Motor Asymmetry in Football: Implications for Muscular Power, Balance, and Injury Prevention
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Databases Searched
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction and Management
2.5. Quality Assessment
- Study design and methodology (e.g., sample size, control groups, blinding)
- Data collection methods and tools (e.g., reliability and validity of measurement instruments)
- Statistical analysis and reporting of results (e.g., appropriateness of statistical tests, clarity of data presentation)
- Discussion and interpretation of findings (e.g., consideration of limitations, implications for practice)
2.6. Synthesis of Findings
- The prevalence and impact of muscular power motor asymmetry on performance and injury risk.
- The role of dynamic balance motor asymmetry in predicting injuries and its implications for training and rehabilitation.
- Methodological advancements in assessing motor asymmetry and their contribution to a more nuanced understanding of the topic.
- Gaps in the current literature and recommendations for future research.
3. Muscular Power Asymmetry
4. Dynamic Balance Asymmetry
5. Impact on Performance and Injury Prevention
6. Controversies and Divergent Hypotheses
7. Gender and Age-Related Differences in Motor Asymmetry
8. Methodological Advances and Future Directions
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.B.; Mc Auliffe, S.; Thomson, A.; Sideris, V.; Santiago, P.; Read, P.J. The use of wearable technology as an assessment tool to identify between-limb differences during functional tasks following ACL reconstruction. A scoping review. Phys. Ther. Sport 2022, 55, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Kennelly, S.; Sheehan, J.; Hawkins, R.; Milsom, J.; King, E.; Whiteley, R.; Ekstrand, J. If overuse injury is a ‘training load error’, should undertraining be viewed the same way? Br. J. Sports Med. 2016, 50, 1017–1018. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Kovacs, M.S. Tennis physiology: Training the competitive athlete. Sports Med. 2007, 37, 189–198. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.; Rosseti, M.; Carpes, F.P.; Bishop, C. Do asymmetry scores influence speed and power performance in elite female soccer players? Biol. Sport 2019, 36, 209–216. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Paterno, M.V.; Nick, T.G.; Hewett, T.E. The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am. J. Sports Med. 2008, 36, 1073–1080. [Google Scholar] [CrossRef]
- McGill, S.M.; Andersen, J.T.; Horne, A.D. Predicting performance and injury resilience from movement quality and fitness scores in a basketball team over 2 years. J. Strength Cond. Res. 2012, 26, 1731–1739. [Google Scholar] [CrossRef]
- Quarrie, K.L.; Wilson, B. Force production in the rugby union scrum. J. Sports Sci. 2000, 18, 237–246. [Google Scholar] [CrossRef]
- Schmitz, A.; Russo, K.; Edwards, L.; Noehren, B. Do novice runners have weak hips and bad running form? Gait Posture 2014, 40, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Dines, J.S.; Frank, J.B.; Akerman, M.; Yocum, L.A. Glenohumeral internal rotation deficits in baseball players with ulnar collateral ligament insufficiency. Am. J. Sports Med. 2009, 37, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- DeLang, M.D.; Salamh, P.A.; Farooq, A.; Tabben, M.; Whiteley, R.; van Dyk, N.; Chamari, K. The dominant leg is more likely to get injured in soccer players: Systematic review and meta-analysis. Biol. Sport 2021, 38, 397–435. [Google Scholar] [CrossRef]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar]
- Gribble, P.A.; Kelly, S.E.; Refshauge, K.M.; Hiller, C.E. Interrater reliability of the star excursion balance test. J. Athl. Train. 2013, 48, 621–626. [Google Scholar] [CrossRef]
- Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Chamari, K. Heart rate responses and training load during nonspecific and specific aerobic training in adolescent taekwondo athletes. J. Hum. Kinet. 2011, 29, 59–66. [Google Scholar] [CrossRef]
- Haddad, M.; Abbes, Z.; Zarrouk, N.; Aganovic, Z.; Hulweh, A.; Moussa-Chamari, I.; Behm, D.G. Difference asymmetry between preferred dominant and non-dominant legs in muscular power and balance among sub-elite soccer players in Qatar. Symmetry 2023, 15, 625. [Google Scholar] [CrossRef]
- Meylan, C.M.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J. Sports Sci. 2010, 28, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Gonell, A.C.; Romero, J.A.; Soler, L.M. Relationship between the Y Balance Test Scores and Soft Tissue Injury Incidence in a Soccer Team. Int. J. Sports Phys. Ther. 2015, 10, 955–966. [Google Scholar] [PubMed]
- Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Hambli, M.; Hue, O.; Chamari, K. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort. Physiol. Behav. 2013, 119, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef]
- Menzel, H.J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.; de Andrade, A.G.; de Jesus-Moraleida, F.R. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J. Strength Cond. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef]
- Wong, P.-l.; Chamari, K.; Chaouachi, A.; Wisløff, U.; Hong, Y. Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements. Br. J. Sports Med. 2007, 41, 84–92. [Google Scholar] [CrossRef]
- Bini, R.R.; Hume, P.A. Relationship between pedal force asymmetry and performance in cycling time trial. J. Sports Med. Phys. Fit. 2015, 55, 892–898. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do bilateral power deficits influence direction-specific movement patterns? Res. Sports Med. 2007, 15, 125–132. [Google Scholar] [CrossRef]
- Linek, P.; Sikora, D.; Wolny, T.; Saulicz, E. Reliability and number of trials of Y Balance Test in adolescent athletes. Musculoskelet. Sci. Pract. 2017, 31, 72–75. [Google Scholar] [CrossRef]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef]
- Chamari, K.; Hachana, Y.; Ahmed, Y.B.; Galy, O.; Sghaier, F.; Chatard, J.C.; Hue, O.; Wisloff, U. Field and laboratory testing in young elite soccer players. Br. J. Sports Med. 2004, 38, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Stiffler, M.R.; Sanfilippo, J.L.; Brooks, M.A.; Heiderscheit, B.C. Star Excursion Balance Test Performance Varies by Sport in Healthy Division I Collegiate Athletes. J. Orthop. Sports Phys. Ther. 2015, 45, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Padilla, S. Scientific bases for precompetition tapering strategies. Med. Sci. Sports Exerc. 2003, 35, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Castellini, E. Vertical jump performance in Italian male and female national team soccer players. J. Strength Cond. Res. 2013, 27, 1156–1161. [Google Scholar] [CrossRef]
- Reilly, T.; Atkinson, G.; Edwards, B.; Waterhouse, J.; Farrelly, K.; Fairhurst, E. Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (soccer). Chronobiol. Int. 2007, 24, 507–519. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef]
- Teixeira, L.A. Categories of manual asymmetry and their variation with advancing age. Cortex 2008, 44, 707–716. [Google Scholar] [CrossRef]
- Li, P.; Ensink, E.; Lang, S.; Marshall, L.; Schilthuis, M.; Lamp, J.; Vega, I.; Labrie, V. Hemispheric asymmetry in the human brain and in Parkinson’s disease is linked to divergent epigenetic patterns in neurons. Genome Biol. 2020, 21, 61. [Google Scholar] [CrossRef]
- Augustsson, J.; Thomeé, R.; Karlsson, J. Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 350–356. [Google Scholar] [CrossRef]
- Sawyer, D.T.; Ostarello, J.Z.; Suess, E.A.; Dempsey, M. Relationship between football playing ability and selected performance measures. J. Strength Cond. Res. 2002, 16, 611–616. [Google Scholar]
- Fousekis, K.; Tsepis, E.; Vagenas, G. Multivariate isokinetic strength asymmetries of the knee and ankle in professional soccer players. J. Sports Med. Phys. Fit. 2010, 50, 465–474. [Google Scholar]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.; Myer, G.D.; Lloyd, R.S. Neuromuscular risk factors for knee and ankle ligament injuries in male youth soccer players. Sports Med. 2016, 46, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.; Myer, G.D.; Lloyd, R.S. A prospective investigation to evaluate risk factors for lower extremity injury risk in male youth soccer players. Scand. J. Med. Sci. Sports 2018, 28, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Kolodziej, M.; Nolte, K.; Schmidt, M.; Alt, T.; Jaitner, T. Identification of neuromuscular performance parameters as risk factors of non-contact injuries in male elite youth soccer players: A preliminary study on 62 players with 25 non-contact injuries. Front. Sports Act. Living 2021, 3, 615330. [Google Scholar] [CrossRef]
- Hietamo, J.; Rantala, A.; Parkkari, J.; Leppänen, M.; Rossi, M.; Heinonen, A.; Steffen, K.; Kannus, P.; Mattila, V.; Pasanen, K. Injury History and Perceived Knee Function as Risk Factors for Knee Injury in Youth Team-Sports Athletes. Sports Health 2023, 15, 26–35. [Google Scholar] [CrossRef]
- Makuch, R.; Kucharski, A.; Pilarski, K.; Chrościcka, A.; Gała, K.; Czajka, A.; Lenard, P.; Michalska, S.; Dewicka, M.; Wawrzyniak, A.M. Knee joint injuries in football players: Types of injuries, etiology, diagnostics and prevention. Qual. Sport 2024, 15, 51945. [Google Scholar] [CrossRef]
- McCurdy, K.; O’Kelley, E.; Kutz, M.; Langford, G.; Ernest, J.; Torres, M. Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. J. Sport Rehabil. 2010, 19, 57–70. [Google Scholar] [CrossRef]
- Bishop, C. Inter-limb asymmetry: Longitudinal monitoring and associations with speed and change of direction speed in elite academy soccer players. Doctoral Dissertation, Middlesex University, London, UK, 2020. [Google Scholar]
- Alenezi, F.; Herrington, L.; Jones, P.; Jones, R. The reliability of biomechanical variables collected during single leg squat and landing tasks. J. Electromyogr. Kinesiol. 2014, 24, 718–721. [Google Scholar] [CrossRef]
- Alanen, A.; Räisänen, A.; Benson, L.; Pasanen, K. The use of inertial measurement units for analyzing change of direction movement in sports: A scoping review. Int. J. Sports Sci. Coach. 2021, 16, 1332–1353. [Google Scholar] [CrossRef]
- Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.L.; Ahmed, S.N.; et al. Observation and properties of the X(3872) decaying to J/psipi(+)pi(−) in pp collisions at sqrt[s] = 1.96 TeV. Phys. Rev. Lett. 2004, 93, 162002. [Google Scholar] [CrossRef]
- Haddad, M.; Hermassi, S.; Aganovic, Z.; Dalansi, F.; Kharbach, M.; Mohamed, A.O.; Bibi, K.W. Ecological Validation and Reliability of Hexoskin Wearable Body Metrics Tool in Measuring Pre-exercise and Peak Heart Rate During Shuttle Run Test in Professional Handball Players. Front. Physiol. 2020, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.J.; Valido, A.J.; Malcata, I.S.; Ferreira, C.C.; Pessôa Filho, D.M.; Verardi, C.E.; Espada, M.C. The relationship between preseason common screening tests to identify inter-limb asymmetries in high-level senior and professional soccer players. Symmetry 2021, 13, 1805. [Google Scholar] [CrossRef]
- Beato, M.; Young, D.; Stiff, A.; Coratella, G. Lower-limb muscle strength, anterior-posterior and inter-limb asymmetry in professional, elite academy and amateur soccer players. J. Hum. Kinet. 2021, 77, 135. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Montalvo, A.M.; Kiefer, A.W.; Lloyd, R.S.; Myer, G.D. Integrative neuromuscular training and injury prevention in youth athletes. Part I: Identifying risk factors. Strength Cond. J. 2016, 38, 36–48. [Google Scholar] [CrossRef]
- Exell, T.; Irwin, G.; Gittoes, M.; Kerwin, D. Strength and performance asymmetry during maximal velocity sprint running. Scand. J. Med. Sci. Sports 2017, 27, 1273–1282. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sports Sci. Med. 2014, 13, 157. [Google Scholar]
- Bittencourt, N.F.; Meeuwisse, W.; Mendonça, L.; Nettel-Aguirre, A.; Ocarino, J.; Fonseca, S. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—Narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef]
- Dijkstra, H.P.; Pollock, N.; Chakraverty, R.; Ardern, C.L. Return to play in elite sport: A shared decision-making process. Br. J. Sports Med. 2017, 51, 419–420. [Google Scholar] [CrossRef]
- Vasileiou, S.S.; Asimakidis, N.D.; Dalamitros, A.A.; Manou, V. Effects of an 8-Week In-Season Explosive Power Training Program on Neuromuscular Performance and Lower-Limb Asymmetries in Young Male Soccer Players. J. Strength Cond. Res. 2024, 10–1519. [Google Scholar] [CrossRef]
- Fox, K.T.; Pearson, L.T.; Hicks, K.M. The effect of lower inter-limb asymmetries on athletic performance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0286942. [Google Scholar] [CrossRef]
- Leetun, D.T.; Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Core stability measures as risk factors for lower extremity injury in athletes. Med. Sci. Sports Exerc. 2004, 36, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.; Dunlop, G.; Rouissi, M.; Chtara, M.; Paul, D.; Zouhal, H.; Wong, D.P. The relationship between lower-limb strength and match-related muscle damage in elite level professional European soccer players. J. Sports Sci. 2015, 33, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Bishop, C.; Gómez-Piqueras, P.; Veiga, S.; Viejo-Romero, D.; Navandar, A. Strength, jumping, and change of direction speed asymmetries are not associated with athletic performance in elite academy soccer players. Front. Psychol. 2020, 11, 175. [Google Scholar]
- Torreblanca-Martínez, V.; Torreblanca-Martínez, S.; Salazar-Martínez, E. Effects of inter-limb vertical jump asymmetries on physical performance in elite soccer players under 19 years old. J. Phys. Educ. Sport 2020, 20, 2607–2613. [Google Scholar]
- Ascenzi, G.; Ruscello, B.; Filetti, C.; Bonanno, D.; Di Salvo, V.; Nuñez, F.J.; Mendez-Villanueva, A.; Suarez-Arrones, L. Bilateral deficit and bilateral performance: Relationship with sprinting and change of direction in elite youth soccer players. Sports 2020, 8, 82. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and horizontal asymmetries are related to slower sprinting and jump performance in elite youth female soccer players. J. Strength Cond. Res. 2021, 35, 56–63. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Bromley, T.; Brazier, J.; Jarvis, P.; Chavda, S.; Turner, A. The association between interlimb asymmetry and athletic performance tasks: A season-long study in elite academy soccer players. J. Strength Cond. Res. 2022, 36, 787–795. [Google Scholar] [CrossRef]
- Chaouachi, A.; Othman, A.B.; Hammami, R.; Drinkwater, E.J.; Behm, D.G. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children. J. Strength Cond. Res. 2014, 28, 401–412. [Google Scholar] [CrossRef]
Criteria Type | Description |
---|---|
Inclusion Criteria |
|
| |
| |
| |
Exclusion Criteria |
|
| |
| |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, M. Motor Asymmetry in Football: Implications for Muscular Power, Balance, and Injury Prevention. Symmetry 2024, 16, 1485. https://doi.org/10.3390/sym16111485
Haddad M. Motor Asymmetry in Football: Implications for Muscular Power, Balance, and Injury Prevention. Symmetry. 2024; 16(11):1485. https://doi.org/10.3390/sym16111485
Chicago/Turabian StyleHaddad, Monoem. 2024. "Motor Asymmetry in Football: Implications for Muscular Power, Balance, and Injury Prevention" Symmetry 16, no. 11: 1485. https://doi.org/10.3390/sym16111485
APA StyleHaddad, M. (2024). Motor Asymmetry in Football: Implications for Muscular Power, Balance, and Injury Prevention. Symmetry, 16(11), 1485. https://doi.org/10.3390/sym16111485