mechanism that generates and selects valid reference
vectors based on historical evolutionary information.

(3) We conduct comprehensive experiments to validate the performance of our proposed
algorithm and demonstrate its superiority on benchmark functions.
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The remaining sections of this paper are organized as follows. We describe related
works and our motivation in Section 2. The details of our proposed algorithm are given in
Section 3. Section 4 presents our experimental design and analysis of the results. Finally,
we give our conclusions and future directions in Section 5.

2. Related Works
2.1. Many-Objective Optimization Evolutionary Algorithms

MaOEAs can usually be categorized into three main types, i.e., Pareto dominance-
based, decomposition-based, and indicator-based methods. We have briefly introduced
Pareto dominance-based algorithms [8,10,11,13,16,17,21] in the Introduction section.

Of the second group, decomposition-based approaches, MOEA/D [24] is the most
classic one, whose core principle is to decompose the multi-objective optimization problem
into a series of simpler subproblems and then solve subproblems individually with the aim
of improving population diversity. Due to its outstanding performance with MaOPs, many
scholars have significantly improved and refined MOEA/D. For example, MOEA/AD [25]
introduces a dual-population strategy, where the co-evolution of the dual populations pro-
motes a balance between population diversity and convergence. MOEA/FC [26] employs
flexible reference points and a novel density estimator in SPEA/R [27] to enhance pop-
ulation diversity. Regarding problems with irregular PF, decomposition-based MaOEAs
have also shown advancements. In methods like CARV-MOEA [22], SPEA/ARP [28], and
MaOEA/D-CIL [29], adaptive reference point strategies have been proposed to adjust
reference vectors dynamically, enabling them to approximate the accurate PF distribution
more accurately.

Indicator-based MaOEAs use performance indicators to find solutions that better bal-
ance convergence and diversity, thereby guiding the population toward the PF. Currently,
popular performance indicators include hypervolume (HV), inverted generational distance
(IGD), Iϵ+ , R2, and enhanced IGD (IGD-NS). Due to the HV’s favorable theoretical proper-
ties and Pareto compliance, several HV-based MaOEAs [30,31] have been proposed. Sun
et al. proposed an IGD-based evolutionary algorithm, MaOEA-IGD [32]. IF-MaOEA [33]
introduces the concept of optimal distribution of individuals based on the IGD indicator,
ensuring the distribution of the evolutionary process and preventing the algorithm from
converging to local optima. The authors of Ref. [34] designed an IGD-NS to select elite
individuals for the next generation. In R2HCA-EMOA [35], R2 indicator variables are used
to approximate HV contributions to select the next generation of individuals, and MaOEA-
DISC [36] focuses on the spacing relationships among individuals within the population
based on the Iϵ+ indicator. It proposes a new enhanced diversity Iϵ+ indicator to ensure
increased diversity in the population while maintaining convergence. In addition, using
only a single metric to select individuals is prone to bias and thus the reduced generality of
the algorithm. Thus, some algorithms based on multiple indicators have been generated,
such as 1by1EA [37] and 2REA [38].

AREA-APA [20] and MOEA/DD [18] belong to the hybrid class of algorithms that
combine the advantages of the above methods and show promising results in handling
MaOPs. Recently, many convergence and diversity strategies have been proposed. For
example, RVEA-2DCES [39] introduces two new strategies, namely, adaptive sparse region
detection and convergence-only selection. In CEEA [40], a cascading elimination strategy
based on binary quality indicators and balanced fitness estimation is proposed. Addition-
ally, some MaOEAs based on multi-stage mechanisms have been developed [41–43]. In
addition, the idea of combining multi-/many-objective optimization and machine learning
has become popular, based on which some learning-assisted MaOEAs [44,45] have been
designed to address more complex problems [46].

However, for practical applications with expensive function evaluations, the observa-
tion of many objective functions with one algorithm needs more functional evaluations,
which are time-consuming (i.e., computationally expensive). In order to balance the trade-
off between time consumption and efficiency, surrogate-assisted methods can be used in
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MaOEAs. In recent years, surrogate-assisted evolutionary algorithms (SAEAs) [1,2,47]
have attracted much attention. Generally, surrogate models are trained using historical or
real-time data of the optimization problems, and they can be used to replace the majority
of actual models for the purpose of the rapid fitness evaluation.

2.2. Property Analysis of Symmetrical GPD

To gain a better understanding of Pareto-based MaOEAs, we give the definitions of
traditional Pareto domination [9] and generalized Pareto domination [11] as follows.

Definition 1 (Pareto dominance). For two solution vectors x and y, the solution y is said to
dominate the solution x, denoted x ≺ y, if and only if{

∀i ∈ {1, 2, . . . , M}, fi(x) ≤ fi(y)

∃j ∈ {1, 2, . . . , M}, f j(x) < f j(y)
(2)

Definition 2 (Generalized Pareto Dominance). A solution x is said to generally dominate
another solution y with respect to (w.r.t.) the expanding angle vector φ = [φ1, φ2, . . . , φM] (denoted
x ≺φ y), if and only if f (x)φ is partially less than f (y)φ, that is

∀i ∈ {1, 2, . . . , M} : fi(x) + ∑
k ̸=i

δi fk(x) ≤ fi(y) + ∑
k ̸=i

δi fk(y)

∃j ∈ {1, 2, . . . , M} : f j(x) + ∑
k ̸=j

δj fk(x) < f j(y) + ∑
k ̸=j

δj fk(y)
(3)

where δi =
√

M− 1 · tan(φi/(M− 1)).

2.2.1. Symmetrical GPD-Based Ranking Scheme

The symmetrical GPD adopts multiple symmetric (M− 1)-GPD versions for solution
ranking of an M-objective optimization problem. Here, “M−1” indicates that M − 1
objectives expand the dominance area of solutions to improve selection pressure. To take a
bi-objective optimization problem as an example, Figure 1 shows a graphical explanation of
symmetric (M− 1)-GPD in the original f1- f2 objective space and the indirect f1-Ω2 (blue)
and Ω1- f2 (green) objective spaces; for more details, please refer to [21].

Figure 1. Pictorial illustration of a two-dimensional objective space and the shrunken space after
performing two symmetrical (M− 1)-GPD cases. (a) The original f1- f2 objective space and expanded
Ω1-Ω2 objective space; (b) the two symmetrical generalized indirect f1-Ω2 (blue) and Ω1- f2 (green)
objective spaces.

2.2.2. Additional Theoretical Study on Property Analysis

Given a vector Φi in which all elements take the values φ̂ except the i-th element which
is 0 (i.e., φk = φ̂, k ̸= i, and φi = 0), the theoretical proofs of asymmetric, transitive and
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irreflexive properties of (M− 1)-GPD can be deduced according to the definition of GPO
(Definition 2), as shown below.

Property 1 (Asymmetry). For any two solutions x, y, if x ≺Φi
y, then y ⊀Φi

x.

Proof. Suppose F′(x) = [ f ′1(x), . . . , fi(x), . . . , f ′M(x)], where f ′j (x) = f j(x) + ∑k ̸=j δk fk(x),

δk =
tanφk√

M−1
and is the same as F′(y).

By x ≺Φi
y, we have f ′k(x) < f ′k(y), k ∈ [1, M], k ̸= i, and fi(x) < fi(y). That is to say,

f ′k(y) ≮ f ′k(x), k ∈ [1, M], k ̸= i, and fi(y) ≮ fi(x), so y ⊀Φi
x.

Property 2 (Transitivity). For any three solutions x, y and z, if x ≺Φi
y and y ≺Φi

z, then
x ≺Φi

z.

Proof. Suppose F′(x), F′(y) and F′(z) the same definition when proving Property 1. With
the given conditions, we have{

f ′k(x) < f ′k(y), k ∈ [1, M], k ̸= i, and fi(x) < fi(y),
f ′k(y) < f ′k(z), k ∈ [1, M], k ̸= i, and fi(y) < fi(z).

Hence, it can be deduced that f ′k(x) < f ′k(z), k ∈ [1, M], k ̸= i, and fi(x) < fi(z), i.e.,
x ≺Φi

z.
Moreover, by replacing y with another x in Property 1, we can deduce that if x ≺Φi

x,
then x ⊀Φi

x, which is a contradiction. Thus, for any candidate solution x, x ⊀Φi
x, i.e., the

(M− 1)-GPD relationship is irreflexive.

2.3. Reference Vector Adaptation

Multi-objective optimization algorithms with fixed reference vectors face challenges,
including overly dense solution set distributions and below-standard convergence, espe-
cially when dealing with MOPs with irregular PFs. Many scholars have proposed strategies
to adapt and adjust the reference vectors. These strategies aim to change the distribution of
the reference vectors, explore promising regions, and achieve uniformly distributed and
well-converged solution sets [23,48,49]. There are two main distinctions between these
strategies, i.e., when to adapt the reference vectors and what methods are used to adapt the
modified reference vectors.

The timing of adjusting the reference vectors is critical. Adjusting them frequently can
lead to solution instability and slower convergence, while changing them too late can cause
population searching in the wrong direction. Currently, most algorithms determine when
the reference vector needs to be adjusted based on whether solutions reach some standard
threshold. For example, SPARVEA [23] introduces the concept of solution potential to
determine whether the convergence direction of an ideal solution has potential, based on
which an adaptive strategy based on solution potential is designed. MaOEA/D-2ADV [48]
proposes adjusting the number of reference vectors if the variation of the solution is less
than 10−4 in each of the M directions, indicating that all subproblems have converged well.

The method of adjusting reference vectors is also crucial, especially when solving com-
plex problems. In recent years, three strategieshave been proposed for adjusting reference
vectors, as follows: (1) Adjusting based on existing reference vectors. Existing reference
vectors are often partly valid reference vectors, which can guide the population to evolve
in the right direction. The generation of new reference vectors can also rely on existing
promising reference vectors. For example, the search is divided into two phases in [48,50].
In the first phase, the search proceeds along the boundary reference vectors. In the second
stage, new reference vectors are generated by more promising reference vectors, while inac-
tive reference vectors are replaced by interpolations based on the active reference vectors
in MOEA/D-2ADV [48]; (2) Utilizing solution candidates to generate reference vectors.
Candidate solutions are the promising solutions left after round-by-round elimination and
often indicate potential regions of the true PF. Hence, the generation of reference vectors
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using this method is reliable. In MOEA/DAWA [51], a profile is kept to evaluate the
sparsity of the reference vector using neighborhood distances. After a certain number of
fixes are generated, the crowded reference vectors are removed, and new reference vectors
are added to the sparse regions using the solutions in the archive; (3) Adjusting reference
vectors by machine learning. There are often some hard-to-discover mapping relationships
between the values of the objective function and the decision variables. We expect that min-
ing the promising solutions in each generation of the population using machine learning
can be used to understand the distribution of the PFs, as already demonstrated in the study
of Suresh et al. [49]. Each solution’s decision variables and objective function values are
scaled to values between 0 and 1 by a specific deflation method. Then, the deflated decision
variables and objective function are used as the inputs and outputs of the artificial neural
network for training. The decision maker can predict promising solutions in any region
using the learned model. Thus, this can help us to generate reliable reference vectors.

2.4. Motivation

Although many classic algorithms have been proposed to solve MaOPs, they are
still faced with challenges in striking a balance between convergence and diversity. Some
scholars have focused on increasing the algorithm’s selection pressure by improving the
traditional domination approach, which maintains population convergence yet lacks diver-
sity at the late stage of evolution. The reference vector-based approach approximates the PF
along the reference vector from multiple directions, allowing for good population diversity.
In addition, some PF regions need to be explored sufficiently for some complex problems
with irregular shapes. Based on the above analysis, a question arose—is it possible to
develop an algorithm that can keep a good balance between convergence and diversity
for MaOPs and perform efficiently on irregular or complex issues? Based on this question,
we propose a Generalized Pareto Dominance and Adjusted Reference Vectors Cooperative
evolutionary algorithm for MaOPs.

3. Proposed Algorithm

The key issue in solving MOPs lies in achieving a delicate balance between conver-
gence and diversity. As mentioned before, the symmetrical GPD can provide enough
selection pressure in a many-objective space, which achieves good convergence with prob-
lems of various scales. Additionally, reference vector-based methods maintain satisfactory
population diversity by distributing reference points throughout the entire space. There-
fore, we propose a cooperative strategy that combines GPD and reference vectors (RVs) for
environmental selection, leveraging their respective strengths.

3.1. Overall Framework

The overall framework of GPDARVC is shown in Figure 2. The initial population
is randomly generated using Latin hypervolume sampling (LHS), and a set of RVs are
generated through Riesz s-Energy Method [52]. Then, mating selection and reproduction
operations (crossover and mutation) are executed to generate offspring solutions. Binary
tournament selection is employed to identify promising solutions for recombination, with
simulated binary crossover (SBX) and polynomial mutation (PM) [16] serving as the re-
production operators within this framework. The main distinction between traditional
MaOEAs and our proposed GPDARVC lies in the environmental selection part. Specifi-
cally, GPDARVC makes full use of GPD and RV cooperation to conduct efficient survival
selection of population. Moreover, we can adjust the RVs once according to their validity
estimated by historical evolutionary information if needed. We generate additional RVs
based on the proportion of valid RVs and then adjust the original RVs accordingly. After
environmental selection, the surviving population is obtained for the next generation. The
pseudo-code of GPDARVC is presented in Algorithm 1.
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Figure 2. Overall framework of GPDARVC.

Algorithm 1 Pseudo-code of GPDARVC

Require: N: population size, φ: expanding angle, Max_FE: maximum number of fitness
evaluations, FE=0: consumed fitness evaluations, α: control parameter;

Ensure: P: final population;
1: P← Initialize();
2: Z ← Riesz-s-Energy(N,M); % % Generate RVs by energy minimization method
3: while FE ≤ α×Max_FE do
4: P′ ← Mating_Selection(P);
5: Q← Reproduction(P′);
6: R← P ∪Q;
7: (P, FE)← EnvironmentalSelection(R, N, φ, Z, FE);
8: end while
9: (Zvalid, pi, d)← Association(P, Z); % % Identify valid RVs through Algorithm 2

10: NZ ← int (N(N/|Zvalid|)); % % Recalculate the number of required RVs
11: Znew ← Riesz-s-Energy(NZ, M);
12: (Zadjust, pi, d)← Association(P, Znew);
13: while FE ≤Max_FE do
14: P′ ← Mating_Selection(P);
15: Q← Reproduction(P′);
16: R← P ∪Q;
17: (P, FE)← EnvironmentalSelection(R, N, φ, Zadjust, FE); %% See Algorithm 3
18: end while

Given two parent individuals x1 and x2, the SBX operation can be expressed as follows:

y1 =
1
2
(x1 + x2) +

u
2
(x2 − x1) (4)

y2 =
1
2
(x1 + x2)−

u
2
(x2 − x1) (5)

where u is a random variable, calculated by Equation (6). Here, r is a uniformly distributed
random number in the range [0, 1], and η is a parameter that controls the strength of the
crossover operation.

u =


( 2

r
) 1

η+1 if r ≤ 1(
1

2
r−1

) 1
η+1

if r > 1
(6)

Given solution x and the mutation probability pm, the PM operation is formulated as
follows:

y =

{
x + ∆ if r < pm

x if r ≥ pm
(7)
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where the calculation of ∆ is

∆ =

{
(xub − x)η+1 · rand if r < 0.5
(x− xlb)

η+1 · rand if r ≥ 0.5
(8)

Here, xub and xlb are the upper and lower bounds of the decision variable, respectively;
rand is a random number in the range [0, 1]; and η is a parameter that controls the strength
of the mutation.

3.2. GPD and RV Cooperative Environmental Selection Strategy

The purpose of environmental selection is to pick up promising solutions for the
next generation, which plays a crucial rule in the whole evolutionary process. To enhance
selection pressure, we propose a cooperative GPD and RV strategy, with the aim of speeding
up the convergence and keeping population diversity.

Reference vector-guided searches are a widely employed strategy for MOPs. RVs
can be uniformly distributed, as defined by users, and therefore, the solutions obtained
tend to have good diversity. However, the definition of RVs significantly impacts the final
results. Pre-defined RVs should consider the true PFs of the specific problem at hand. In
other words, evenly distributed RVs, the commonly used ones, are effective only for MOPs
with regular PFs and may not adequately handle MOPs with irregular or complex PFs. In
contrast to traditional strategies guided by RVs, we propose two key points: (1) selecting
only a subset of solutions according to RVs rather than all solution and (2) having each
RV guide, at most, one solution throughout the process. Specifically, once an RV guides
the selection of a solution in an iteration, it cannot guide any further selections within
that same iteration. It is important to note that energy minimization method is utilized to
generate these RVs due to its ability to produce any desired number of them.

The GPD technique, inspired by the CDAS strategy [10], effectively controls the
dominance area of the solutions, thereby enhancing selection pressure. Zhu et al. [21]
propose a framework based on it that performs M symmetric (M-1)-GPD-based sorting
operations for all solutions simultaneously, resulting in M distinct solution sorting schemes.

Building upon this framework, we initially select solutions based on RVs and subse-
quently employ the max–min distance strategy to choose the remaining solutions. More
specifically, our (M-1)-GPD framework ensures prior selection of non-dominant solutions,
while remaining solutions can be obtained through guidance from uniformly distributed
RVs. However, the true PFs are usually unknown, making the exact number of solutions
selected by RVs indeterminate. MOPs with regular PFs tend to have more solutions selected
in this step, whereas those with irregular or inverted PFs have fewer solutions selected.
To address this, we use the maximum–minimum distance to determine the selection of
remaining solutions. This strategy helps maintain a good balance between convergence
and diversity, especially when some well-distributed solutions have already been selected.

The environmental selection process primarily involves the cooperation of two steps:
reference vector-guided selection and GPD-based selection. The pseudo-code of environ-
mental selection is shown in Algorithm 3. Firstly, some extreme points are determined,
and the number of solutions selected by M GPD conditions is calculated. The candidate
solutions for selection are firstly divided by the GPD according to their domination lev-
els. For reference vector-guided selection, solutions are paired with RVs based on cosine
distance (Association(·) in Algorithm 2). Specifically, each solution is associated with
its closest RV, and each RV pairs with at most one solution. If an RV is associated with
multiple solutions, it selects the solution closest to it as the final pairing. Once the pairing
operation is completed, solutions with the paired RV are selected. Some RVs may not
have any solution to pair with them, resulting in fewer selected solutions than the pre-
set population size N. To address this, the remaining solutions are selected through the
maximum–minimum distance strategy. Based on the selected solutions, the cosine distance
between each candidate solution and the chosen ones is calculated. Candidate solutions
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are then selected one by one based on the minimum–maximum distance until the required
number of solutions is met.

3.3. Reference Vector Adjustment

It is known that the adjustment of reference vectors every time means a lot of sensitivity
issues; however, we adjust the reference vectors only once, as shown in Algorithm 1 (see
line 12 of Algorithm 1). Our adjustment is intended to compensate for the shortcomings
of the predefined reference vectors, which is partly according to [53]. In order to further
improve the efficiency of reference vector-guided selection, we propose adjusting RVs
during the evolutionary process. Firstly, RVs are considered valid if they are associated
with solutions. Subsequently, additional RVs are generated based on the proportion of
effective RVs, and increasing their number results in a higher density of RVs. We re-
associate the newly generated RVs with the existing population, and those associated RVs
are used for adjustment.

Here, we discuss the details of the RV adjustment process. Firstly, N evenly distributed
RVs are generated by the energy minimization method, where N is the population size. As
evolution continues, the GPD provides sufficient selection pressure, causing some RVs far
from the real PFs to gradually cease working, as shown in Figure 3. Therefore, it it necessary
to identify the valid RVs so as to guide efficient selection. We consider RVs invalid when
they do not pair with any non-dominated solutions. After several iterations, RVs can be
classified into valid and invalid groups according to the pairing condition. For problems
with regular PFs, more effective RVs are identified at this stage. Correspondingly, fewer
effective RVs are identified for problems with irregular or complex PFs. To ensure enough
valid RVs, we need to re-generate some RVs after the identification process. To better
understanding this, an illustrative example is provided, as shown in Figure 4, where 20 RVs
are initially pre-defined. After several generations, eight valid RVs are determined (as
shown in green dot). The proportion of valid to invalid RVs is 0.4. To make the number of
effective RVs equal to the predefined RVs, we need to re-generate 2.5 times the predefined
number of RVs. Thus, 50 predefined RVs need to be re-generated, thereby obtaining 20 valid
RVs after this adjustment process. It is shown in Figure 4 that a few valid RVs are sparsely
distributed in the objective space, which is not beneficial for effective environmental
selection. Therefore, we re-generate more valid RVs according to the proportion, causing
them to be more densely distributed in the objective space. Therefore, we can ensure a
sufficient number of valid RVs according to the calculated proportion.

Algorithm 2 Association Operator

Require: P: population, Z: reference vectors;
Ensure: ARV: Associated RVs, pi: RVs’ index associated with each solution, d: distance of

the solution to its nearest RV;
1: Calculate the cosine distance Di j from each solution to each RV; %% Di j is the distance

matrix
2: (d, pi) = min(Di j); %% d is the minimal distance of each solution to all RVs, pi is the

index of the minimal value;
3: ARV = Z(pi); %% The RV with index pi is the associated RV;
4: Return (ARV, pi, d);
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Algorithm 3 Environmental Selection

Require: N: population size, R: combined population, φ: expanding angle, Z: reference
vector;

Ensure: P : population
1: P = ∅ and conduct fast non-dominated sorting on R;
2: Use the AGPO sorting method to produce each front PFi, i = 1, 2, . . . , M;
3: Suppose ti =

⌊
N−|Q|

M

⌋
, i = 1, 2, . . . , M;

4: ns = N − |Q| −M× t;
5: Randomly select ns different ti = [t1, t2, . . . , tm] and increase their values by 1;
6: (ARV, pi, d)← Association(R, Z); %% through Algorithm 2;
7: Suppose Zchoosek = f alse, k = 1, 2, . . . , |Z|;
8: Let Zchoosek = true where k is the index of the RVs in the ARV; %% marks associated

reference vectors as true
9: Identify the extreme solution set Q in terms of the minimum ASF value for each

condition;
10: P← P ∪Q, and R← R \Q;
11: for j = 1 to M do
12: PF∗ = PFj;
13: Let TZchoose = Zchoose; %% generate a temporary reference vector marker
14: i = 0;
15: while i < tj and |P| < N do
16: Let Rnd be the set of all non-dominated solutions in R;
17: RT = {x|x ∈ Rnd, PF∗(x) = min(PF∗(Rnd))};
18: if RVs’ markers TZchoose are not all false then
19: Randomly select one from the RVs marked as true and record its index as k;
20: Select the solution set I from RN where the pi value is equal to k;%% Select

all solutions associated with the reference vector index k;
21: if I is not empty then
22: Zchoosek = f alse and TZchoose = Zchoose
23: s = arg min(dmin(I));
24: P← P ∪ {s}, R← R \ {s};
25: i = i + 1;
26: else
27: TZchoosek = f alse and continue
28: end if
29: else
30: Calculate cosine distance dc between any two solutions in RT and P,
31: Calculate dcmin(x) = miny∈P dist(x, y) for each solution x ∈ RT;
32: s = arg max(dcmin(RT));
33: P← P ∪ {s}, R← R \ {s};
34: i = i + 1;
35: end if
36: end while
37: end for
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Figure 3. Valid reference vector identification.

Calculate the proportion of valid RVs                                                               Re-generate RVs according to valid proportion

RV adjustment

Valid reference point

Invalid reference point

Figure 4. Reference vector adjustment.

4. Experimental Results and Analysis

In this section, we validate the performance of GPDARVC through a series of experiments.
Firstly, we compare it with some state-of-the-art algorithms to show its superior performance.
Then, ablation experiments are conducted to show the effectiveness of the proposed strategies
and analyze the sensitivity of parameters. All experiments are performed on the PlatEMO
platform 4.5 [54] using MATLAB R2023a on a personal computer, the manufacturer of which
is DELL, made in China, with a built-in processor of Intel Core i5-12400F.

4.1. Experimental Design

To fully demonstrate the effectiveness and generalization of our algorithm, we test
several representative MaOEAs on commonly used problems. Parameter settings and
performance metrics are also introduced in this section.

4.1.1. Comparative Algorithms

We compare GPDARVC with some representative MaOEAs, including ANSGA-III [16],
MaoEA-IGD [55], DEAGNG [32], LMPFE [56], TS-DGPD [57], RVEAiGNG [58], and Multi-
GPO [21].These comparison algorithms cover different types of multi-objective optimization
algorithms, ranging from Pareto dominance-based to metrics-based and decomposition-
based algorithms.

• ANSGA-III [16] introduces an adaptive RV adjustment strategy to enhance the original
NSGA-III. Specifically, new RVs are generated near the existing ones with more than
two associations, while unassociated new RVs are removed.

• MaOEA-IGD [55] is an indicator-based approach that prioritizes solutions based on
the IGD metric to guide the optimization process.

• DEAGNG [32] is a decomposition-based evolutionary algorithm that decomposes
a multi-objective problem into several single-objective subproblems and guides the
search process using neural networks and Gaussian process models.
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• LMPFE [56] combines feedback mechanisms with Pareto optimization methods. By in-
troducing a feedback evolutionary mechanism and Pareto dominance strategy, LMPFE
effectively addresses the computational challenges of large-scale multi-objective opti-
mization problems, offering an efficient, balanced, and diverse set of solutions.

• TS-DGPD [57] introduces a dynamic generalized Pareto dominance with two stages,
where the first stage focuses on convergence and the second stage emphasizes solution
diversity.

• RVEAiGNG [58] is an adaptive reference vector-based decomposition algorithm that
presents a new approach to learning the distribution of reference vectors using a
growing neural gas (GNG) network for automatic and stable adaptation.

• MultiGPO [21] utilizes M symmetric (M− 1)-GPD scenarios, where each scenario
enhances the selection pressure on M − 1 objectives by expanding the dominance
region of solutions while keeping the omitted objective constant. It demonstrates
strong performance in handling unknown and irregular shapes of the PF.

4.1.2. Test Problems

In our study, we select three well-known test suites for experimental research, i.e.,
DTLZ, MaF, and WFG. The number of objectives varies from 5 to 15. For WFG test problems,
the number of decision variables is set to D = k + l, where k = M−1 and l = 10. For MaF test
problems, the setting of D is not very uniform, with D = M + 9 for MaF 1-MaF 6 and MaF
10; D = M + 19 for MaF 7; D = 2 for MaF 8 and MaF 9; and D = 5 for MaF 13. For DTLZ
test problems, the number of decision variables is set to D = M + 9. These test MaOPs
contain different problem characteristics, with regular and irregular FPs, such as convexity,
linearity, degeneration, and disjointedness.

4.1.3. General Parameter Settings

GPDAEVC and other comparison algorithms use SBX as a crossover operator, with a
crossover probability of 1.0 and a distribution exponent of 20, and PM as mutation operator,
with an expected value of 1.0 and a distribution exponent of 20. For a fair comparison,
population sizes for all algorithms are set to 210, 275, and 240 for 5-, 10-, and 15-objective
test problems, respectively. The maximum number of fitness evaluations for each algorithm
is set to M×10,000.

4.1.4. Performance Indicators

We employ inverse generation distance plus (IGD+) and hypervolume (HV) as the
evaluation metrics for performance. IGD+ and HV are the most commonly used compos-
ite metrics in multi-objective optimization because they can reflect the convergence and
diversity of the algorithms well. Generally, smaller IGD+ values indicate better results,
while larger HVs indicate higher-quality solutions. To produce convincing results, all
experiments are conducted 20 times, and the mean and standard deviation of results are
recorded. The Wilcoxon rank sum test with a significance level of 0.05 is used for statis-
tical analysis, where “+”, “−”, and “=” indicate that GPDARVC has worse, better, and
similar performance compared to another algorithms. The formulas for HV and IGD+ are
as follows.

HV(S, zr) = λ

 |S|⋃
i=1

vi

 (9)

IGD+(S, P∗) =
1
|P∗| ∑

p∈P∗
min
s∈S

d+(p, s) (10)

where λ is the Lebesgue measure, and vi is the hypervolume consisting of the reference
point zr = (1, 1, . . . , 1)T and the solutions in the set of non-dominated solutions S. S is
the solution set generated by the algorithm, P∗ is the true PF’s population, and d+(p, s)
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represents the directed distance from a reference point p ∈ P∗ to the closest solution s ∈ S,
considering only the “dominated” distance.

We also adopt the performance score (PS), as suggested in [59], to compare the perfor-
mance of all algorithms on all test suites. A smaller value of performance score indicates
better performance. PS is defined as follows:

PS(MaOEAi) =
1
P

(
P

∑
j=1

1
(N − 1)

(
N

∑
l=1

δi
j,l

))
(11)

where N is the number of MaOEAs used for comparison, and P is the number of problems
for testing. The parameter δi

j,l is defined as

δi
j,l =

{
1, if MaOEAj > MaOEAi on a problem l,
0, otherwise

(12)

4.2. Experimental Results

In this section, Tables 1–6 give the statistical results obtained by each algorithm on
different test suites, where the best results obtained by each algorithm are highlighted
with dark background. Moreover, +, − and ≈ indicate that the result is significantly better,
significantly worse and statistically similar to that obtained by GPDARVC, respectively.
The experimental results show that our proposed GPDARVC achieves the best performance
on most of the test suites. In the following, we analyze and discuss the results obtained by
each algorithm in detail.

4.2.1. Comparison Results on DTLZ Test Problems

The mean and standard deviation of the IGD+ results and HV results obtained by
all algorithms on the DTLZ test problems are given in Tables 1 and 2, respectively. The
experimental results show that the overall performance of the proposed GPDARVC al-
gorithm is significantly better than the other compared MaOEAs on these test suites. As
shown in Table 1, GPDARVC obviously outperforms the compared algorithms on 14 out
of 21 test problems. In HV metrics, GPDARVC also performs well, achieving the best
performance on DTLZ1, DTLZ2, DTLZ3, DTLZ4, and DTLZ6. GPDARVC is better than
ANSGA-III, MaOEA-IGD, DEAGNG, LMPFE, TS-DGPD, RVEAiGNG, and MultiGPO in 21
test problems on 19, 16, 18, 21, 21, 20, and 16 occasions and is defeated just 1, 4, 2, 0, 0, 1,
and 0 times. This shows that GPDARVC is very effective in dealing with both simple and
complex problems, which can be attributed to the fact that GPD provides enough selection
pressure to keep fast convergence, while RVs maintain the diversity of the population
through searching along different directions. In a word, the cooperation of GPD and RVs
in the environmental selection part can ensure the outstanding performance of the final
results even for complex problems.

To make a clear comparison, we illustrate the performance scores of all algorithms
on different test suites in Figure 5. Figure 5a presents a bar chart of scores for GPDARVC
and the compared algorithms on the DTLZ test suite. Clearly, the bars corresponding
to GPDARVC have the lowest height in both HV and IGD+ metrics. This indicates that
GPDARVC consistently ranks top, with performance scores significantly lower than the
other MaOEAs. Therefore, we can conclude that the proposed GPDARVC performs excep-
tionally well on the DTLZ test suite. To ensure an intuitive understanding of GPDARVC,
Figure 6 shows the final results of GPDARVC running against other competing algorithms
on DTLZ5 with a 15-dimensional objective. It can be seen that GPDARVC not only approxi-
mates the final population to the true PF but also results in a very homogeneous population
distribution. On the contrary, the experimental results of other competing algorithms either
converge slowly or lack diversity.
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Table 1. IGD+ values obtained by GPDARVC and other comparison algorithms on 5-, 10-, and 15-objective DTLZ 1-7. The best result for each test instance is shown
with dark background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

DTLZ1

5 9 4.5940 × 10−2 (2.79 × 10−4) − 1.6484 × 10−1 (2.26 × 10−1) − 1.1869 × 10−1 (7.02 × 10−2) − 3.8683 × 10−2 (3.65 × 10−3) ≈ 3.8479 × 10−2 (4.12 × 10−3) − 4.1497 × 10−2 (4.26 × 10−4) − 3.7186 × 10−2 (3.94 × 10−4) ≈ 3.7288 × 10−2 (3.53 × 10−4)
10 14 1.0091 × 10−1 (4.95 × 10−2) ≈ 8.3402 × 10−2 (8.83 × 10−2) − 1.6365 × 10−1 (2.21 × 10−2) − 4.2190 × 100 (2.41 × 100) − 8.1648 × 10−2 (2.14 × 10−2) − 6.7808 × 10−2 (1.32 × 10−3) + 7.3197 × 10−2 (1.64 × 10−3) + 7.8383 × 10−2 (1.87 × 10−3)
15 19 1.1110 × 10−1 (2.95 × 10−2) − 1.3751 × 10−1 (1.16 × 10−1) ≈ 1.3841 × 10−1 (2.02 × 10−2) − 5.8046 × 100 (2.52 × 100) − 1.5316 × 10−1 (8.71 × 10−2) − 9.0277 × 10−2 (4.85 × 10−3) ≈ 9.2294 × 10−2 (1.48 × 10−3) − 8.9358 × 10−2 (3.19 × 10−3)

DTLZ2

5 14 7.2399 × 10−2 (1.90 × 10−3) − 6.2558 × 10−2 (1.37 × 10−4) + 9.1342 × 10−2 (3.53 × 10−3) − 7.1808 × 10−2 (6.91 × 10−4) − 7.5589 × 10−2 (1.67 × 10−3) − 8.1319 × 10−2 (1.39 × 10−3) − 7.2676 × 10−2 (9.48 × 10−4) − 6.4962 × 10−2 (3.76 × 10−4)
10 19 1.8723 × 10−1 (2.27 × 10−2) − 1.7174 × 10−1 (2.20 × 10−3) ≈ 2.0901 × 10−1 (6.87 × 10−3) − 1.7127 × 10−1 (1.81 × 10−3) ≈ 1.8453 × 10−1 (2.04 × 10−3) − 1.7177 × 10−1 (1.98 × 10−3) − 1.7985 × 10−1 (2.26 × 10−3) − 1.7059 × 10−1 (4.57 × 10−4)
15 24 2.7307 × 10−1 (1.14 × 10−2) − 3.4632 × 10−1 (4.18 × 10−2) − 2.7434 × 10−1 (1.29 × 10−2) − 2.1462 × 10−1 (6.49 × 10−2) + 2.3962 × 10−1 (3.42 × 10−3) − 2.0609 × 10−1 (1.30 × 10−3) + 2.3293 × 10−1 (3.69 × 10−3) − 2.2582 × 10−1 (3.02 × 10−3)

DTLZ3

5 14 8.7895 × 10−2 (1.39 × 10−2) − 9.3756 × 100 (3.39 × 100) − 6.6271 × 10−1 (6.24 × 10−1) − 8.7121 × 10−1 (1.27 × 100) − 8.2726 × 10−2 (7.27 × 10−3) − 2.0207 × 10−1 (3.40 × 10−1) − 7.5985 × 10−2 (4.31 × 10−3) − 7.0722 × 10−2 (3.81 × 10−3)
10 19 1.0563 × 100 (1.46 × 100) − 5.7939 × 100 (3.81 × 100) − 5.6195 × 10−1 (4.63 × 10−1) − 1.7652 × 102 (4.94 × 101) − 6.0260 × 100 (2.83 × 100) − 1.9765 × 10−1 (1.14 × 10−2) − 2.1157 × 10−1 (2.17 × 10−2) − 1.7589 × 10−1 (3.25 × 10−3)
15 24 1.0656 × 100 (1.10 × 100) − 2.9275 × 100 (1.44 × 100) − 1.2831 × 100 (9.29 × 10−1) − 2.2181 × 102 (1.11 × 102) − 1.5036 × 101 (5.70 × 100) − 5.0271 × 10−1 (1.24 × 10−1) − 3.1552 × 10−1 (2.17 × 10−1) − 2.3615 × 10−1 (4.27 × 10−3)

DTLZ4

5 14 8.2551 × 10−2 (3.36 × 10−2) − 8.5652 × 10−2 (5.37 × 10−2) − 8.3777 × 10−2 (1.88 × 10−3) − 7.5100 × 10−2 (3.07 × 10−3) − 7.5667 × 10−2 (1.43 × 10−3) − 8.1083 × 10−2 (1.50 × 10−3) − 7.1703 × 10−2 (9.50 × 10−4) − 6.5065 × 10−2 (3.51 × 10−4)
10 19 1.7301 × 10−1 (1.59 × 10−3) − 1.6819 × 10−1 (2.34 × 10−3) + 1.9234 × 10−1 (2.32 × 10−3) − 3.4013 × 10−1 (1.19 × 10−1) − 1.9482 × 10−1 (3.11 × 10−3) − 1.6760 × 10−1 (5.38 × 10−3) + 1.7873 × 10−1 (1.97 × 10−3) − 1.7000 × 10−1 (4.38 × 10−4)
15 24 2.4452 × 10−1 (1.69 × 10−2) − 2.4560 × 10−1 (9.73 × 10−3) − 2.3419 × 10−1 (1.85 × 10−3) − 6.7045 × 10−1 (1.18 × 10−1) − 2.4074 × 10−1 (3.77 × 10−3) − 2.0871 × 10−1 (2.77 × 10−3) + 2.2292 × 10−1 (1.84 × 10−3) ≈ 2.2433 × 10−1 (3.02 × 10−3)

DTLZ5

5 14 8.3713 × 10−2 (4.41 × 10−2) − 1.9781 × 10−1 (1.34 × 10−1) − 9.2131 × 10−2 (4.62 × 10−2) − 1.1761 × 10−1 (4.57 × 10−2) − 7.2629 × 10−2 (1.35 × 10−2) − 7.8482 × 10−2 (2.96 × 10−2) − 5.0725 × 10−2 (1.18 × 10−2) − 4.2347 × 10−2 (8.12 × 10−3)
10 19 2.5344 × 10−1 (7.96 × 10−2) − 2.1530 × 10−1 (1.50 × 10−1) − 1.7411 × 10−1 (4.27 × 10−2) − 2.1220 × 10−1 (1.12 × 10−1) − 2.0418 × 10−1 (9.42 × 10−2) − 8.5474 × 10−2 (3.14 × 10−2) ≈ 1.0025 × 10−1 (1.87 × 10−2) − 8.1812 × 10−2 (1.90 × 10−2)
15 24 2.4511 × 10−1 (5.02 × 10−2) − 2.7130 × 10−1 (1.38 × 10−1) − 1.9716 × 10−1 (1.20 × 10−1) − 1.7899 × 10−1 (1.14 × 10−1) ≈ 2.8725 × 10−1 (1.21 × 10−1) − 1.5339 × 10−1 (6.18 × 10−2) − 1.0616 × 10−1 (1.85 × 10−2) ≈ 1.0318 × 10−1 (2.35 × 10−2)

DTLZ6

5 14 1.4439 × 10−1 (7.92 × 10−2) − 3.6647 × 10−1 (4.45 × 10−3) − 2.0144 × 10−1 (9.35 × 10−2) − 1.9246 × 10−1 (9.81 × 10−2) − 8.5002 × 10−2 (2.09 × 10−2) − 7.6623 × 10−2 (6.34 × 10−2) − 6.7124 × 10−2 (1.76 × 10−2) − 5.0886 × 10−2 (1.35 × 10−2)
10 19 8.7498 × 10−1 (3.95 × 10−1) − 3.7580 × 10−1 (4.29 × 10−4) − 2.9028 × 10−1 (1.20 × 10−1) − 4.8067 × 10−1 (2.88 × 10−1) − 2.8921 × 100 (6.01 × 10−1) − 1.1994 × 10−1 (5.96 × 10−2) − 1.0211 × 10−1 (2.30 × 10−2) − 8.0732 × 10−2 (1.36 × 10−2)
15 24 3.3181 × 10−1 (2.25 × 10−1) − 3.6167 × 10−1 (6.54 × 10−2) − 2.5802 × 10−1 (1.43 × 10−1) − 4.4900 × 10−1 (2.58 × 10−1) − 3.0743 × 100 (8.00 × 10−1) − 1.2655 × 10−1 (6.67 × 10−2) − 8.9775 × 10−2 (1.62 × 10−2) ≈ 8.0777 × 10−2 (1.42 × 10−2)

DTLZ7

5 24 1.7507 × 10−1 (1.28 × 10−2) − 3.5902 × 10−1 (6.20 × 10−2) − 1.4210 × 10−1 (1.86 × 10−2) − 7.2225 × 10−1 (4.21 × 10−1) − 1.7335 × 10−1 (7.54 × 10−3) − 1.3739 × 10−1 (3.03 × 10−2) ≈ 1.4859 × 10−1 (2.83 × 10−2) − 1.2910 × 10−1 (3.47 × 10−3)
10 29 7.3341 × 10−1 (6.21 × 10−2) − 1.0440 × 100 (5.25 × 10−2) − 7.2080 × 10−1 (1.34 × 10−1) ≈ 2.8063 × 100 (6.49 × 10−1) − 1.0383 × 100 (7.95 × 10−2) − 6.0740 × 10−1 (1.18 × 10−2) + 7.2405 × 10−1 (7.40 × 10−3) − 6.7953 × 10−1 (8.44 × 10−3)
15 34 4.1275 × 100 (6.89 × 10−1) − 1.4484 × 100 (3.81 × 10−2) + 6.2862 × 100 (1.22 × 100) − 4.8606 × 100 (2.50 × 100) − 4.1692 × 100 (1.10 × 100) − 1.1196 × 100 (6.47 × 10−2) + 1.3657 × 100 (4.60 × 10−2) + 1.6508 × 100 (2.65 × 10−1)

+/−/≈ 0/20/1 3/16/2 0/20/1 1/17/3 0/21/0 6/12/3 2/15/4

Table 2. HV values obtained by GPDARVC and other comparison algorithms on 5-, 10-, and 15-objective DTLZ 1-7. The best result for each test instance is shown
with dark background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

DTLZ1

5 9 9.7467 × 10−1 (5.08 × 10−4) − 6.9071 × 10−1 (3.72 × 10−1) − 7.5756 × 10−1 (1.85 × 10−1) − 9.7826 × 10−1 (2.34 × 10−3) − 9.7401 × 10−1 (8.64 × 10−3) − 9.7198 × 10−1 (1.03 × 10−3) − 9.7613 × 10−1 (5.21 × 10−4) − 9.7983 × 10−1 (5.83 × 10−4)
10 14 9.6796 × 10−1 (6.81 × 10−2) − 9.4663 × 10−1 (2.15 × 10−1) − 7.9822 × 10−1 (7.72 × 10−2) − 0.0000 × 100 (0.00 × 100) − 9.8785 × 10−1 (4.45 × 10−2) − 9.9889 × 10−1 (3.11 × 10−4) − 9.9897 × 10−1 (6.31 × 10−4) − 9.9973 × 10−1 (4.84 × 10−5)
15 19 9.9638 × 10−1 (3.65 × 10−3) − 8.0403 × 10−1 (2.74 × 10−1) − 9.3265 × 10−1 (4.37 × 10−2) − 0.0000 × 100 (0.00 × 100) − 8.8154 × 10−1 (2.16 × 10−1) − 9.9950 × 10−1 (1.93 × 10−4) − 9.9977 × 10−1 (4.47 × 10−4) ≈ 9.9983 × 10−1 (1.58 × 10−4)

DTLZ2

5 14 7.9323 × 10−1 (2.86 × 10−3) − 8.1165 × 10−1 (4.93 × 10−4) + 7.3010 × 10−1 (6.83 × 10−3) − 8.0043 × 10−1 (1.25 × 10−3) − 7.9792 × 10−1 (2.30 × 10−3) − 7.8661 × 10−1 (2.15 × 10−3) − 8.0238 × 10−1 (1.56 × 10−3) − 8.1113 × 10−1 (5.40 × 10−4)
10 19 9.5697 × 10−1 (1.80 × 10−2) − 9.6864 × 10−1 (1.31 × 10−3) − 8.8748 × 10−1 (1.61 × 10−2) − 9.6401 × 10−1 (6.48 × 10−4) − 9.5638 × 10−1 (1.40 × 10−3) − 9.6646 × 10−1 (6.49 × 10−4) − 9.5936 × 10−1 (1.09 × 10−3) − 9.7172 × 10−1 (1.84 × 10−4)
15 24 9.7059 × 10−1 (8.21 × 10−3) − 8.9483 × 10−1 (4.89 × 10−2) − 9.5633 × 10−1 (1.60 × 10−2) − 9.5715 × 10−1 (1.50 × 10−1) − 9.7977 × 10−1 (1.01 × 10−3) − 9.8529 × 10−1 (6.77 × 10−4) − 9.8318 × 10−1 (1.06 × 10−3) − 9.9344 × 10−1 (2.73 × 10−4)

DTLZ3

5 14 7.7094 × 10−1 (2.10 × 10−2) − 0.0000 × 100 (0.00 × 100) − 2.9351 × 10−1 (2.86 × 10−1) − 2.7248 × 10−1 (2.66 × 10−1) − 7.8876 × 10−1 (1.09 × 10−2) − 6.7145 × 10−1 (1.98 × 10−1) − 7.9903 × 10−1 (5.47 × 10−3) − 8.0451 × 10−1 (4.55 × 10−3)
10 19 5.0439 × 10−1 (3.65 × 10−1) − 4.0281 × 10−3 (1.80 × 10−2) − 5.2679 × 10−1 (2.72 × 10−1) − 0.0000 × 100 (0.00 × 100) − 1.8650 × 10−5 (8.34 × 10−5) − 9.4986 × 10−1 (6.13 × 10−3) − 9.3478 × 10−1 (2.28 × 10−2) − 9.6892 × 10−1 (1.46 × 10−3)
15 24 5.4395 × 10−1 (4.14 × 10−1) − 1.6729 × 10−3 (5.73 × 10−3) − 2.6632 × 10−1 (3.44 × 10−1) − 0.0000 × 100 (0.00 × 100) − 0.0000 × 100 (0.00 × 100) − 6.0291 × 10−1 (2.38 × 10−1) − 9.2194 × 10−1 (2.17 × 10−1) − 9.9179 × 10−1 (1.37 × 10−3)

DTLZ4

5 14 7.7993 × 10−1 (4.53 × 10−2) − 7.8450 × 10−1 (6.58 × 10−2) − 7.6365 × 10−1 (6.95 × 10−3) − 7.9756 × 10−1 (4.23 × 10−3) − 7.9869 × 10−1 (2.22 × 10−3) − 7.8782 × 10−1 (1.81 × 10−3) − 8.0448 × 10−1 (1.66 × 10−3) − 8.1079 × 10−1 (6.75 × 10−4)
10 19 9.6968 × 10−1 (4.71 × 10−4) − 9.7061 × 10−1 (2.27 × 10−3) − 9.2911 × 10−1 (6.90 × 10−3) − 6.9479 × 10−1 (2.81 × 10−1) − 9.5244 × 10−1 (2.28 × 10−3) − 9.7050 × 10−1 (2.76 × 10−3) − 9.6239 × 10−1 (8.93 × 10−4) − 9.7192 × 10−1 (2.17 × 10−4)
15 24 9.8589 × 10−1 (6.32 × 10−3) − 9.8759 × 10−1 (4.59 × 10−3) − 9.8853 × 10−1 (7.04 × 10−4) − 1.2436 × 10−1 (1.98 × 10−1) − 9.8169 × 10−1 (1.17 × 10−3) − 9.8978 × 10−1 (5.21 × 10−4) − 9.8758 × 10−1 (3.91 × 10−4) − 9.9367 × 10−1 (3.00 × 10−4)

DTLZ5

5 14 1.0344 × 10−1 (1.03 × 10−2) ≈ 9.7748 × 10−2 (1.25 × 10−4) − 5.6660 × 10−2 (2.61 × 10−2) − 4.0420 × 10−2 (3.69 × 10−2) − 9.6143 × 10−2 (4.44 × 10−3) − 4.9892 × 10−2 (2.86 × 10−2) − 1.0154 × 10−1 (4.95 × 10−3) − 1.0491 × 10−1 (4.70 × 10−3)
10 19 7.7316 × 10−2 (8.11 × 10−3) − 9.1297 × 10−2 (3.96 × 10−4) + 5.5381 × 10−2 (3.00 × 10−2) − 3.0640 × 10−2 (3.85 × 10−2) − 4.7509 × 10−2 (2.89 × 10−2) − 3.8559 × 10−2 (3.49 × 10−2) − 8.6196 × 10−2 (3.13 × 10−3) − 8.9374 × 10−2 (8.76 × 10−4)
15 24 7.5368 × 10−2 (8.11 × 10−3) − 9.0665 × 10−2 (2.94 × 10−4) + 6.5311 × 10−2 (2.56 × 10−2) − 4.7680 × 10−2 (4.09 × 10−2) − 2.9159 × 10−2 (2.97 × 10−2) − 1.0789 × 10−2 (2.56 × 10−2) − 8.8644 × 10−2 (1.95 × 10−3) ≈ 8.9241 × 10−2 (1.18 × 10−3)
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Table 2. Cont.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

DTLZ6

5 14 9.1198 × 10−2 (7.20 × 10−4) − 8.7792 × 10−2 (3.00 × 10−2) ≈ 2.4239 × 10−2 (3.00 × 10−2) − 2.8008 × 10−2 (3.94 × 10−2) − 9.2434 × 10−2 (1.83 × 10−3) − 8.3305 × 10−2 (2.43 × 10−2) − 9.7489 × 10−2 (6.38 × 10−3) ≈ 1.0093 × 10−1 (6.61 × 10−3)
10 19 4.5462 × 10−3 (2.03 × 10−2) − 8.7055 × 10−2 (2.05 × 10−2) − 9.4325 × 10−3 (2.79 × 10−2) − 9.0904 × 10−3 (2.80 × 10−2) − 0.0000 × 100 (0.00 × 100) − 6.8785 × 10−2 (3.34 × 10−2) − 8.9286 × 10−2 (7.10 × 10−3) ≈ 9.0887 × 10−2 (1.94 × 10−4)
15 24 6.4410 × 10−2 (3.89 × 10−2) − 9.1216 × 10−2 (1.50 × 10−4) + 3.5501 × 10−2 (4.37 × 10−2) − 1.6996 × 10−2 (3.52 × 10−2) − 0.0000 × 100 (0.00 × 100) − 8.3514 × 10−2 (1.21 × 10−2) − 9.0959 × 10−2 (2.43 × 10−4) ≈ 9.0971 × 10−2 (2.57 × 10−4)

DTLZ7

5 24 2.4029 × 10−1 (3.73 × 10−3) − 1.3352 × 10−1 (3.74 × 10−2) − 2.5958 × 10−1 (4.31 × 10−3) ≈ 2.2551 × 10−1 (1.10 × 10−2) − 2.3092 × 10−1 (4.96 × 10−3) − 2.5195 × 10−1 (2.68 × 10−3) − 2.5318 × 10−1 (3.91 × 10−3) − 2.6175 × 10−1 (2.61 × 10−3)
10 29 1.7112 × 10−1 (6.30 × 10−3) + 2.2534 × 10−3 (1.63 × 10−3) − 1.8778 × 10−1 (9.57 × 10−3) + 1.1505 × 10−1 (1.86 × 10−2) − 6.0844 × 10−2 (1.57 × 10−2) − 1.5507 × 10−1 (8.85 × 10−3) + 1.1874 × 10−1 (2.20 × 10−2) − 1.3533 × 10−1 (1.22 × 10−2)
15 34 6.5540 × 10−2 (1.87 × 10−2) − 5.7682 × 10−5 (1.02 × 10−4) − 1.4783 × 10−1 (7.86 × 10−3) + 5.4693 × 10−3 (8.87 × 10−3) − 2.5400 × 10−2 (1.98 × 10−2) − 6.6297 × 10−2 (1.95 × 10−2) − 9.4165 × 10−2 (2.81 × 10−2) − 1.1945 × 10−1 (1.29 × 10−2)

+/−/≈ 1/19/1 4/16/1 2/18/1 0/21/0 0/21/0 1/20/0 0/16/5

Table 3. IGD+ values obtained by GPDARVC and other comparison algorithms on 5-, 10-, and 15-objective MaF 1-10. The best result for each test instance is shown
with dark background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

MaF1

5 14 1.6606 × 10−1 (5.20 × 10−3) − 2.3569 × 10−1 (1.22 × 10−3) − 7.5183 × 10−2 (5.38 × 10−3) + 7.9743 × 10−2 (1.13 × 10−3) + 8.1819 × 10−2 (1.51 × 10−3) + 7.5788 × 10−2 (4.63 × 10−4) + 7.9782 × 10−2 (1.83 × 10−3) + 8.3015 × 10−2 (1.78 × 10−3)
10 19 2.2099 × 10−1 (5.30 × 10−3) − 2.8747 × 10−1 (3.60 × 10−3) − 1.6670 × 10−1 (3.45 × 10−3) − 1.6617 × 10−1 (3.32 × 10−3) ≈ 1.6531 × 10−1 (9.13 × 10−4) − 2.0729 × 10−1 (2.73 × 10−2) − 1.6563 × 10−1 (1.21 × 10−3) − 1.6473 × 10−1 (9.92 × 10−4)
15 24 2.6978 × 10−1 (5.98 × 10−3) − 3.3135 × 10−1 (8.48 × 10−3) − 2.1353 × 10−1 (6.58 × 10−3) − 2.1314 × 10−1 (6.21 × 10−3) − 2.0234 × 10−1 (2.03 × 10−3) − 3.3587 × 10−1 (3.98 × 10−2) − 1.9735 × 10−1 (1.55 × 10−3) ≈ 1.9732 × 10−1 (1.36 × 10−3)

MaF2

5 14 7.0936 × 10−2 (1.70 × 10−3) − 1.4727 × 10−1 (7.92 × 10−2) − 4.5175 × 10−2 (1.22 × 10−3) + 4.9204 × 10−2 (1.35 × 10−3) + 6.1556 × 10−2 (1.84 × 10−3) − 4.8672 × 10−2 (1.20 × 10−3) + 5.5021 × 10−2 (9.87 × 10−4) − 5.1897 × 10−2 (5.97 × 10−4)
10 19 1.3271 × 10−1 (1.17 × 10−2) − 2.1721 × 10−1 (2.01 × 10−2) − 1.4806 × 10−1 (1.43 × 10−2) − 1.0021 × 10−1 (2.57 × 10−3) + 1.1581 × 10−1 (4.41 × 10−3) ≈ 9.8642 × 10−2 (2.21 × 10−3) + 1.1747 × 10−1 (4.81 × 10−3) ≈ 1.1473 × 10−1 (5.72 × 10−3)
15 24 1.4794 × 10−1 (1.32 × 10−2) − 2.5160 × 10−1 (8.31 × 10−3) − 1.6271 × 10−1 (9.17 × 10−3) − 1.0379 × 10−1 (2.19 × 10−3) + 1.2695 × 10−1 (6.55 × 10−3) + 1.1942 × 10−1 (4.77 × 10−3) + 1.3660 × 10−1 (8.25 × 10−3) ≈ 1.3594 × 10−1 (8.00 × 10−3)

MaF3

5 14 5.6303 × 10−2 (1.88 × 10−2) − 9.4828 × 100 (1.55 × 101) − 4.2387 × 100 (7.46 × 100) − 4.9867 × 100 (6.61 × 100) − 4.3086 × 10−2 (1.29 × 10−2) − 1.0050 × 100 (4.06 × 100) − 3.7722 × 10−2 (1.24 × 10−2) − 2.5824 × 10−2 (1.93 × 10−3)
10 19 1.7344 × 102 (2.53 × 102) − 2.9170 × 102 (1.30 × 103) − 1.2394 × 102 (3.30 × 102) − 1.7889 × 106 (1.20 × 106) − 9.4391 × 104 (1.02 × 105) − 2.8265 × 10−2 (5.13 × 10−3) − 2.8817 × 10−2 (4.44 × 10−3) − 2.2447 × 10−2 (3.56 × 10−18)
15 24 9.8689 × 101 (2.04 × 102) − 8.9986 × 10−1 (9.92 × 10−1) − 2.7306 × 102 (3.16 × 102) − 5.5053 × 105 (5.42 × 105) − 1.0747 × 106 (1.86 × 106) − 1.8247 × 10−2 (9.23 × 10−3) ≈ 1.8025 × 10−2 (1.23 × 10−3) ≈ 1.8913 × 10−2 (1.62 × 10−3)

MaF4

5 14 1.4303 × 100 (4.48 × 10−1) − 8.1059 × 100 (5.98 × 100) − 2.0018 × 100 (2.50 × 100) − 1.2915 × 100 (2.00 × 100) − 7.5510 × 10−1 (6.43 × 10−2) − 2.5136 × 100 (3.53 × 100) − 6.1668 × 10−1 (3.32 × 10−2) ≈ 5.9851 × 10−1 (3.03 × 10−2)
10 19 5.3163 × 101 (9.76 × 100) − 1.2294 × 102 (1.48 × 102) − 2.6666 × 101 (1.05 × 101) − 7.5703 × 101 (1.59 × 102) − 1.9120 × 101 (2.97 × 100) − 1.0889 × 101 (1.67 × 100) − 9.0576 × 100 (4.20 × 10−1) + 9.4958 × 100 (1.82 × 10−15)
15 24 1.8827 × 103 (3.88 × 102) − 1.4482 × 103 (8.58 × 102) − 8.0599 × 102 (4.86 × 102) − 2.1618 × 104 (4.35 × 104) − 6.7287 × 102 (1.03 × 102) − 3.2945 × 102 (7.85 × 101) − 1.7705 × 102 (8.70 × 100) ≈ 1.7923 × 102 (1.04 × 101)

MaF5

5 14 4.5204 × 10−1 (1.94 × 10−1) + 6.0440 × 10−1 (1.07 × 10−1) − 5.2332 × 10−1 (2.83 × 10−2) − 4.0849 × 10−1 (1.78 × 10−2) + 4.1832 × 10−1 (9.69 × 10−3) + 4.1927 × 10−1 (5.88 × 10−3) + 4.2646 × 10−1 (1.49 × 10−2) + 4.5367 × 10−1 (3.03 × 10−2)
10 19 1.0751 × 100 (2.69 × 10−2) + 2.0641 × 101 (8.65 × 101) ≈ 1.7260 × 100 (4.22 × 10−1) − 2.3732 × 100 (7.81 × 10−1) − 1.3226 × 100 (2.82 × 10−2) − 2.0394 × 100 (6.50 × 10−1) − 1.2289 × 100 (8.87 × 10−3) − 1.2149 × 100 (2.28 × 10−16)
15 24 1.3994 × 100 (2.82 × 10−2) + 1.5208 × 100 (5.31 × 10−2) ≈ 1.5103 × 100 (3.08 × 10−2) ≈ 2.8187 × 100 (8.29 × 10−1) − 1.6232 × 100 (9.39 × 10−3) − 2.7160 × 100 (8.62 × 10−1) − 1.4946 × 100 (7.76 × 10−3) ≈ 1.4939 × 100 (1.17 × 10−2)

MaF6

5 14 2.2371 × 10−2 (3.09 × 10−3) − 3.1356 × 10−1 (1.21 × 10−1) − 8.7643 × 10−4 (1.94 × 10−5) + 1.1064 × 10−3 (4.61 × 10−4) + 2.7616 × 10−3 (6.61 × 10−4) − 9.0313 × 10−4 (1.67 × 10−5) + 1.1450 × 10−3 (7.02 × 10−5) ≈ 1.1069 × 10−3 (5.97 × 10−5)
10 19 4.7019 × 10−1 (1.87 × 10−1) − 2.8899 × 10−1 (1.38 × 10−1) − 1.5260 × 100 (7.86 × 10−1) − 8.7070 × 10−1 (5.09 × 10−1) − 1.0535 × 10−1 (1.18 × 10−1) ≈ 6.6778 × 10−4 (1.06 × 10−5) + 8.5688 × 10−2 (1.06 × 10−1) ≈ 1.3317 × 10−1 (3.24 × 10−2)
15 24 6.0390 × 10−1 (4.03 × 10−1) − 3.2384 × 10−1 (1.12 × 10−1) − 2.9242 × 100 (5.37 × 100) − 8.1644 × 10−1 (2.68 × 10−1) − 3.1620 × 10−1 (1.70 × 10−1) − 8.7765 × 10−2 (1.80 × 10−1) − 1.7838 × 10−1 (9.80 × 10−2) − 8.2901 × 10−2 (4.18 × 10−2)

MaF7

5 24 1.7114 × 10−1 (6.57 × 10−3) − 3.5034 × 10−1 (6.11 × 10−2) − 1.5084 × 10−1 (3.11 × 10−2) − 7.1766 × 10−1 (4.16 × 10−1) − 2.2878 × 10−1 (2.46 × 10−1) − 1.7890 × 10−1 (2.08 × 10−3) − 1.4972 × 10−1 (3.28 × 10−2) − 1.3091 × 10−1 (3.40 × 10−3)
10 29 7.6578 × 10−1 (8.08 × 10−2) − 9.4335 × 10−1 (5.43 × 10−2) − 7.1346 × 10−1 (1.06 × 10−1) ≈ 3.1147 × 100 (4.29 × 10−1) − 1.0215 × 100 (5.72 × 10−2) − 7.0206 × 10−1 (1.09 × 10−2) ≈ 7.2159 × 10−1 (1.30 × 10−2) − 6.7698 × 10−1 (2.28 × 10−16)
15 34 3.8166 × 100 (4.97 × 10−1) − 1.4071 × 100 (3.05 × 10−2) + 6.1926 × 100 (1.23 × 100) − 3.9574 × 100 (1.94 × 100) − 4.6812 × 100 (1.16 × 100) − 1.0804 × 100 (4.88 × 10−2) + 1.3687 × 100 (4.51 × 10−2) + 1.6345 × 100 (2.05 × 10−1)

MaF8

5 2 1.1688 × 10−1 (8.20 × 10−3) − 4.7808 × 10−1 (1.24 × 10−1) − 6.9349 × 10−2 (1.32 × 10−2) − 5.2867 × 10−2 (1.18 × 10−2) ≈ 4.9541 × 10−2 (1.15 × 10−3) − 4.6795 × 10−2 (2.49 × 10−3) ≈ 4.6910 × 10−2 (7.83 × 10−4) ≈ 4.6730 × 10−2 (6.46 × 10−4)
10 2 1.8739 × 10−1 (2.32 × 10−2) − 7.5160 × 10−1 (9.32 × 10−2) − 7.9392 × 10−2 (1.43 × 10−2) − 5.9367 × 10−2 (2.97 × 10−3) + 5.9573 × 10−2 (5.65 × 10−4) + 5.9981 × 10−2 (3.12 × 10−4) + 6.2770 × 10−2 (8.61 × 10−4) ≈ 6.2620 × 10−2 (0.00 × 100)
15 2 2.0426 × 10−1 (3.44 × 10−2) − 1.0367 × 100 (1.21 × 10−1) − 1.0852 × 10−1 (1.48 × 10−2) − 1.6307 × 10−1 (1.16 × 10−1) − 1.2445 × 10−1 (2.08 × 10−3) − 8.0664 × 10−2 (6.19 × 10−4) + 9.7711 × 10−2 (3.59 × 10−3) − 9.3734 × 10−2 (3.91 × 10−3)

MaF9

5 2 4.0719 × 10−1 (1.34 × 10−1) − 1.0726 × 100 (1.52 × 100) − 2.0417 × 10−1 (9.78 × 10−2) − 2.0377 × 10−1 (4.43 × 10−2) − 5.3614 × 10−2 (7.26 × 10−4) − 5.2639 × 10−2 (2.06 × 10−3) ≈ 5.1864 × 10−2 (4.82 × 10−4) + 5.2483 × 10−2 (6.17 × 10−4)
10 2 3.5583 × 10−1 (5.34 × 10−2) − 9.9237 × 10−1 (7.95 × 10−1) − 3.7940 × 10−1 (1.28 × 10−1) − 7.4453 × 10−1 (1.38 × 10−1) − 9.0437 × 10−2 (4.11 × 10−3) − 1.4580 × 10−1 (4.37 × 10−2) − 7.2169 × 10−2 (3.68 × 10−4) ≈ 7.2283 × 10−2 (4.99 × 10−4)
15 2 8.2976 × 10−1 (2.55 × 100) − 4.4101 × 100 (5.08 × 100) − 2.5146 × 10−1 (6.24 × 10−2) − 5.3184 × 10−1 (2.69 × 10−1) − 6.6236 × 10−1 (2.56 × 100) ≈ 9.3655 × 10−2 (1.34 × 10−3) − 9.0100 × 10−2 (4.79 × 10−4) ≈ 9.0164 × 10−2 (5.73 × 10−4)

MaF10

5 14 1.6834 × 10−1 (7.92 × 10−3) − 5.5384 × 10−1 (1.67 × 10−1) − 2.9452 × 10−1 (5.29 × 10−2) − 3.6327 × 10−1 (5.15 × 10−2) − 1.6536 × 10−1 (2.37 × 10−2) − 3.8897 × 10−1 (8.26 × 10−2) − 1.2150 × 10−1 (1.30 × 10−2) − 1.0616 × 10−1 (1.75 × 10−3)
10 19 2.8409 × 10−1 (6.00 × 10−2) − 6.4970 × 100 (4.06 × 100) − 4.2634 × 10−1 (1.01 × 10−1) − 3.5981 × 10−1 (7.23 × 10−2) − 4.1446 × 10−1 (6.29 × 10−2) − 4.9240 × 10−1 (9.84 × 10−2) − 2.2751 × 10−1 (7.09 × 10−2) − 1.7741 × 10−1 (7.35 × 10−3)
15 24 3.5555 × 10−1 (4.40 × 10−2) − 4.9849 × 100 (3.49 × 100) − 5.8477 × 10−1 (1.16 × 10−1) − 3.8232 × 10−1 (9.02 × 10−2) − 4.9702 × 10−1 (1.05 × 10−1) − 4.7740 × 10−1 (8.53 × 10−2) − 2.7024 × 10−1 (6.48 × 10−2) − 2.0657 × 10−1 (1.59 × 10−2)

+/−/≈ 3/27/0 1/27/2 3/25/2 7/21/2 4/23/3 10/16/4 5/12/13
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Table 4. HV values obtained by GPDARVC and other comparison algorithms on 5-, 10-, and 15-objective MaF 1-10. The best result for each test instance is shown
with dark background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

MaF1

5 14 4.6121 × 10−3 (2.62 × 10−4) − 3.8590 × 10−3 (5.59 × 10−5) − 1.2639 × 10−2 (5.83 × 10−4) + 1.1759 × 10−2 (1.79 × 10−4) + 1.1479 × 10−2 (2.76 × 10−4) + 1.2406 × 10−2 (1.32 × 10−4) + 1.1759 × 10−2 (2.58 × 10−4) + 1.1310 × 10−2 (2.42 × 10−4)
10 19 4.6405 × 10−7 (2.30 × 10−8) ≈ 1.6880 × 10−7 (1.45 × 10−8) ≈ 5.4529 × 10−7 (3.20 × 10−7) ≈ 3.6437 × 10−7 (4.81 × 10−7) ≈ 4.9805 × 10−7 (6.87 × 10−7) ≈ 3.7271 × 10−7 (1.76 × 10−7) ≈ 3.9699 × 10−7 (7.47 × 10−7) ≈ 5.3666 × 10−7 (8.60 × 10−7)
15 24 5.5603 × 10−12 (7.49 × 10−13) + 1.3253 × 10−12 (4.46 × 10−13) + 7.2340 × 10−12 (3.24 × 10−11) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 6.6561 × 10−14 (1.77 × 10−13) + 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100)

MaF2

5 14 1.7072 × 10−1 (3.45 × 10−3) − 1.1656 × 10−1 (4.02 × 10−2) − 1.8755 × 10−1 (3.87 × 10−3) − 1.8917 × 10−1 (3.82 × 10−3) − 1.8086 × 10−1 (3.93 × 10−3) − 2.0240 × 10−1 (1.09 × 10−3) + 1.8752 × 10−1 (2.21 × 10−3) − 1.9223 × 10−1 (2.51 × 10−3)
10 19 2.2275 × 10−1 (5.87 × 10−3) + 1.7563 × 10−1 (4.31 × 10−3) − 1.9355 × 10−1 (6.66 × 10−3) − 1.7354 × 10−1 (9.24 × 10−3) − 2.0830 × 10−1 (5.63 × 10−3) − 2.2038 × 10−1 (2.17 × 10−3) ≈ 2.0829 × 10−1 (3.53 × 10−3) − 2.2006 × 10−1 (3.13 × 10−3)
15 24 1.8107 × 10−1 (7.09 × 10−3) − 1.4632 × 10−1 (1.16 × 10−2) − 1.7262 × 10−1 (1.24 × 10−2) − 1.2074 × 10−1 (1.72 × 10−2) − 1.7189 × 10−1 (4.30 × 10−3) − 2.1004 × 10−1 (3.40 × 10−3) − 1.8708 × 10−1 (4.78 × 10−3) − 2.1259 × 10−1 (2.18 × 10−3)

MaF3

5 14 9.9755 × 10−1 (2.26 × 10−3) ≈ 8.7352 × 10−2 (2.22 × 10−1) − 3.9200 × 10−1 (4.68 × 10−1) − 3.3797 × 10−1 (4.66 × 10−1) − 9.9681 × 10−1 (2.65 × 10−3) ≈ 8.9967 × 10−1 (2.74 × 10−1) ≈ 9.9661 × 10−1 (2.73 × 10−3) ≈ 9.9758 × 10−1 (7.20 × 10−4)
10 19 2.1740 × 10−1 (3.63 × 10−1) − 2.4378 × 10−1 (3.77 × 10−1) − 8.8125 × 10−2 (2.74 × 10−1) − 0.0000 × 100 (0.00 × 100) − 0.0000 × 100 (0.00 × 100) − 9.9903 × 10−1 (1.33 × 10−4) − 9.9902 × 10−1 (7.40 × 10−4) − 9.9962 × 10−1 (1.43 × 10−5)
15 24 2.2981 × 10−1 (3.91 × 10−1) − 4.5466 × 10−1 (3.70 × 10−1) − 8.9254 × 10−2 (2.75 × 10−1) − 0.0000 × 100 (0.00 × 100) − 0.0000 × 100 (0.00 × 100) − 9.9969 × 10−1 (1.73 × 10−4) − 9.9959 × 10−1 (3.20 × 10−4) − 9.9994 × 10−1 (6.73 × 10−5)

MaF4

5 14 6.5321 × 10−2 (1.38 × 10−2) − 4.8524 × 10−3 (1.04 × 10−2) − 7.9295 × 10−2 (3.59 × 10−2) − 8.5734 × 10−2 (2.41 × 10−2) − 1.0895 × 10−1 (5.42 × 10−3) − 7.7391 × 10−2 (4.09 × 10−2) − 1.1445 × 10−1 (3.81 × 10−3) − 1.1694 × 10−1 (2.68 × 10−3)
10 19 2.5763 × 10−4 (1.37 × 10−5) + 2.0149 × 10−7 (3.88 × 10−7) − 2.3250 × 10−4 (7.69 × 10−5) + 4.5033 × 10−5 (6.23 × 10−5) − 4.9607 × 10−5 (1.31 × 10−5) ≈ 2.7757 × 10−4 (5.74 × 10−5) + 5.9247 × 10−5 (1.40 × 10−5) ≈ 5.4507 × 10−5 (3.97 × 10−6)
15 24 2.0310 × 10−7 (1.74 × 10−8) + 8.1605 × 10−13 (2.18 × 10−12) − 5.6619 × 10−8 (4.06 × 10−8) + 1.1446 × 10−16 (3.57 × 10−16) ≈ 1.0256 × 10−9 (4.59 × 10−9) ≈ 1.4041 × 10−7 (7.65 × 10−8) + 2.9827 × 10−9 (1.33 × 10−8) ≈ 9.3125 × 10−9 (2.30 × 10−8)

MaF5

5 14 7.8035 × 10−1 (4.54 × 10−2) + 6.0920 × 10−1 (5.02 × 10−2) − 7.6565 × 10−1 (5.20 × 10−3) ≈ 7.9639 × 10−1 (5.35 × 10−3) + 7.9666 × 10−1 (2.83 × 10−3) + 8.0214 × 10−1 (1.15 × 10−3) + 7.7892 × 10−1 (5.41 × 10−3) + 7.6540 × 10−1 (1.19 × 10−2)
10 19 9.6884 × 10−1 (8.73 × 10−4) + 5.8180 × 10−1 (1.15 × 10−1) − 9.3248 × 10−1 (6.51 × 10−3) + 4.5637 × 10−1 (3.35 × 10−1) − 9.5282 × 10−1 (2.27 × 10−3) + 9.4684 × 10−1 (4.90 × 10−3) + 8.3378 × 10−1 (4.24 × 10−3) − 8.3647 × 10−1 (3.10 × 10−4)
15 24 9.9033 × 10−1 (6.81 × 10−4) + 4.9608 × 10−1 (8.16 × 10−2) − 9.8814 × 10−1 (1.06 × 10−3) + 8.8308 × 10−2 (1.04 × 10−1) − 9.8172 × 10−1 (1.38 × 10−3) + 9.7544 × 10−1 (3.33 × 10−3) + 8.7956 × 10−1 (2.56 × 10−3) ≈ 8.7930 × 10−1 (3.59 × 10−3)

MaF6

5 14 1.2294 × 10−1 (1.46 × 10−3) − 5.3971 × 10−2 (5.00 × 10−2) − 1.3002 × 10−1 (3.45 × 10−4) + 1.3000 × 10−1 (4.03 × 10−4) + 1.2983 × 10−1 (4.10 × 10−4) ≈ 1.2989 × 10−1 (4.02 × 10−4) ≈ 1.2964 × 10−1 (3.31 × 10−4) ≈ 1.2973 × 10−1 (4.61 × 10−4)
10 19 1.5878 × 10−3 (7.10 × 10−3) − 7.2840 × 10−2 (3.74 × 10−2) + 0.0000 × 100 (0.00 × 100) − 1.5109 × 10−2 (3.69 × 10−2) − 6.2238 × 10−2 (4.16 × 10−2) ≈ 1.0088 × 10−1 (3.48 × 10−4) + 6.8132 × 10−2 (4.00 × 10−2) + 4.5524 × 10−2 (2.62 × 10−2)
15 24 3.7735 × 10−4 (1.69 × 10−3) − 6.7843 × 10−2 (4.02 × 10−2) ≈ 0.0000 × 100 (0.00 × 100) − 0.0000 × 100 (0.00 × 100) − 1.0869 × 10−2 (2.05 × 10−2) − 7.6645 × 10−2 (3.86 × 10−2) + 2.5879 × 10−2 (2.34 × 10−2) − 7.4059 × 10−2 (2.31 × 10−2)

MaF7

5 24 2.4135 × 10−1 (4.02 × 10−3) − 1.3913 × 10−1 (3.18 × 10−2) − 2.5850 × 10−1 (5.25 × 10−3) ≈ 2.2738 × 10−1 (1.27 × 10−2) − 2.3110 × 10−1 (6.25 × 10−3) − 2.4795 × 10−1 (1.51 × 10−3) − 2.5444 × 10−1 (3.21 × 10−3) − 2.6077 × 10−1 (2.75 × 10−3)
10 29 1.6975 × 10−1 (4.03 × 10−3) + 1.0346 × 10−2 (5.32 × 10−3) − 1.8894 × 10−1 (1.31 × 10−2) + 1.1863 × 10−1 (1.97 × 10−2) − 6.4935 × 10−2 (1.94 × 10−2) − 1.2174 × 10−1 (8.44 × 10−3) − 1.1235 × 10−1 (2.10 × 10−2) − 1.5393 × 10−1 (3.05 × 10−4)
15 34 6.9636 × 10−2 (1.52 × 10−2) − 2.4443 × 10−4 (5.55 × 10−4) − 1.4706 × 10−1 (7.54 × 10−3) + 3.3819 × 10−3 (4.85 × 10−3) − 4.3577 × 10−2 (3.11 × 10−2) − 6.7486 × 10−2 (1.33 × 10−2) − 8.6084 × 10−2 (2.96 × 10−2) − 1.1863 × 10−1 (2.22 × 10−2)

MaF8

5 2 1.0443 × 10−1 (2.13 × 10−3) − 4.8073 × 10−2 (1.47 × 10−2) − 1.1934 × 10−1 (3.72 × 10−3) − 1.2380 × 10−1 (2.55 × 10−3) − 1.2531 × 10−1 (3.18 × 10−4) − 1.2522 × 10−1 (8.78 × 10−4) − 1.2584 × 10−1 (3.65 × 10−4) ≈ 1.2592 × 10−1 (4.35 × 10−4)
10 2 9.2756 × 10−3 (1.86 × 10−4) − 2.7814 × 10−3 (7.32 × 10−4) − 1.0409 × 10−2 (3.56 × 10−4) − 1.0992 × 10−2 (1.07 × 10−4) ≈ 1.1062 × 10−2 (9.13 × 10−5) ≈ 1.0665 × 10−2 (1.27 × 10−4) − 1.1005 × 10−2 (8.95 × 10−5) ≈ 1.1005 × 10−2 (1.15 × 10−4)
15 2 5.1133 × 10−4 (2.33 × 10−5) − 9.6382 × 10−5 (4.48 × 10−5) − 5.7226 × 10−4 (2.98 × 10−5) − 6.0939 × 10−4 (5.90 × 10−5) − 6.6263 × 10−4 (7.65 × 10−6) + 5.8681 × 10−4 (2.64 × 10−5) − 6.4957 × 10−4 (1.89 × 10−5) ≈ 6.5171 × 10−4 (1.13 × 10−5)

MaF9

5 2 1.5920 × 10−1 (4.41 × 10−2) − 9.8072 × 10−2 (5.14 × 10−2) − 2.4131 × 10−1 (4.13 × 10−2) − 2.2129 × 10−1 (2.74 × 10−2) − 3.2379 × 10−1 (8.96 × 10−4) ≈ 3.2550 × 10−1 (1.43 × 10−3) + 3.2532 × 10−1 (7.10 × 10−4) + 3.2427 × 10−1 (1.01 × 10−3)
10 2 8.9235 × 10−3 (1.42 × 10−3) − 4.5008 × 10−3 (2.11 × 10−3) − 9.0017 × 10−3 (2.06 × 10−3) − 4.3945 × 10−3 (1.24 × 10−3) − 1.7446 × 10−2 (2.93 × 10−4) − 1.5473 × 10−2 (1.47 × 10−3) − 1.8576 × 10−2 (1.20 × 10−4) ≈ 1.8572 × 10−2 (1.21 × 10−4)
15 2 8.3268 × 10−4 (2.12 × 10−4) − 1.1835 × 10−4 (1.57 × 10−4) − 8.3976 × 10−4 (1.67 × 10−4) − 7.8030 × 10−4 (2.67 × 10−4) − 1.2383 × 10−3 (2.94 × 10−4) ≈ 1.2736 × 10−3 (4.44 × 10−5) − 1.2938 × 10−3 (4.12 × 10−5) ≈ 1.3010 × 10−3 (4.09 × 10−5)

MaF10

5 14 9.9739 × 10−1 (3.30 × 10−4) + 7.9512 × 10−1 (7.07 × 10−2) − 9.1315 × 10−1 (2.72 × 10−2) − 9.1388 × 10−1 (3.33 × 10−2) − 9.8879 × 10−1 (1.71 × 10−2) ≈ 8.6430 × 10−1 (4.35 × 10−2) − 9.9565 × 10−1 (2.68 × 10−3) ≈ 9.9591 × 10−1 (5.39 × 10−4)
10 19 9.9791 × 10−1 (2.29 × 10−3) ≈ 6.1410 × 10−1 (2.47 × 10−1) − 9.7668 × 10−1 (4.61 × 10−2) − 9.9917 × 10−1 (8.22 × 10−4) + 9.9636 × 10−1 (1.06 × 10−2) ≈ 9.6461 × 10−1 (4.01 × 10−2) − 9.9835 × 10−1 (7.74 × 10−4) ≈ 9.9818 × 10−1 (8.12 × 10−4)
15 24 9.9938 × 10−1 (2.49 × 10−4) + 8.6770 × 10−1 (1.05 × 10−1) − 9.7960 × 10−1 (3.58 × 10−2) − 9.9968 × 10−1 (1.66 × 10−4) + 9.9900 × 10−1 (5.05 × 10−4) + 9.9777 × 10−1 (6.09 × 10−4) − 9.9839 × 10−1 (4.74 × 10−4) ≈ 9.9846 × 10−1 (6.07 × 10−4)

+/−/≈ 10/17/3 2/26/2 8/18/4 5/21/4 6/12/12 11/15/4 4/11/15
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Table 5. IGD+ values obtained by GPDARVC and other comparison algorithms on 5-, 10-, and 15-objective WFG 1-9. The best result for each test instance is shown
with dark background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

WFG1

5 14 1.6879 × 10−1 (1.04 × 10−2) − 8.4047 × 10−1 (7.93 × 10−1) − 2.7932 × 10−1 (5.14 × 10−2) − 3.4056 × 10−1 (5.90 × 10−2) − 1.7181 × 10−1 (3.53 × 10−2) − 3.9556 × 10−1 (7.17 × 10−2) − 1.2037 × 10−1 (1.68 × 10−2) − 1.0612 × 10−1 (1.51 × 10−3)
10 19 2.7284 × 10−1 (3.52 × 10−2) − 4.3105 × 100 (3.58 × 100) − 4.2434 × 10−1 (8.32 × 10−2) − 3.5470 × 10−1 (7.15 × 10−2) − 3.9092 × 10−1 (6.16 × 10−2) − 4.3791 × 10−1 (5.09 × 10−2) − 2.3283 × 10−1 (6.33 × 10−2) − 1.8100 × 10−1 (5.32 × 10−3)
15 24 3.7314 × 10−1 (5.29 × 10−2) − 6.8503 × 100 (3.59 × 100) − 5.4497 × 10−1 (8.73 × 10−2) − 4.1353 × 10−1 (9.65 × 10−2) − 4.8966 × 10−1 (8.79 × 10−2) − 4.8920 × 10−1 (1.24 × 10−1) − 2.6991 × 10−1 (6.09 × 10−2) − 2.2207 × 10−1 (2.85 × 10−2)

WFG2

5 14 1.7096 × 10−1 (5.95 × 10−3) − 4.0120 × 10−1 (1.60 × 10−1) − 1.4609 × 10−1 (1.20 × 10−2) − 2.3480 × 10−1 (1.77 × 10−2) − 1.6718 × 10−1 (1.33 × 10−2) − 1.2269 × 10−1 (4.17 × 10−3) − 1.1988 × 10−1 (4.92 × 10−3) − 1.0821 × 10−1 (3.25 × 10−3)
10 19 2.7613 × 10−1 (3.52 × 10−2) − 8.7626 × 10−1 (2.54 × 10−1) − 3.1333 × 10−1 (5.85 × 10−2) − 6.4335 × 10−1 (1.00 × 10−1) − 3.0931 × 10−1 (1.89 × 10−2) − 2.5557 × 10−1 (1.54 × 10−2) − 2.4792 × 10−1 (1.31 × 10−2) − 1.8291 × 10−1 (1.39 × 10−2)
15 24 4.6028 × 10−1 (7.80 × 10−2) − 5.3890 × 10−1 (4.74 × 10−1) − 9.8919 × 10−1 (2.92 × 10−1) − 8.0519 × 10−1 (1.72 × 10−1) − 4.0059 × 10−1 (4.11 × 10−2) − 3.8666 × 10−1 (7.76 × 10−2) − 2.6561 × 10−1 (1.34 × 10−2) − 2.3494 × 10−1 (3.23 × 10−2)

WFG3

5 14 4.7816 × 10−1 (7.93 × 10−2) ≈ 3.0563 × 100 (2.44 × 100) ≈ 4.2345 × 10−1 (1.32 × 10−1) + 3.8317 × 10−1 (5.46 × 10−2) + 6.5899 × 10−1 (1.41 × 10−1) − 2.3907 × 10−1 (2.25 × 10−2) + 6.0440 × 10−1 (1.31 × 10−1) − 4.6603 × 10−1 (5.86 × 10−2)
10 19 1.1414 × 100 (2.82 × 10−1) + 2.6230 × 100 (3.19 × 100) ≈ 9.0995 × 10−1 (2.16 × 10−1) + 1.7089 × 100 (4.31 × 10−1) − 2.1616 × 100 (2.72 × 10−1) − 6.7516 × 10−1 (1.04 × 10−1) + 2.0015 × 100 (2.42 × 10−1) − 1.3803 × 100 (1.44 × 10−1)
15 24 8.8343 × 10−1 (4.40 × 10−1) + 5.8458 × 100 (4.73 × 100) − 1.3142 × 100 (4.11 × 10−1) + 2.7530 × 100 (5.88 × 10−1) − 2.8995 × 100 (3.69 × 10−1) − 1.1996 × 100 (1.55 × 10−1) + 2.6914 × 100 (4.05 × 10−1) − 2.1122 × 100 (2.98 × 10−1)

WFG4

5 14 3.4865 × 10−1 (6.25 × 10−3) − 1.9450 × 100 (1.82 × 100) − 4.3914 × 10−1 (1.37 × 10−2) − 3.3610 × 10−1 (4.05 × 10−3) − 4.2041 × 10−1 (1.36 × 10−2) − 3.6107 × 10−1 (5.60 × 10−3) − 3.7270 × 10−1 (8.00 × 10−3) − 3.2184 × 10−1 (6.14 × 10−3)
10 19 1.2076 × 100 (2.07 × 10−1) − 1.5911 × 100 (7.62 × 10−3) − 1.6910 × 100 (1.94 × 10−1) − 1.0553 × 100 (1.51 × 10−2) − 1.4249 × 100 (4.86 × 10−2) − 1.2323 × 100 (1.85 × 10−2) − 9.7903 × 10−1 (1.57 × 10−2) − 9.6320 × 10−1 (2.24 × 10−2)
15 24 2.1382 × 100 (5.64 × 10−1) − 7.9585 × 100 (7.55 × 100) − 4.3857 × 100 (6.79 × 10−1) − 1.5059 × 100 (1.85 × 10−1) − 2.1251 × 100 (1.42 × 10−1) − 1.6988 × 100 (1.33 × 10−1) − 1.4436 × 100 (3.42 × 10−2) − 1.3992 × 100 (4.20 × 10−2)

WFG5

5 14 4.0436 × 10−1 (5.52 × 10−3) − 5.7518 × 10−1 (7.70 × 10−2) − 4.9843 × 10−1 (1.40 × 10−2) − 3.9344 × 10−1 (3.90 × 10−3) − 4.7974 × 10−1 (7.81 × 10−3) − 4.0874 × 10−1 (3.66 × 10−3) − 4.4547 × 10−1 (6.82 × 10−3) − 3.6670 × 10−1 (5.91 × 10−3)
10 19 1.2411 × 100 (1.84 × 10−2) − 6.1110 × 100 (7.10 × 100) ≈ 1.9677 × 100 (4.08 × 10−1) − 1.1390 × 100 (1.53 × 10−2) − 1.6906 × 100 (6.26 × 10−2) − 1.3560 × 100 (6.68 × 10−2) − 1.2222 × 100 (4.16 × 10−2) − 1.0257 × 100 (1.58 × 10−2)
15 24 2.0035 × 100 (5.31 × 10−1) − 1.9696 × 101 (9.54 × 100) − 4.8177 × 100 (1.46 × 100) − 1.5583 × 100 (2.10 × 10−2) − 2.8805 × 100 (2.43 × 10−1) − 1.9200 × 100 (2.25 × 10−1) − 1.8096 × 100 (7.35 × 10−2) − 1.4755 × 100 (2.33 × 10−2)

WFG6

5 14 4.4307 × 10−1 (1.69 × 10−2) − 1.4079 × 100 (9.69 × 10−1) − 5.4214 × 10−1 (3.37 × 10−2) − 4.1629 × 10−1 (1.42 × 10−2) − 5.5529 × 10−1 (3.56 × 10−2) − 4.4503 × 10−1 (2.58 × 10−2) − 4.9629 × 10−1 (2.58 × 10−2) − 4.0251 × 10−1 (2.25 × 10−2)
10 19 1.2027 × 100 (4.56 × 10−2) − 5.6966 × 100 (4.84 × 100) − 2.0388 × 100 (8.15 × 10−1) − 1.1168 × 100 (2.50 × 10−2) − 1.7499 × 100 (9.49 × 10−2) − 1.3074 × 100 (5.77 × 10−2) − 1.1484 × 100 (5.35 × 10−2) − 1.0760 × 100 (3.40 × 10−2)
15 24 1.5688 × 100 (1.02 × 10−1) − 8.7736 × 100 (9.46 × 100) ≈ 3.7892 × 100 (2.28 × 100) − 1.5028 × 100 (2.64 × 10−2) − 2.5564 × 100 (2.42 × 10−1) − 1.9234 × 100 (2.86 × 10−1) − 1.5690 × 100 (1.11 × 10−1) − 1.4595 × 100 (2.50 × 10−2)

WFG7

5 14 3.5370 × 10−1 (7.85 × 10−3) − 1.0023 × 100 (9.38 × 10−1) − 4.4150 × 10−1 (2.04 × 10−2) − 3.2445 × 10−1 (3.17 × 10−3) − 3.8391 × 10−1 (7.99 × 10−3) − 3.4186 × 10−1 (4.06 × 10−3) − 3.4372 × 10−1 (6.61 × 10−3) − 3.1604 × 10−1 (5.65 × 10−3)
10 19 1.2405 × 100 (1.83 × 10−1) − 2.0352 × 100 (2.06 × 100) − 2.6192 × 100 (7.96 × 10−1) − 1.0307 × 100 (1.52 × 10−2) − 1.2931 × 100 (4.82 × 10−2) − 1.2469 × 100 (7.02 × 10−2) − 9.6213 × 10−1 (1.46 × 10−2) ≈ 9.6175 × 10−1 (1.99 × 10−2)
15 24 2.6539 × 100 (3.19 × 10−1) − 1.4996 × 101 (6.78 × 100) − 7.2836 × 100 (1.22 × 100) − 1.6876 × 100 (3.15 × 10−1) − 1.8703 × 100 (1.92 × 10−1) − 1.9153 × 100 (2.48 × 10−1) − 1.3936 × 100 (2.58 × 10−2) − 1.3687 × 100 (3.25 × 10−2)

WFG8

5 14 7.0606 × 10−1 (1.94 × 10−2) − 1.6805 × 100 (4.10 × 10−1) − 8.1117 × 10−1 (4.86 × 10−2) − 6.1329 × 10−1 (7.03 × 10−3) − 7.5665 × 10−1 (1.82 × 10−2) − 6.3778 × 10−1 (9.83 × 10−3) − 7.0094 × 10−1 (1.09 × 10−2) − 6.0005 × 10−1 (3.45 × 10−3)
10 19 2.9083 × 100 (3.54 × 10−1) − 8.3831 × 100 (1.89 × 100) − 4.4566 × 100 (3.02 × 10−1) − 2.3124 × 100 (1.04 × 10−1) − 2.9543 × 100 (9.12 × 10−2) − 1.7865 × 100 (2.62 × 10−1) − 2.2224 × 100 (4.60 × 10−1) − 1.4763 × 100 (2.26 × 10−1)
15 24 5.2552 × 100 (1.03 × 100) ≈ 1.7779 × 101 (3.46 × 100) − 9.8270 × 100 (6.85 × 10−1) − 4.1964 × 100 (5.71 × 10−1) ≈ 6.0122 × 100 (3.44 × 10−1) ≈ 3.2768 × 100 (7.39 × 10−1) + 6.3542 × 100 (3.78 × 10−1) − 4.9284 × 100 (1.58 × 100)

WFG9

5 14 4.3455 × 10−1 (6.95 × 10−2) − 6.3084 × 10−1 (2.68 × 10−1) − 4.8013 × 10−1 (1.83 × 10−2) − 3.8708 × 10−1 (1.11 × 10−2) − 4.4516 × 10−1 (1.40 × 10−2) − 4.0339 × 10−1 (7.93 × 10−3) − 4.2105 × 10−1 (1.12 × 10−2) − 3.7320 × 10−1 (1.04 × 10−2)
10 19 1.9231 × 100 (4.06 × 10−1) − 1.3237 × 100 (1.26 × 100) − 2.5773 × 100 (3.65 × 10−1) − 1.3674 × 100 (5.77 × 10−2) − 1.6376 × 100 (1.57 × 10−1) − 1.5029 × 100 (6.31 × 10−2) − 1.2111 × 100 (4.62 × 10−2) − 1.0912 × 100 (4.55 × 10−2)
15 24 3.4744 × 100 (1.87 × 10−1) − 5.0539 × 100 (7.16 × 100) − 5.0051 × 100 (6.87 × 10−1) − 2.7106 × 100 (3.24 × 10−1) − 2.5771 × 100 (1.51 × 10−1) − 2.5878 × 100 (3.32 × 10−1) − 1.9573 × 100 (1.53 × 10−1) − 1.7683 × 100 (1.28 × 10−1)

+/−/≈ 2/23/2 0/23/4 3/24/0 1/25/1 0/26/1 4/23/0 0/26/1
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Table 6. HV values obtained by GPDARVC and other comparison algorithms on 5-, 10-, and 15-objective WFG 1-9. The best result for each test instance is shown
with dark background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

WFG1

5 14 9.9729 × 10−1 (4.79 × 10−4) + 7.5701 × 10−1 (1.13 × 10−1) − 9.2224 × 10−1 (3.02 × 10−2) − 9.2482 × 10−1 (3.82 × 10−2) − 9.8940 × 10−1 (1.93 × 10−2) ≈ 8.6548 × 10−1 (4.29 × 10−2) − 9.9357 × 10−1 (1.06 × 10−2) − 9.9624 × 10−1 (4.40 × 10−4)
10 19 9.9880 × 10−1 (4.02 × 10−4) + 7.7590 × 10−1 (2.05 × 10−1) − 9.7484 × 10−1 (3.39 × 10−2) − 9.9692 × 10−1 (1.13 × 10−2) − 9.9886 × 10−1 (6.89 × 10−4) + 9.8202 × 10−1 (3.12 × 10−2) − 9.9846 × 10−1 (6.07 × 10−4) ≈ 9.9805 × 10−1 (7.91 × 10−4)
15 24 9.9938 × 10−1 (2.46 × 10−4) + 8.1670 × 10−1 (1.42 × 10−1) − 9.9112 × 10−1 (2.96 × 10−3) − 9.9966 × 10−1 (2.22 × 10−4) + 9.9919 × 10−1 (5.06 × 10−4) + 9.9779 × 10−1 (4.44 × 10−4) − 9.9846 × 10−1 (5.37 × 10−4) ≈ 9.9850 × 10−1 (8.21 × 10−4)

WFG2

5 14 9.9385 × 10−1 (1.63 × 10−3) + 9.4873 × 10−1 (1.92 × 10−2) − 9.6991 × 10−1 (4.15 × 10−3) − 9.9260 × 10−1 (1.75 × 10−3) + 9.8210 × 10−1 (2.76 × 10−3) − 9.8640 × 10−1 (1.93 × 10−3) ≈ 9.8536 × 10−1 (2.11 × 10−3) − 9.8743 × 10−1 (1.98 × 10−3)
10 19 9.9456 × 10−1 (2.12 × 10−3) + 9.7842 × 10−1 (1.32 × 10−2) − 9.8304 × 10−1 (2.92 × 10−3) − 9.9771 × 10−1 (7.09 × 10−4) + 9.9329 × 10−1 (1.21 × 10−3) + 9.9215 × 10−1 (1.39 × 10−3) ≈ 9.9307 × 10−1 (2.10 × 10−3) + 9.9216 × 10−1 (1.81 × 10−3)
15 24 9.9446 × 10−1 (2.16 × 10−3) + 9.5815 × 10−1 (1.77 × 10−2) − 9.7537 × 10−1 (9.91 × 10−3) − 9.9633 × 10−1 (1.29 × 10−3) + 9.9418 × 10−1 (1.55 × 10−3) + 9.9488 × 10−1 (1.08 × 10−3) + 9.9345 × 10−1 (3.26 × 10−3) ≈ 9.9217 × 10−1 (3.01 × 10−3)

WFG3

5 14 1.2313 × 10−1 (2.34 × 10−2) ≈ 1.3726 × 10−1 (6.71 × 10−2) ≈ 7.9633 × 10−2 (3.04 × 10−2) − 1.3248 × 10−1 (2.30 × 10−2) ≈ 2.9777 × 10−2 (2.79 × 10−2) − 1.3689 × 10−1 (2.05 × 10−2) ≈ 3.3277 × 10−2 (2.60 × 10−2) − 1.3093 × 10−1 (1.75 × 10−2)
10 19 1.0038 × 10−3 (3.09 × 10−3) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 4.0794 × 10−4 (1.39 × 10−3) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100)
15 24 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100)

WFG4

5 14 7.8150 × 10−1 (3.53 × 10−3) − 2.7809 × 10−1 (2.17 × 10−1) − 7.2951 × 10−1 (5.59 × 10−3) − 7.8987 × 10−1 (2.33 × 10−3) − 7.3936 × 10−1 (7.22 × 10−3) − 7.7712 × 10−1 (3.86 × 10−3) − 7.6398 × 10−1 (5.03 × 10−3) − 7.9304 × 10−1 (3.16 × 10−3)
10 19 8.9006 × 10−1 (1.29 × 10−2) − 1.1465 × 10−1 (3.80 × 10−2) − 8.2631 × 10−1 (9.69 × 10−3) − 9.4904 × 10−1 (2.03 × 10−3) − 8.3550 × 10−1 (9.08 × 10−3) − 9.0372 × 10−1 (4.48 × 10−3) − 9.5702 × 10−1 (2.44 × 10−3) + 9.5320 × 10−1 (5.39 × 10−3)
15 24 9.2280 × 10−1 (1.76 × 10−2) − 1.6712 × 10−1 (1.57 × 10−1) − 8.3298 × 10−1 (2.58 × 10−2) − 9.7464 × 10−1 (3.52 × 10−3) − 8.2140 × 10−1 (1.34 × 10−2) − 9.1813 × 10−1 (6.86 × 10−3) − 9.8614 × 10−1 (9.74 × 10−4) + 9.8307 × 10−1 (5.42 × 10−3)

WFG5

5 14 7.3641 × 10−1 (2.74 × 10−3) − 5.9047 × 10−1 (4.59 × 10−2) − 6.7534 × 10−1 (7.28 × 10−3) − 7.4162 × 10−1 (2.72 × 10−3) − 7.0602 × 10−1 (4.99 × 10−3) − 7.3525 × 10−1 (3.38 × 10−3) − 7.2390 × 10−1 (4.27 × 10−3) − 7.5300 × 10−1 (2.97 × 10−3)
10 19 8.4977 × 10−1 (5.61 × 10−3) − 4.8967 × 10−1 (3.06 × 10−1) − 7.6801 × 10−1 (1.44 × 10−2) − 8.8577 × 10−1 (2.36 × 10−3) − 7.9606 × 10−1 (7.04 × 10−3) − 8.5903 × 10−1 (4.45 × 10−3) − 8.8579 × 10−1 (2.02 × 10−3) − 9.0141 × 10−1 (1.28 × 10−3)
15 24 8.7862 × 10−1 (1.01 × 10−2) − 2.2781 × 10−1 (2.79 × 10−1) − 7.8038 × 10−1 (3.15 × 10−2) − 9.0388 × 10−1 (2.08 × 10−3) − 7.5518 × 10−1 (1.07 × 10−2) − 8.7299 × 10−1 (3.09 × 10−3) − 8.9638 × 10−1 (2.99 × 10−3) − 9.1473 × 10−1 (1.00 × 10−3)

WFG6

5 14 7.1109 × 10−1 (1.12 × 10−2) − 2.0909 × 10−1 (9.44 × 10−2) − 6.5917 × 10−1 (1.82 × 10−2) − 7.3093 × 10−1 (1.06 × 10−2) ≈ 6.8227 × 10−1 (1.56 × 10−2) − 7.1647 × 10−1 (1.75 × 10−2) − 7.0659 × 10−1 (1.33 × 10−2) − 7.3125 × 10−1 (1.50 × 10−2)
10 19 8.3944 × 10−1 (1.14 × 10−2) − 3.7260 × 10−1 (1.97 × 10−1) − 7.5420 × 10−1 (3.52 × 10−2) − 8.7926 × 10−1 (1.21 × 10−2) + 7.8060 × 10−1 (1.81 × 10−2) − 8.4265 × 10−1 (2.35 × 10−2) − 8.8029 × 10−1 (1.79 × 10−2) + 8.6612 × 10−1 (1.85 × 10−2)
15 24 8.7588 × 10−1 (1.13 × 10−2) + 4.1887 × 10−1 (2.13 × 10−1) − 7.7995 × 10−1 (4.51 × 10−2) − 9.0298 × 10−1 (2.09 × 10−2) + 7.7459 × 10−1 (1.38 × 10−2) − 8.4469 × 10−1 (1.84 × 10−2) ≈ 8.6505 × 10−1 (4.74 × 10−2) ≈ 8.5845 × 10−1 (2.92 × 10−2)

WFG7

5 14 7.8156 × 10−1 (3.89 × 10−3) − 4.2979 × 10−1 (1.33 × 10−1) − 7.3228 × 10−1 (8.15 × 10−3) − 7.9954 × 10−1 (1.12 × 10−3) + 7.6415 × 10−1 (4.30 × 10−3) − 7.9277 × 10−1 (1.76 × 10−3) − 7.8435 × 10−1 (3.56 × 10−3) − 7.9760 × 10−1 (3.31 × 10−3)
10 19 9.0354 × 10−1 (1.29 × 10−2) − 6.7282 × 10−1 (1.41 × 10−1) − 8.2953 × 10−1 (3.98 × 10−2) − 9.5925 × 10−1 (9.79 × 10−4) ≈ 8.7871 × 10−1 (1.03 × 10−2) − 9.2998 × 10−1 (3.85 × 10−3) − 9.6340 × 10−1 (2.77 × 10−3) + 9.5956 × 10−1 (3.66 × 10−3)
15 24 9.7311 × 10−1 (4.01 × 10−3) − 2.5560 × 10−1 (2.54 × 10−1) − 8.3713 × 10−1 (4.21 × 10−2) − 9.7966 × 10−1 (3.53 × 10−3) − 8.9319 × 10−1 (1.65 × 10−2) − 9.3806 × 10−1 (5.73 × 10−3) − 9.9137 × 10−1 (4.88 × 10−4) + 9.9028 × 10−1 (1.29 × 10−3)

WFG8

5 14 6.1886 × 10−1 (1.06 × 10−2) − 7.2921 × 10−2 (7.56 × 10−2) − 6.0607 × 10−1 (1.52 × 10−2) − 6.8035 × 10−1 (4.13 × 10−3) − 6.0196 × 10−1 (1.26 × 10−2) − 6.6704 × 10−1 (3.48 × 10−3) − 6.3234 × 10−1 (6.33 × 10−3) − 6.8976 × 10−1 (2.81 × 10−3)
10 19 8.5186 × 10−1 (1.64 × 10−2) − 2.6028 × 10−1 (1.24 × 10−1) − 7.1378 × 10−1 (2.35 × 10−2) − 8.2294 × 10−1 (6.10 × 10−3) − 5.9263 × 10−1 (2.46 × 10−2) − 8.2116 × 10−1 (2.60 × 10−2) − 7.3630 × 10−1 (7.71 × 10−2) − 8.9386 × 10−1 (1.23 × 10−2)
15 24 9.1743 × 10−1 (6.21 × 10−3) − 1.8712 × 10−1 (5.43 × 10−2) − 7.2178 × 10−1 (5.02 × 10−2) − 9.0189 × 10−1 (6.90 × 10−3) − 8.7673 × 10−1 (8.16 × 10−3) − 8.6506 × 10−1 (2.08 × 10−2) − 8.9671 × 10−1 (6.03 × 10−3) − 9.3230 × 10−1 (2.65 × 10−3)

WFG9

5 14 7.1726 × 10−1 (4.39 × 10−2) − 5.7438 × 10−1 (1.18 × 10−1) − 6.9840 × 10−1 (6.08 × 10−3) − 7.4910 × 10−1 (4.64 × 10−3) ≈ 7.2015 × 10−1 (7.50 × 10−3) − 7.4269 × 10−1 (4.35 × 10−3) − 7.3180 × 10−1 (6.41 × 10−3) − 7.5112 × 10−1 (6.66 × 10−3)
10 19 8.4119 × 10−1 (5.81 × 10−2) − 6.9320 × 10−1 (8.26 × 10−2) − 7.9149 × 10−1 (1.22 × 10−2) − 8.6672 × 10−1 (3.58 × 10−2) − 7.9195 × 10−1 (5.95 × 10−2) − 8.5381 × 10−1 (8.84 × 10−3) − 8.9091 × 10−1 (3.76 × 10−2) − 9.1675 × 10−1 (8.03 × 10−3)
15 24 8.9521 × 10−1 (1.22 × 10−2) − 6.0997 × 10−1 (2.11 × 10−1) − 8.1071 × 10−1 (1.60 × 10−2) − 8.8163 × 10−1 (1.14 × 10−2) − 7.9180 × 10−1 (1.41 × 10−2) − 8.4359 × 10−1 (3.81 × 10−2) − 8.9479 × 10−1 (4.57 × 10−2) − 9.2016 × 10−1 (4.61 × 10−2)

+/−/≈ 7/17/3 0/24/3 0/25/2 7/14/6 4/20/3 1/20/6 6/15/6
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(a) DTLZ (b) MaF (c) WFG

Figure 5. Performance score of all algorithms on different test suites.

(a) ANSGAIII (b) MaOEAIGD (c) DEAGNG (d) LMPFE

(e) TSDGPD (f) RVEAiGNG (g) MultiGPO (h) GPDARVC

Figure 6. Plot of results for different algorithms on 15-objective DTLZ5.

4.2.2. Comparison Results on MaF Test Problems

The mean and standard deviation of the IGD+ and HV results obtained by all al-
gorithms on the MaF test problems are given in Tables 3 and 4, respectively. Regarding
IGD+, GPDARVC outperforms ANSGA-III, MaOEA-IGD, DEAGNG, LMPFE, TS-DGPD,
RVEAiGNG, and MultiGPO by 27, 27, 25, 21, 23, 16, and 12 times over the 30 test problems.
In terms of HV, GPDARVC beats ANSGA-III, MaOEA-IGD, DEAGNG, LMPFE, TS-DGPD,
RVEAiGNG, and MultiGPO on 17, 26, 18, 21, 12, 15, and 11 occasions out of 30 problems.
It is not difficult to find that these MaOEAs using reference vectors, like ANSGA-III and
MaOEA-IGD, perform poorly on this test suite. This is because the MaF suite has such
complex features that the uniformly distributed reference points cannot correctly match the
true PF of the MaF suite. In contrast, our proposed GDPARVC performs well on different
test problems, and this is because the later adjustment of the reference vectors can correctly
guide the algorithms to explore the promising regions that were not explored earlier. This
compensates for the lack of early reference vector exploration. The experimental results
indicate that the overall performance of GPDARVC is significantly better than the other
compared MaOEAs.

Figure 5b shows that GPDARVC achieves the lowest scores in both HV and IGD+,
signifying that GPDARVC consistently ranked first. MultioGPO and TSDGPD also perform
well, likely because they both utilize the GPD strategy to help them maintain conver-
gence in high-dimensional objective space. In contrast, GPDARVC incorporates the GPD
strategy with adjusted RVs, enabling it to balance convergence and diversity well for high-
dimensional multi-objective problems, which explains its superiority. Although GPDARVC
achieves good results on the MaF test suite, it falls slightly short compared to the DTLZ on
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the above test suite. Aside from the high complexity of the MaF test suite, another reason
for this may be that for some complex problems, the adjusted reference vectors in the later
stages do not provide comprehensive exploration. To ensure an intuitive understanding of
GPDARVC, Figure 7 shows the final results of GPDARVC running against other competing
algorithms on MaF1 with three objectives. Obviously, compared with other algorithms,
GPDARVC has well-distributed results and closely approximates the true PF.

(a) ANSGAIII (b) MaOEAIGD (c) DEAGNG (d) LMPFE

(e) TSDGPD (f) RVEAiGNG (g) MultiGPO (h) GPDARVC

Figure 7. Plot of results for different algorithms on three-objective MaF1.

4.2.3. Comparison Results on WFG Test Problems

The IGD+ and HV values for all algorithms on the WFG test suite are given in
Tables 5 and 6, respectively. As shown, GPDARVC significantly outperform its competitors
on most cases. WFG 1-3 has irregular PFs, i.e., mixed PFs, disconnected PFs, and degenerate
PFs, which pose a significant challenge to algorithms. Even so, GPDARVC still achieves
good results in most test instances. For WFGs 4-9, they have the same concave PFs, but
their properties in the decision space are entirely different. WFG 4 and WFG 5 tend to make
the algorithms susceptible to local optimality due to their multi-peak and deceptive nature,
respectively. Nevertheless, GPDARVC still achieves the best IGD+ and HV results in most test
instances. The fundamental reason for this is that the distribution of the reference points is
consistent with that of the real PFs, where reference vector bootstrapping plays a key role. For
WFG 6, whose decision variables are non-separable, GPDARVC has a clear advantage over its
competitors. WFG 7-9 tests the algorithm’s ability to maintain individuals with good diversity
due to its different bias properties. As seen from the HV and IGD+ results, GPDARVC shows
the best performance in almost all test instances, which is mainly due to the adjustment of
RVs in the later stage, guiding individuals to search the regions not explored before.

Figure 5c presents a bar chart of the HV and IGD+ performance scores achieved by
each MaOEA on the WFG test suite, which shows that GPDARVC secured the top results in
terms of both HV and IGD+. In particular, the scores of GPDARVC are significantly lower
than those of the leading algorithms, such as MultiGPO and ANSGA-III. All of these results
demonstrate that GPDARVC outperforms the other competing algorithms on the WFG test
suite. Figure 8 plots the results of different algorithms on the 10-objective WFG5 problem.

4.2.4. Comparison Results on Real-World Problems

This section discusses six practical multi-objective engineering problems to validate
GPDARVC’s effectiveness further. The six practical multi-objective engineering problems are
the car side impact design problem, liquid-rocket single-element injector design, location of a
pollution monitoring system, the machining problem, the single-pass work roll cooling design
problem, and the development of water- and oil-repellent fabric. We name each of these six
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real multi-objective engineering problems Ma_RW1-6 for convenience. Note that the design
of this paper’s six real multi-objective engineering problems can be found in [59,60].

(a) ANSGAIII (b) MaOEAIGD (c) DEAGNG (d) LMPFE

(e) TSDGPD (f) RVEAiGNG (g) MultiGPO (h) GPDARVC

Figure 8. Plot of results for different algorithms on 10-objective WFG5.

GPDARVC is compared with seven algorithms, ANSGA-III, MaOEA-IGD, DEAGNG,
LMPFE, TS-DGPD, RVEAiGNG, and MultiGPO, regarding HV. The parameters of the algo-
rithms are set as follows: the population size is set to 200, and the maximum number of fitness
evaluations for each algorithm is set to M× 10,000. To compute HV, the maximum and mini-
mum objective values obtained from the final set of solutions are used to normalize the objective
values of all the solutions, followed by the reference point (1, 1, ..., 1, 1)T to compute the HV.

The HV results of GPDARVC and other competing algorithms for six real-world
multi-objective engineering problems are given in Table 7, from which it can be seen that
GPDARVC achieves optimal HV results for two real-world problems. GPDARVC per-
forms better than or equal to ANSGA-III, MaOEA-IGD, DEAGNG, LMPFE, TS-DGPD,
RVEAiGNG, and MultiGPO in six real-world problems on 4, 5, 4, 3, 4, 4, and 6 occasions.
This indicates that GPDARVC shows good potential for future practical multi-objective
engineering problems.

4.3. Validation of Proposed Strategies
4.3.1. Validation of Cooperative GPD and RV Strategy

In this subsection, we aim to verify the effectiveness of the cooperative GPD and RV
strategy. This strategy first makes a preliminary ranking of the solutions through an (M-1)-
GPD dominance framework, and then the environment selection is accomplished through
reference vector guidance with the max–min strategy. We mainly verify the effectiveness
of embedding this strategy into the developed framework (M-1)-GPD, as (M-1)-GPD was
first proposed in [21]. We denote the GPD and RV cooperative framework MultiGPO-
RV and compare it with MultiGPO. To ensure fairness, we verify the performance of
MultiGPO with MultiGPO-RV by using the same evolutionary operators and keeping other
parameters consistent.

We test MultiGPO and MultiGPO_RV on DTLZ, MaF, and WFG with 5 and 10 ob-
jectives. Table 7 shows the HV and IGD+ results of MultiGPO and MultiGPO_RV on the
DTLZ, MaF, and WFG test suites, respectively. For HV, MultiGPO_RV performed better
in 23 out of 52 test problems and worse in 14. In terms of IGD+, MultiGPO_RV achieved
better results in 28 out of 52 test problems and worse results in 10. It can be seen that
the performance of MultiGPO-RV is better than that of MultiGPO on most cases, which
validates the effectiveness and competitiveness of the cooperative GPD and RV strategy.
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Table 7. HV values obtained by GPDARVC and other comparison algorithms on real-world problems. The best result for each test instance is shown with dark
background.

Problem M D ANSGAIII MaOEAIGD DEAGNG LMPFE TSDGPD RVEAiGNG MultiGPO GPDARVC

Ma_RW1 4 7 3.0062 × 10−2 (9.12 × 10−4) − 9.8681 × 10−3 (5.55 × 10−4) − 2.5086 × 10−2 (1.93 × 10−3) − 3.0006 × 10−2 (9.72 × 10−4) − 3.2535 × 10−2 (3.36 × 10−4) − 3.0318 × 10−2 (9.07 × 10−4) − 3.2168 × 10−2 (2.14 × 10−3) − 3.3675 × 10−2 (1.88 × 10−3)

Ma_RW2 4 4 3.7618 × 10−1 (3.15 × 10−3) + 2.4753 × 10−2 (3.05 × 10−2) − 3.8277 × 10−1 (6.55 × 10−3) + 3.8857 × 10−1 (6.32 × 10−3) + 3.1537 × 10−1 (2.60 × 10−3) − 3.8650 × 10−1 (1.93 × 10−3) + 3.6983 × 10−1 (4.73 × 10−3) ≈ 3.6840 × 10−1 (2.76 × 10−3)

Ma_RW3 5 2 4.8459 × 10−3 (8.26 × 10−3) + 8.0463 × 10−2 (1.14 × 10−1) + 3.4897 × 10−3 (5.40 × 10−3) + 7.3549 × 10−3 (6.47 × 10−3) + 6.5190 × 10−3 (6.71 × 10−3) + 2.8039 × 10−2 (3.45 × 10−2) + 3.3680 × 10−4 (5.15 × 10−5) ≈ 4.2021 × 10−4 (2.48 × 10−4)

Ma_RW4 5 3 3.1830 × 10−1 (8.96 × 10−3) − 3.9165 × 10−2 (3.70 × 10−3) − 3.2927 × 10−1 (8.65 × 10−3) − 3.3882 × 10−1 (5.37 × 10−3) − 3.4034 × 10−1 (4.87 × 10−3) − 3.3191 × 10−1 (1.11 × 10−3) − 3.4164 × 10−1 (5.49 × 10−3) − 3.4504 × 10−1 (4.81 × 10−3)

Ma_RW5 6 7 3.2322 × 10−2 (1.62 × 10−3) − 4.5537 × 10−3 (1.06 × 10−3) − 3.0394 × 10−2 (4.77 × 10−3) − 4.0883 × 10−2 (9.97 × 10−4) + 4.2664 × 10−2 (3.20 × 10−4) + 3.1140 × 10−2 (1.71 × 10−3) − 3.1904 × 10−2 (1.83 × 10−3) − 3.5359 × 10−2 (9.88 × 10−4)

Ma_RW6 7 3 1.1146 × 10−2 (1.31 × 10−3) − 7.2504 × 10−6 (1.36 × 10−7) − 7.8898 × 10−3 (1.24 × 10−3) − 1.1674 × 10−2 (1.27 × 10−3) − 1.2924 × 10−2 (1.27 × 10−3) ≈ 1.2808 × 10−2 (8.85 × 10−4) ≈ 1.2569 × 10−2 (7.63 × 10−4) ≈ 1.2942 × 10−2 (6.15 × 10−4)

+/−/≈ 2/4/0 1/5/0 2/4/0 3/3/0 2/3/1 2/3/1 0/2/4
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4.3.2. Validation of Adjusted Reference Vector Selection

To verify the effectiveness of reference vector adjustment in our algorithm, we compare
the algorithm with static RVs, denoted MultiGPO-SRV, with the algorithm with adjusted
RVs, called MultiGPO-ARV. Other operations and parameter settings are the same for
MultiGPO-RV and MultiGPO-ARV. From the experimental results shown ins Tables 8 and 9,
it can be seen that the performance of MultiGPO-ARV is superior to that of MultiGPO-SRV.
For HV, MultiGPO_ARV performed better in 28 out of 52 test problems and worse in 5. In
terms of IGD+, MultiGPO_ARV achieved better results in 25 out of 52 test problems and
worse results in 7. Both the HV and IGD+ values of MultiGPO_ARV are better than those
of MultiGPO-SRV for most of the test problems. This validates that the adjusted RV in the
later stage plays a very significant role in the final performance.

Table 8. Comparative results of MultiGPO and MultiGPO_RV on various problems. For each pair of
comparison, the best result for each test instance is shown with dark background.

Problem M D
HV IGD+

MultiGPO_RV MultiGPO MultiGPO_RV MultiGPO

DTLZ1
5 9 9.7957 × 10−1 (4.26 × 10−4) + 9.7613 × 10−1 (5.21 × 10−4) 3.7875 × 10−2 (7.35 × 10−4) − 3.7186 × 10−2 (3.94 × 10−4)

10 14 9.9968 × 10−1 (5.99 × 10−5) + 9.9897 × 10−1 (6.31 × 10−4) 8.2646 × 10−2 (9.27 × 10−4) − 7.3197 × 10−2 (1.64 × 10−3)

DTLZ2
5 14 8.1147 × 10−1 (4.91 × 10−4) + 8.0238 × 10−1 (1.56 × 10−3) 6.4032 × 10−2 (1.56 × 10−4) + 7.2676 × 10−2 (9.48 × 10−4)

10 19 9.7023 × 10−1 (2.36 × 10−4) + 9.5936 × 10−1 (1.09 × 10−3) 1.7666 × 10−1 (3.08 × 10−4) + 1.7985 × 10−1 (2.26 × 10−3)

DTLZ3
5 14 7.9170 × 10−1 (9.61 × 10−3) − 7.9903 × 10−1 (5.47 × 10−3) 7.9411 × 10−2 (7.69 × 10−3) ≈ 7.5985 × 10−2 (4.31 × 10−3)

10 19 9.6339 × 10−1 (6.88 × 10−3) + 9.3478 × 10−1 (2.28 × 10−2) 1.8541 × 10−1 (7.87 × 10−3) + 2.1157 × 10−1 (2.17 × 10−2)

DTLZ4
5 14 8.1151 × 10−1 (2.92 × 10−4) + 8.0448 × 10−1 (1.66 × 10−3) 6.3928 × 10−2 (1.53 × 10−4) + 7.1703 × 10−2 (9.50 × 10−4)

10 19 9.7021 × 10−1 (2.63 × 10−4) + 9.6239 × 10−1 (8.93 × 10−4) 1.7579 × 10−1 (4.26 × 10−4) + 1.7873 × 10−1 (1.97 × 10−3)

DTLZ5
5 14 1.0449 × 10−1 (4.85 × 10−3) ≈ 1.0154 × 10−1 (4.95 × 10−3) 4.3883 × 10−2 (7.30 × 10−3) + 5.0725 × 10−2 (1.18 × 10−2)

10 19 8.7696 × 10−2 (2.12 × 10−3) ≈ 8.6196 × 10−2 (3.13 × 10−3) 8.6392 × 10−2 (1.95 × 10−2) + 1.0025 × 10−1 (1.87 × 10−2)

DTLZ6
5 14 1.0290 × 10−1 (5.19 × 10−3) + 9.7489 × 10−2 (6.38 × 10−3) 4.9008 × 10−2 (1.04 × 10−2) + 6.7124 × 10−2 (1.76 × 10−2)

10 19 9.0892 × 10−2 (2.61 × 10−4) ≈ 8.9286 × 10−2 (7.10 × 10−3) 1.0316 × 10−1 (2.83 × 10−2) ≈ 1.0211 × 10−1 (2.30 × 10−2)

DTLZ7
5 24 2.5228 × 10−1 (6.37 × 10−3) ≈ 2.5318 × 10−1 (3.91 × 10−3) 2.0991 × 10−1 (1.41 × 10−1) ≈ 1.4859 × 10−1 (2.83 × 10−2)

10 29 1.2967 × 10−1 (1.59 × 10−2) ≈ 1.1874 × 10−1 (2.20 × 10−2) 6.7916 × 10−1 (8.51 × 10−3) + 7.2405 × 10−1 (7.40 × 10−3)

MaF1
5 14 1.1724 × 10−2 (2.69 × 10−4) ≈ 1.1759 × 10−2 (2.58 × 10−4) 8.0030 × 10−2 (1.75 × 10−3) ≈ 7.9782 × 10−2 (1.83 × 10−3)

10 19 2.4953 × 10−7 (4.43 × 10−7) ≈ 3.9699 × 10−7 (7.47 × 10−7) 1.6657 × 10−1 (8.11 × 10−4) − 1.6563 × 10−1 (1.21 × 10−3)

MaF2
5 14 1.9181 × 10−1 (1.81 × 10−3) + 1.8752 × 10−1 (2.21 × 10−3) 5.2287 × 10−2 (1.12 × 10−3) + 5.5021 × 10−2 (9.87 × 10−4)

10 19 2.2185 × 10−1 (2.93 × 10−3) + 2.0829 × 10−1 (3.53 × 10−3) 1.1269 × 10−1 (4.54 × 10−3) + 1.1747 × 10−1 (4.81 × 10−3)

MaF3
5 14 9.9617 × 10−1 (2.20 × 10−3) − 9.9661 × 10−1 (2.73 × 10−3) 3.2517 × 10−2 (1.82 × 10−2) + 3.7722 × 10−2 (1.24 × 10−2)

10 19 9.9910 × 10−1 (7.12 × 10−4) ≈ 9.9902 × 10−1 (7.40 × 10−4) 2.1471 × 10−2 (2.12 × 10−3) + 2.8817 × 10−2 (4.44 × 10−3)

MaF4
5 14 1.1050 × 10−1 (5.30 × 10−3) − 1.1445 × 10−1 (3.81 × 10−3) 6.5158 × 10−1 (4.85 × 10−2) − 6.1668 × 10−1 (3.32 × 10−2)

10 19 7.1109 × 10−5 (2.01 × 10−5) + 5.9247 × 10−5 (1.40 × 10−5) 9.2043 × 100 (8.02 × 10−1) ≈ 9.0576 × 100 (4.20 × 10−1)

MaF5
5 14 7.6460 × 10−1 (2.49 × 10−2) − 7.7892 × 10−1 (5.41 × 10−3) 4.5095 × 10−1 (5.02 × 10−2) − 4.2646 × 10−1 (1.49 × 10−2)

10 19 8.3359 × 10−1 (3.66 × 10−3) ≈ 8.3378 × 10−1 (4.24 × 10−3) 1.2346 × 100 (1.26 × 10−2) ≈ 1.2289 × 100 (8.87 × 10−3)

MaF6
5 14 1.2950 × 10−1 (4.39 × 10−4) ≈ 1.2964 × 10−1 (3.31 × 10−4) 1.1968 × 10−3 (6.96 × 10−5) − 1.1450 × 10−3 (7.02 × 10−5)

10 19 7.2304 × 10−2 (3.72 × 10−2) ≈ 6.8132 × 10−2 (4.00 × 10−2) 7.7691 × 10−2 (1.02 × 10−1) ≈ 8.5688 × 10−2 (1.06 × 10−1)

MaF7
5 24 2.5643 × 10−1 (2.73 × 10−3) + 2.5444 × 10−1 (3.21 × 10−3) 1.5877 × 10−1 (3.95 × 10−2) ≈ 1.4972 × 10−1 (3.28 × 10−2)

10 29 1.3458 × 10−1 (1.66 × 10−2) + 1.1235 × 10−1 (2.10 × 10−2) 6.7943 × 10−1 (5.75 × 10−3) + 7.2159 × 10−1 (1.30 × 10−2)

MaF8
5 2 1.2478 × 10−1 (4.67 × 10−3) ≈ 1.2584 × 10−1 (3.65 × 10−4) 5.3530 × 10−2 (2.84 × 10−2) ≈ 4.6910 × 10−2 (7.83 × 10−4)

10 2 1.0978 × 10−2 (9.92 × 10−5) ≈ 1.1005 × 10−2 (8.95 × 10−5) 6.3002 × 10−2 (7.59 × 10−4) ≈ 6.2770 × 10−2 (8.61 × 10−4)

MaF9
5 2 3.2424 × 10−1 (2.67 × 10−3) − 3.2532 × 10−1 (7.10 × 10−4) 5.3077 × 10−2 (4.51 × 10−3) ≈ 5.1864 × 10−2 (4.82 × 10−4)

10 2 1.8569 × 10−2 (1.48 × 10−4) ≈ 1.8576 × 10−2 (1.20 × 10−4) 7.2281 × 10−2 (3.44 × 10−4) ≈ 7.2169 × 10−2 (3.68 × 10−4)

MaF10
5 14 5.9066 × 10−1 (7.86 × 10−2) − 9.9565 × 10−1 (2.68 × 10−3) 9.8594 × 10−1 (2.10 × 10−1) − 1.2150 × 10−1 (1.30 × 10−2)

10 19 7.2468 × 10−1 (7.59 × 10−2) − 9.9835 × 10−1 (7.74 × 10−4) 8.5126 × 10−1 (1.97 × 10−1) − 2.2751 × 10−1 (7.09 × 10−2)

WFG1
5 14 9.7518 × 10−1 (3.08 × 10−2) − 9.9357 × 10−1 (1.06 × 10−2) 1.4498 × 10−1 (4.70 × 10−2) ≈ 1.2037 × 10−1 (1.68 × 10−2)

10 19 9.9740 × 10−1 (6.59 × 10−4) − 9.9846 × 10−1 (6.07 × 10−4) 1.8820 × 10−1 (1.36 × 10−2) ≈ 2.3283 × 10−1 (6.33 × 10−2)
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Table 8. Cont.

Problem M D
HV IGD+

MultiGPO_RV MultiGPO MultiGPO_RV MultiGPO

WFG2
5 14 9.8416 × 10−1 (2.26 × 10−3) − 9.8536 × 10−1 (2.11 × 10−3) 1.0870 × 10−1 (3.80 × 10−3) + 1.1988 × 10−1 (4.92 × 10−3)

10 19 9.8845 × 10−1 (2.30 × 10−3) − 9.9307 × 10−1 (2.10 × 10−3) 1.7426 × 10−1 (1.03 × 10−2) + 2.4792 × 10−1 (1.31 × 10−2)

WFG3
5 14 1.3404 × 10−1 (1.65 × 10−2) + 3.3277 × 10−2 (2.60 × 10−2) 3.7931 × 10−1 (4.14 × 10−2) + 6.0440 × 10−1 (1.31 × 10−1)

10 19 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) 1.3479 × 100 (1.20 × 10−1) + 2.0015 × 100 (2.42 × 10−1)

WFG4
5 14 7.8988 × 10−1 (3.82 × 10−3) + 7.6398 × 10−1 (5.03 × 10−3) 3.2773 × 10−1 (6.20 × 10−3) + 3.7270 × 10−1 (8.00 × 10−3)

10 19 9.4417 × 10−1 (8.64 × 10−3) − 9.5702 × 10−1 (2.44 × 10−3) 1.0054 × 100 (3.41 × 10−2) − 9.7903 × 10−1 (1.57 × 10−2)

WFG5
5 14 7.5198 × 10−1 (1.61 × 10−3) + 7.2390 × 10−1 (4.27 × 10−3) 3.7129 × 10−1 (3.55 × 10−3) + 4.4547 × 10−1 (6.82 × 10−3)

10 19 8.9827 × 10−1 (1.38 × 10−3) + 8.8579 × 10−1 (2.02 × 10−3) 1.0346 × 100 (1.46 × 10−2) + 1.2222 × 100 (4.16 × 10−2)

WFG6
5 14 7.2172 × 10−1 (1.60 × 10−2) + 7.0659 × 10−1 (1.33 × 10−2) 4.1960 × 10−1 (2.33 × 10−2) + 4.9629 × 10−1 (2.58 × 10−2)

10 19 8.5851 × 10−1 (1.47 × 10−2) − 8.8029 × 10−1 (1.79 × 10−2) 1.1139 × 100 (2.98 × 10−2) + 1.1484 × 100 (5.35 × 10−2)

WFG7
5 14 7.9764 × 10−1 (3.30 × 10−3) + 7.8435 × 10−1 (3.56 × 10−3) 3.1749 × 10−1 (5.84 × 10−3) + 3.4372 × 10−1 (6.61 × 10−3)

10 19 9.5475 × 10−1 (5.47 × 10−3) − 9.6340 × 10−1 (2.77 × 10−3) 9.8868 × 10−1 (2.40 × 10−2) − 9.6213 × 10−1 (1.46 × 10−2)

WFG8
5 14 6.8800 × 10−1 (2.04 × 10−3) + 6.3234 × 10−1 (6.33 × 10−3) 5.9836 × 10−1 (3.20 × 10−3) + 7.0094 × 10−1 (1.09 × 10−2)

10 19 8.7396 × 10−1 (1.40 × 10−2) + 7.3630 × 10−1 (7.71 × 10−2) 1.6441 × 100 (2.66 × 10−1) + 2.2224 × 100 (4.60 × 10−1)

WFG9
5 14 7.5271 × 10−1 (5.71 × 10−3) + 7.3180 × 10−1 (6.41 × 10−3) 3.7297 × 10−1 (8.77 × 10−3) + 4.2105 × 10−1 (1.12 × 10−2)

10 19 9.0123 × 10−1 (4.14 × 10−2) + 8.9091 × 10−1 (3.76 × 10−2) 1.1322 × 100 (8.26 × 10−2) + 1.2111 × 100 (4.62 × 10−2)

+/−/≈ 23/14/15 28/10/14

Table 9. Comparative results of MultiGPO_SRV and MultiGPO_ARV on various problems. For each
pair of comparison, the best result for each test instance is shown with dark background.

Problem M D
HV IGD+

MultiGPO_ARV MultiGPO_SRV MultiGPO_ARV MultiGPO_SRV

DTLZ1
5 9 9.7983 × 10−1 (5.83 × 10−4) + 9.7957 × 10−1 (4.26 × 10−4) 3.7288 × 10−2 (3.53 × 10−4) + 3.7875 × 10−2 (7.35 × 10−4)

10 14 9.9973 × 10−1 (4.84 × 10−5) + 9.9968 × 10−1 (5.99 × 10−5) 7.8383 × 10−2 (1.87 × 10−3) + 8.2646 × 10−2 (9.27 × 10−4)

DTLZ2
5 14 8.1113 × 10−1 (5.40 × 10−4) − 8.1147 × 10−1 (4.91 × 10−4) 6.4962 × 10−2 (3.76 × 10−4) − 6.4032 × 10−2 (1.56 × 10−4)

10 19 9.7172 × 10−1 (1.84 × 10−4) + 9.7023 × 10−1 (2.36 × 10−4) 1.7059 × 10−1 (4.57 × 10−4) + 1.7666 × 10−1 (3.08 × 10−4)

DTLZ3
5 14 8.0451 × 10−1 (4.55 × 10−3) + 7.9170 × 10−1 (9.61 × 10−3) 7.0722 × 10−2 (3.81 × 10−3) + 7.9411 × 10−2 (7.69 × 10−3)

10 19 9.6892 × 10−1 (1.46 × 10−3) + 9.6339 × 10−1 (6.88 × 10−3) 1.7589 × 10−1 (3.25 × 10−3) + 1.8541 × 10−1 (7.87 × 10−3)

DTLZ4
5 14 8.1079 × 10−1 (6.75 × 10−4) − 8.1151 × 10−1 (2.92 × 10−4) 6.5065 × 10−2 (3.51 × 10−4) − 6.3928 × 10−2 (1.53 × 10−4)

10 19 9.7192 × 10−1 (2.17 × 10−4) + 9.7021 × 10−1 (2.63 × 10−4) 1.7000 × 10−1 (4.38 × 10−4) + 1.7579 × 10−1 (4.26 × 10−4)

DTLZ5
5 14 1.0491 × 10−1 (4.70 × 10−3) ≈ 1.0449 × 10−1 (4.85 × 10−3) 4.2347 × 10−2 (8.12 × 10−3) ≈ 4.3883 × 10−2 (7.30 × 10−3)

10 19 8.9374 × 10−2 (8.76 × 10−4) + 8.7696 × 10−2 (2.12 × 10−3) 8.1812 × 10−2 (1.90 × 10−2) ≈ 8.6392 × 10−2 (1.95 × 10−2)

DTLZ6
5 14 1.0093 × 10−1 (6.61 × 10−3) ≈ 1.0290 × 10−1 (5.19 × 10−3) 5.0886 × 10−2 (1.35 × 10−2) ≈ 4.9008 × 10−2 (1.04 × 10−2)

10 19 9.0887 × 10−2 (1.94 × 10−4) ≈ 9.0892 × 10−2 (2.61 × 10−4) 8.0732 × 10−2 (1.36 × 10−2) + 1.0316 × 10−1 (2.83 × 10−2)

DTLZ7
5 24 2.6175 × 10−1 (2.61 × 10−3) + 2.5228 × 10−1 (6.37 × 10−3) 1.2910 × 10−1 (3.47 × 10−3) + 2.0991 × 10−1 (1.41 × 10−1)

10 29 1.3533 × 10−1 (1.22 × 10−2) ≈ 1.2967 × 10−1 (1.59 × 10−2) 6.7953 × 10−1 (8.44 × 10−3) ≈ 6.7916 × 10−1 (8.51 × 10−3)

MaF1
5 14 1.1310 × 10−2 (2.42 × 10−4) − 1.1724 × 10−2 (2.69 × 10−4) 8.3015 × 10−2 (1.78 × 10−3) − 8.0030 × 10−2 (1.75 × 10−3)

10 19 5.3666 × 10−7 (8.60 × 10−7) ≈ 2.4953 × 10−7 (4.43 × 10−7) 1.6473 × 10−1 (9.92 × 10−4) + 1.6657 × 10−1 (8.11 × 10−4)

MaF2
5 14 1.9223 × 10−1 (2.51 × 10−3) ≈ 1.9181 × 10−1 (1.81 × 10−3) 5.1897 × 10−2 (5.97 × 10−4) ≈ 5.2287 × 10−2 (1.12 × 10−3)

10 19 2.2006 × 10−1 (3.13 × 10−3) ≈ 2.2185 × 10−1 (2.93 × 10−3) 1.1473 × 10−1 (5.72 × 10−3) ≈ 1.1269 × 10−1 (4.54 × 10−3)

MaF3
5 14 9.9758 × 10−1 (7.20 × 10−4) + 9.9617 × 10−1 (2.20 × 10−3) 2.5824 × 10−2 (1.93 × 10−3) ≈ 3.2517 × 10−2 (1.82 × 10−2)

10 19 9.9962 × 10−1 (1.43 × 10−5) + 9.9910 × 10−1 (7.12 × 10−4) 2.2447 × 10−2 (3.56 × 10−18) ≈ 2.1471 × 10−2 (2.12 × 10−3)

MaF4
5 14 1.1694 × 10−1 (2.68 × 10−3) + 1.1050 × 10−1 (5.30 × 10−3) 5.9851 × 10−1 (3.03 × 10−2) + 6.5158 × 10−1 (4.85 × 10−2)

10 19 5.4507 × 10−5 (3.97 × 10−6) − 7.1109 × 10−5 (2.01 × 10−5) 9.4958 × 100 (1.82 × 10−15) − 9.2043 × 100 (8.02 × 10−1)

MaF5
5 14 7.6540 × 10−1 (1.19 × 10−2) ≈ 7.6460 × 10−1 (2.49 × 10−2) 4.5367 × 10−1 (3.03 × 10−2) ≈ 4.5095 × 10−1 (5.02 × 10−2)

10 19 8.3647 × 10−1 (3.10 × 10−4) + 8.3359 × 10−1 (3.66 × 10−3) 1.2149 × 100 (2.28 × 10−16) + 1.2346 × 100 (1.26 × 10−2)

MaF6
5 14 1.2973 × 10−1 (4.61 × 10−4) ≈ 1.2950 × 10−1 (4.39 × 10−4) 1.1069 × 10−3 (5.97 × 10−5) + 1.1968 × 10−3 (6.96 × 10−5)

10 19 4.5524 × 10−2 (2.62 × 10−2) − 7.2304 × 10−2 (3.72 × 10−2) 1.3317 × 10−1 (3.24 × 10−2) − 7.7691 × 10−2 (1.02 × 10−1)
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Table 9. Cont.

Problem M D
HV IGD+

MultiGPO_ARV MultiGPO_SRV MultiGPO_ARV MultiGPO_SRV

MaF7
5 24 2.6077 × 10−1 (2.75 × 10−3) + 2.5643 × 10−1 (2.73 × 10−3) 1.3091 × 10−1 (3.40 × 10−3) + 1.5877 × 10−1 (3.95 × 10−2)

10 29 1.5393 × 10−1 (3.05 × 10−4) + 1.3458 × 10−1 (1.66 × 10−2) 6.7698 × 10−1 (2.28 × 10−16) ≈ 6.7943 × 10−1 (5.75 × 10−3)

MaF8
5 2 1.2592 × 10−1 (4.35 × 10−4) ≈ 1.2478 × 10−1 (4.67 × 10−3) 4.6730 × 10−2 (6.46 × 10−4) + 5.3530 × 10−2 (2.84 × 10−2)

10 2 1.1005 × 10−2 (1.15 × 10−4) ≈ 1.0978 × 10−2 (9.92 × 10−5) 6.2620 × 10−2 (0.00 × 100) ≈ 6.3002 × 10−2 (7.59 × 10−4)

MaF9
5 2 3.2427 × 10−1 (1.01 × 10−3) ≈ 3.2424 × 10−1 (2.67 × 10−3) 5.2483 × 10−2 (6.17 × 10−4) ≈ 5.3077 × 10−2 (4.51 × 10−3)

10 2 1.8572 × 10−2 (1.21 × 10−4) ≈ 1.8569 × 10−2 (1.48 × 10−4) 7.2283 × 10−2 (4.99 × 10−4) ≈ 7.2281 × 10−2 (3.44 × 10−4)

MaF10
5 14 9.9591 × 10−1 (5.39 × 10−4) + 5.9066 × 10−1 (7.86 × 10−2) 1.0616 × 10−1 (1.75 × 10−3) + 9.8594 × 10−1 (2.10 × 10−1)

10 19 9.9818 × 10−1 (8.12 × 10−4) + 7.2468 × 10−1 (7.59 × 10−2) 1.7741 × 10−1 (7.35 × 10−3) + 8.5126 × 10−1 (1.97 × 10−1)

WFG1
5 14 9.9624 × 10−1 (4.40 × 10−4) + 9.7518 × 10−1 (3.08 × 10−2) 1.0612 × 10−1 (1.51 × 10−3) + 1.4498 × 10−1 (4.70 × 10−2)

10 19 9.9805 × 10−1 (7.91 × 10−4) + 9.9740 × 10−1 (6.59 × 10−4) 1.8100 × 10−1 (5.32 × 10−3) + 1.8820 × 10−1 (1.36 × 10−2)

WFG2
5 14 9.8743 × 10−1 (1.98 × 10−3) + 9.8416 × 10−1 (2.26 × 10−3) 1.0821 × 10−1 (3.25 × 10−3) ≈ 1.0870 × 10−1 (3.80 × 10−3)

10 19 9.9216 × 10−1 (1.81 × 10−3) + 9.8845 × 10−1 (2.30 × 10−3) 1.8291 × 10−1 (1.39 × 10−2) − 1.7426 × 10−1 (1.03 × 10−2)

WFG3
5 14 1.3093 × 10−1 (1.75 × 10−2) ≈ 1.3404 × 10−1 (1.65 × 10−2) 4.6603 × 10−1 (5.86 × 10−2) − 3.7931 × 10−1 (4.14 × 10−2)

10 19 0.0000 × 100 (0.00 × 100) ≈ 0.0000 × 100 (0.00 × 100) 1.3803 × 100 (1.44 × 10−1) ≈ 1.3479 × 100 (1.20 × 10−1)

WFG4
5 14 7.9304 × 10−1 (3.16 × 10−3) + 7.8988 × 10−1 (3.82 × 10−3) 3.2184 × 10−1 (6.14 × 10−3) + 3.2773 × 10−1 (6.20 × 10−3)

10 19 9.5320 × 10−1 (5.39 × 10−3) + 9.4417 × 10−1 (8.64 × 10−3) 9.6320 × 10−1 (2.24 × 10−2) + 1.0054 × 100 (3.41 × 10−2)

WFG5
5 14 7.5300 × 10−1 (2.97 × 10−3) + 7.5198 × 10−1 (1.61 × 10−3) 3.6670 × 10−1 (5.91 × 10−3) + 3.7129 × 10−1 (3.55 × 10−3)

10 19 9.0141 × 10−1 (1.28 × 10−3) + 8.9827 × 10−1 (1.38 × 10−3) 1.0257 × 100 (1.58 × 10−2) ≈ 1.0346 × 100 (1.46 × 10−2)

WFG6
5 14 7.3125 × 10−1 (1.50 × 10−2) + 7.2172 × 10−1 (1.60 × 10−2) 4.0251 × 10−1 (2.25 × 10−2) + 4.1960 × 10−1 (2.33 × 10−2)

10 19 8.6612 × 10−1 (1.85 × 10−2) ≈ 8.5851 × 10−1 (1.47 × 10−2) 1.0760 × 100 (3.40 × 10−2) + 1.1139 × 100 (2.98 × 10−2)

WFG7
5 14 7.9760 × 10−1 (3.31 × 10−3) ≈ 7.9764 × 10−1 (3.30 × 10−3) 3.1604 × 10−1 (5.65 × 10−3) ≈ 3.1749 × 10−1 (5.84 × 10−3)

10 19 9.5956 × 10−1 (3.66 × 10−3) + 9.5475 × 10−1 (5.47 × 10−3) 9.6175 × 10−1 (1.99 × 10−2) + 9.8868 × 10−1 (2.40 × 10−2)

WFG8
5 14 6.8976 × 10−1 (2.81 × 10−3) ≈ 6.8800 × 10−1 (2.04 × 10−3) 6.0005 × 10−1 (3.45 × 10−3) ≈ 5.9836 × 10−1 (3.20 × 10−3)

10 19 8.9386 × 10−1 (1.23 × 10−2) + 8.7396 × 10−1 (1.40 × 10−2) 1.4763 × 100 (2.26 × 10−1) + 1.6441 × 100 (2.66 × 10−1)

WFG9
5 14 7.5112 × 10−1 (6.66 × 10−3) ≈ 7.5271 × 10−1 (5.71 × 10−3) 3.7320 × 10−1 (1.04 × 10−2) ≈ 3.7297 × 10−1 (8.77 × 10−3)

10 19 9.1675 × 10−1 (8.03 × 10−3) + 9.0123 × 10−1 (4.14 × 10−2) 1.0912 × 100 (4.55 × 10−2) ≈ 1.1322 × 100 (8.26 × 10−2)

+/−/≈ 28/5/19 25/7/20

4.3.3. Parameter Sensitivity Analysis

The purpose of adjusting RVs at a later stage is to improve the search capability of
the algorithm so that it can perform well when dealing with more complex problems. The
timing of adjusting the RVs needs to be determined, i.e., α in Algorithm 1. This parameter
plays a critical role in affecting the algorithm’s performance. We have tested different values
to investigate the impact on algorithm’s performance so as to determine the optimal value.
It should be noted that the accuracy of the region explored by our algorithm in the early
stage affects the effectiveness of the RV adjustment in the later stage. The algorithm should
explore all the promising areas as much as possible in the early stage. That said, we do
not suggest starting the adjustment of RVs too early. Therefore, we tested the performance
of the algorithm when α = 0.5, 0.6, 0.7, and 0.8. For each different value of α, one point
is added whenever they achieve the best performance in a test problem; eventually, we
counted the percentage of their scores in each category of test problem and plotted a line
graph, where the higher the line, the better the performance of the parameter. As shown in
Figure 9, the algorithm performs best when α = 0.7. Hence, we recommend using α = 0.7 in
this paper.
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(a) HV (b) IGD+

Figure 9. Performance score of GPDARVC with varying α on different test suites.

5. Conclusions

In this article, we propose a Generalized Pareto Dominance and Reference Vector
Cooperative evolutionary algorithm to deal with many-objective optimization problems. A
generalized Pareto dominance relation can provide enough selection pressure to enhance
convergence, while the guidance of reference vectors approximates the actual PF from
different directions, ensuring population diversity. Additionally, we adjust the reference
vectors in the later stage of the algorithm, exploring previously uncharted promising regions
and thus significantly improving the algorithm’s ability to handle complex problems. The
cooperation of GPD and RV provides a good balance between convergence and diversity.
Compared with state-of-the art algorithms, after conducting comprehensive experiments,
we can confirm that GPDARVC shows great performance in most cases.

In future studies, we need to investigate whether adaptively updating reference vectors
during the evolution process can further improve the overall performance. Given the
performance of GPDARVC in real multi-objective engineering problems, we are interested
in extending the application of GPDARVC to more complex engineering problems, such as
protein structure prediction [3], many-objective recommendation systems [61] and many-
objective mobile edge computing problems [62].
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