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Abstract: Convolutional Neural Networks (CNNs) are a class of deep neural networks that have
proven highly effective in areas such as image and video recognition. CNNs typically include several
types of layers, such as convolutional layers, activation layers, pooling layers, and fully connected
layers, all of which contribute to the network’s ability to recognize patterns and features. The pooling
layer, which often follows the convolutional layer, is crucial for reducing computational complexity
by performing down-sampling while maintaining essential features. This layer’s role in balancing the
symmetry of information across the network is vital for optimal performance. However, the choice of
pooling method is often based on intuition, which can lead to less accurate or efficient results. This
research compares various standard pooling methods (MAX and AVERAGE pooling) on standard
datasets (MNIST, CIFAR-10, and CIFAR-100) to determine the most effective approach in preserving
detail, performance, and overall computational efficiency while maintaining the symmetry necessary
for robust CNN performance.

Keywords: artificial neural network; image classification; pooling methods; max pooling; average
pooling; min pooling; support vector machine; long short-term memory; rectified linear unit

1. Introduction

The most sophisticated methods for performing various challenging tasks, such as
image segmentation [1] and classification [2] in computer vision and image-analysis tasks,
are convolutional neural networks (CNNs). Convolutions, nonlinear activations, and
additional pooling operators are ample in each convolutional layer of a CNN, typically
followed by one or more fully connected layers. CNNs are feedforward networks because
the information is passed in only one direction from input to output. CNNs and artificial
neural networks (ANNSs) are rooted in biological principles. Their design is inspired by the
brain’s visual cortex, alternately layered with simple and higher-order cells [3]. There are
many different types of CNN architectures, but they consist of convolutional and pooling
layers built into modules. Beneath these modules are one or more fully connected layers,
similar to standard feedforward neural networks. Modules are typically stacked on top
of each other to build complex models [4]. A typical CNN architecture for a toy-image-
classification task is shown in Figure 1. Feeding the images directly into the network
involves a series of convolution and pooling layers. The representations formed by these
processes are fed into one or more fully connected layers. The classifier finally provides a
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proof of evaluation for the fully linked layers. Although this is the most commonly used
basic design in the literature, many improvements to the architecture have recently been
proposed to improve image classification accuracy or reduce computational overhead.

Fully Connected Layers

Convolutional Layers Output Class

Convolution Plane

Pooling

Figure 1. Standard CNN architecture.

Similar to feature extraction, convolutional layers learn feature representations of
input images. Neurons in convolutional layers are organized into feature maps. A set of
trainable weights, often called a filter bank, connects each neuron in the receptive field of
the feature map with its neighbors in the underlying layer. We combine the input with the
learned weights to create a new feature map and pass the output to a nonlinear activation
function. Each neuron in a feature map is constrained to have equal weights since the
weights of relatively different maps within the same convolutional layer are variable, so
multiple features can be obtained at each point [5]. The k;;, output feature map vy can be
defined more formally as

vk = f (wg X x) 1)

where x represents the input image, wy represents the convolution filter attached to the
kth feature map, the 2D convolution operator is the multiplication sign in this context, and
f (.) represents the nonlinear activation function. You can use this operator to compute the
inner product of the filter model at each location in the input image.

Before the arrival of Convolutional Neural Networks (CNNSs), traditional machine
learning models such as Support Vector Machines (SVM) [6] and K-Nearest Neighbors
(KNN) [7] were commonly employed for image classification, where each pixel was treated
as an individual feature. The introduction of CNNs revolutionized this approach by
using convolutional layers to extract multiple features from an image, enhancing the
prediction of output values. Since the convolution operation is computationally intensive,
pooling layers were integrated into CNNs to make the process more efficient. Pooling
reduces the computational load by down-sampling the input, which decreases the number
of computations required while preserving the most critical information. The pooling
method streamlines the processing within the network, maintaining essential details with
significantly lower resource consumption [8].

While CNNs have significantly improved image classification, various enhancements
have been proposed to further optimize performance, including hybrid models [9] that
combine CNNs with other machine learning algorithms to improve accuracy or reduce
computational complexity. Recent advancements, such as adaptive pooling strategies and
dynamic pooling methods, adjust pooling operations based on the input, allowing for
better flexibility and feature retention [10]. However, the impact of these newer methods on
standard architectures like AlexNet, ResNet, and LeNet remains an area of active research.
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This study aims to provide an overview of various pooling methods, discussing the
benefits and drawbacks of each approach (see Table 1). Additionally, we compare their
performance in classification tasks using three distinct datasets.

Table 1. Standard pooling methods along with strengths and weaknesses.

Pooling Methods Description Strengths Weaknesses Common Use Cases
Preserves strong can discard Image classification
Selects the features potentially useful (e.g., MNIST and
. maximum value Robust to noise information CIFAR-10)
Max Pooling within each Improves May lead to Object detection
pooling window generalization overfitting in Natural language
some cases processing
Calculates the Captures overall feature May blur

Average Pooling

average value
within each
pooling window

representation
Smoothes out noise
Less prone

to overfitting

important features
Less effective at
preserving sharp
edges

Image classification
(e.g., ImageNet)
Semantic segmentation

Min Pooling

Selects the
minimum value
within each
pooling window

Captures dark features’
or background
information

Useful in specific
domains, like

Less common
than max or
average pooling
Can be sensitive
to noise

Medical image analysis
Texture analysis

medical imaging

The main contributions of this study include the following;:

1.  The proposed study systematically evaluated multiple CNN architectures—LeNet,
AlexNet, and ResNet—across various datasets (MNIST, CIFAR-10, and CIFAR-100).
This comprehensive analysis sheds light on how these models perform on datasets
of differing complexities and sizes, providing insights into their adaptability and
generalization capabilities across different image-classification tasks.

2. By presenting the comparative performance metrics, the proposed study identifies
which CNN architectures excel or struggle when applied to specific datasets. This
helps researchers to understand the strengths and weaknesses of each model in
handling distinct image datasets, aiding in informed model selection for particular
tasks or datasets.

3. This study provides a comprehensive comparison of standard pooling methods—max
and average pooling—evaluated across different CNN architectures, including CNN,
AlexNet, ResNet, and LeNet, on multiple datasets. While prior studies have discussed
individual pooling methods, few have provided a systematic comparison in this context.
Additionally, in this study, these methods were evaluated in light of recent advancements,
highlighting the practical implications for resource-constrained environments.

The rest of this study is organized as follows: Section 2 reviews work related to
standard pooling methods proposed for computer vision and various image-analysis
applications. Section 3 presents the datasets and experimental procedures, reviews and
presents the results and document provides a detailed discussion of our study, and Section 4
summarizes the study.

2. Related Work

The publications included in this review were sourced through a thorough search
that utilized combinations of the terms “Pooling”, “CNN”, and “Convolution” (along with
related terms such as “convolutional”) across titles, keywords, and abstracts. Following an
initial screening of the results, additional relevant literature was incorporated by carefully
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examining references and related works from the selected papers, with a focus specifically
on the applications of CNNs. While some foundational studies, such as Yamaguchi’s
introduction of max pooling in the early 1990s, are noted, the majority of pooling techniques
and advancements have emerged in the last decade [11]. Figure 2 illustrates a sustained
interest in pooling research over the past eight years, with only minor fluctuations in
publication frequency.

2000

1500 -

1000 -

No of Publicaions

500

2017 2018 2019 2020 2021 2022 2023 2024
Years

Figure 2. Total number of publications on pooling techniques for CNNs in Scopus.

Two pooling groups are commonly employed in CNN for feature-reduction purposes.
The first is local pooling, which samples small local regions, such as 3 x 3, to display the
feature map. The second is global pooling. It derives a scalar value from the feature vector
of the image representation of each feature across the feature map [12]. A fully connected
layer takes all these representations and classifies them. In particular, the well-known Dense
Net consists of one global pooling layer and four local pooling layers. The three commonly
used types of pooling operations are max pooling, average pooling, and min pooling [13].
This study discusses each pooling operation’s properties, advantages, and limitations.

2.1. Max Pooling

Max pooling is a simple operation widely used in CNNs due to its lack of tuneable pa-
rameters [14]. The feature map’s spatial dimensions are enhanced by a mechanism, known
as max pooling, that also provides network invariance. To accomplish network invariance,
the k x k neighborhood is emphasized as having the highest value on the feature map.
The max pooling method selects the largest element for each pooling zone. Considering
sparse codes and simple linear classifiers, max pooling shows better performance. Due
to these reasons, it has grown in popularity in recent years [15]. Max pooling’s stochastic
features allow it to handle sparse representations efficiently, which is yet another reason for
its success. The mathematical expression for max pooling is

frmax(X) = max;x; 2)
J-related filters are used for the composition of the mth max pooling band:
pj,m = max(h]-, (m—1)N+ T) ©)

Here, Nc{1,...,R} is termed as a pooling shift, which allows for overlap within
concerned pooling regions when N < R. The pooling layer reduces the output size from
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K convolution bands to M = (%) the pooling region and the expected results for the

resulting layer p= [p1,....pm] € RMJ.

The primary limitation of max pooling lies in its selection of the maximum element
from the pooling region while disregarding other values, potentially leading to the loss
of distinguishing features and critical information. Studies have highlighted that, despite
enhancing computational efficiency and reducing dimensionality in CNNs, max pooling
can compromise spatial information and introduce inconsistencies in activations [16].
Furthermore, in object-detection tasks, max pooling often results in poor localization
accuracy, particularly for small or low-resolution objects [17]. To mitigate these drawbacks,
anovel approach, called Spatial Pyramid Pooling (SPP), has been proposed, which employs
multiple pooling layers at varying spatial resolutions to better capture spatial information,
demonstrating superior performance over max pooling in benchmark object detection
datasets [18].

Figure 3 illustrates the max pooling operation. In this example, the pooling region
has an input size of 4-by-4, while the filter size, with a stride of 2, is 2-by-2. Max pooling
extracts the maximum value of 20 from the first 2 x 2 segments (highlighted in green), and
the highest values from each segment are selected to generate an output channel. However,
max pooling only considers the largest value and ignores the others. As a result, when most
elements have high values, significant features may be lost after max pooling, potentially
leading to adverse outcomes.

Rectified Feature Map Pooled Featt
ooled Feature map

10 120 |25 | 70 20 80
8 11 | 80 | 40 Max pooling with 2*2
filters and stride 2 7
4 5
6 y

Max(4,5,6,7)=7

Figure 3. Illustration of max pooling operation.

2.2. Average Pooling

Down-sampling is performed by an average pooling layer by splitting the input into
rectangular pooling areas and determining the average values of each region. The idea of
extracting the feature by finding their average was first introduced by the authors of [19].
The proposed idea was implemented in the first convolution-based deep neural network.
Figure 4 demonstrates the example of average pooling operation. The standard average
pooling method divides the image input into several independent rectangular boxes. The
average value for each box is determined, and the output channel is displayed. Average
pooling is mathematically defined as

fave (X) = - L0 @)

where x is a vector representing activations from a rectangular box of N permutation in
an image or a channel (for example, the size of the rectangular area in Figure 4 is 2 by 2.
Average pooling used to be common, but with the arrival of the max pooling technique,
its usefulness has been constrained [20], where the shortcoming seems to mostly lead to a
decline in information in terms of contrast. All of the activation values in the rectangular
box are considered when estimating the mean. The estimated mean will indeed be low if the
strength of all the activation functions is low, resulting in diminished contrast. Whenever
the majority of the activations in the pooling region have a zero value, the scenario will get
much worse. In that situation, the convolutional feature characteristic would be reduced
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significantly. Noise-inducing elements are reduced by averaging. However, since it gives
each element in the pooling region equal priority, background regions may predominate in
the pooled representation, which might diminish the discrimination power [21].

Rectified Feature M
cctilied eature Map Pooled Feature map
10 | 20 | 25 70 12.2 | 53.7
8 11 | 80 | 40 Average pooling with 2*2
filters and stride 2 515
4 )
6 7 A

Average(4,5,6,7)=5.5

Figure 4. Illustration of the average pooling operation.

Since neither max pooling nor average pooling consistently demonstrates superior
performance, several techniques have emerged that combine the strengths of both methods,
such as weighted pooling [22] and soft pooling [23]. These hybrid approaches introduce
additional parameters, leading to increased learning time and computational overhead.
However, these methods still face challenges, as they either prioritize the stronger activation
or treat all activations equally, with existing studies primarily depending on activation
values to address these limitations.

2.3. Min Pooling

Min pooling is a pooling operation that selects the minimum value within a sliding
window, though it is less frequently used than max or average pooling, as it tends to
preserve the smallest and least significant features of the input [24]. However, it is beneficial
in specific applications, such as anomaly detection and background subtraction, where
detecting differences from a reference signal is essential. A comparison of standard pooling
methods—max, average, and min pooling—along with their strengths and weaknesses, is
presented in Table 1. Studies indicate that max pooling is generally more effective for tasks
requiring the capture of highly discriminative features, while average pooling offers greater
robustness to noise and improved generalization by considering the overall context [25].

Recent advancements in CNNs have introduced hybrid models and adaptive pooling
strategies to improve performance in various tasks. For example, Khairandish et al. (2022)
proposed a hybrid approach combining CNNs with Support Vector Machines (SVMs)
for more accurate image classification in limited-resource environments, demonstrating
that hybrid methods can outperform traditional CNNs in certain contexts [26]. Similarly,
Ding et al. (2024) introduced an adaptive pooling method for image text retrievel that
adjusts pooling parameters based on input data, allowing the model to maintain more
relevant features while reducing computational complexity [27]. Li et al. (2024) explored
the benefits of combining CNNs with other algorithms, like Long Short-Term Memory
(LSTM) networks, enabling enhanced feature extraction for recommendation algorithm [28].
Additionally, Han et al. (2019) conducted a survey of dynamic neural networks” mech-
anism, which varies the pooling size depending on the input characteristics, offering
better adaptability and precision for complex datasets [29]. Zhao et al. (2024) presented a
mixed-pooling strategy where max and average pooling were combined in a single layer,
demonstrating improvements in accuracy on specific benchmarks. While these studies have
significantly contributed to the enhancement of CNNSs, particularly through hybridization
and adaptive-pooling techniques, they often focus on specific architectures or use cases.
In contrast, the proposed study offers a systematic and direct comparison of three widely
used pooling methods—max, min, and average pooling—across multiple architectures
(AlexNet, ResNet, and LeNet) on diverse datasets. This broader evaluation provides a
more generalizable understanding of how different pooling techniques impact performance
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across standard CNN architectures. Unlike the aforementioned works, which typically
propose new architectures or adaptations, this study focuses on refining the core under-
standing of pooling operations, offering practical insights for improving CNN performance
in resource-constrained environments without introducing additional complexity.

3. Material and Methods

To understand the impact of pooling techniques on the performance of convolutional
neural networks (CNNSs), this study precisely analyzes three standard datasets, each chosen
for its unique characteristics and challenges. The methodologies employed are designed
to systematically evaluate and compare the effectiveness of different pooling strategies,
thereby offering insights into their implications for CNN performance.

3.1. Datasets

This study used three standard datasets to evaluate the performance of pooling tech-
niques across various convolutional neural network (CNN) architectures: MNIST [30],
CIFAR-10 [31], and CIFAR-100 [32]. These datasets represent a range of complexities, from
simple handwritten digits (MNIST) to diverse object classes (CIFAR-10 and CIFAR-100).
The selection of these datasets allows for a comprehensive analysis of how different pooling
methods (max, average, and min pooling) impact model performance across varying levels
of classification difficulty.

3.2. Model Architecture

Three widely adopted CNN architectures employed in this study are LeNet, AlexNet,
and ResNet. These architectures were selected for their established performance and
distinct structural characteristics, which provide a robust testing ground for evaluating
different pooling strategies. LeNet is a smaller architecture primarily designed for sim-
pler tasks, such as digit classification, and consists of convolutional and fully connected
layers. In contrast, AlexNet features a deeper design with more convolutional layers,
specifically engineered to address complex image classification problems. ResNet, rec-
ognized for its innovative use of residual connections, is deeper and more intricate than
both LeNet and AlexNet, making it particularly well-suited for highly dimensional image-
classification tasks. Together, these architectures create a comprehensive platform for
analyzing the effects of various pooling techniques on model performance across a range of
classification challenges.

3.3. Experimental Setup

The experiments in this study were conducted using Keras with TensorFlow as the
backend framework, establishing a controlled environment for evaluating the performance
of different pooling techniques across various CNN architectures. Each dataset, MNIST,
CIFAR-10, and CIFAR-100, was divided using an 80/20 split, allocating 80% of the data for
training and reserving 20% for testing. This division allowed for a thorough assessment of
both recognition capabilities and generalization of performance of the proposed models.
To ensure consistency and fairness in the evaluation, model training was executed under
multiple configurations of batch sizes (32, 64, 128, and 256), learning rates (0.01, 0.001, and
0.0001), and dropout rates (ranging from 0.1 to 0.5, including a no-dropout condition). The
Stochastic Gradient Descent (SGD) optimizer was utilized for the LeNet architecture, while
the Adam and RMSProp optimizers were applied to AlexNet and ResNet, respectively,
optimizing model performance for multi-class classification tasks. The categorical cross-
entropy loss function guided the training process, with early stopping employed based
on validation loss to mitigate overfitting. This comprehensive setup ensured a rigorous
evaluation of each pooling method’s impact on model accuracy and generalization across
diverse datasets. The proposed architecture of comparative approaches is presented in
Tables 2-5.
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Table 2. Proposed architecture of CNN.
Layers Feature Map Filter Size/ Size of Activation
No. of Filters/Neurons Kernel Size Feature Map Function
Input Layer Image - - 32 x32x3 -
First Layer Convolution 32 3x3 30 x 30 x 32 relu
Second Layer Pooling 32 2x2 15 x 15 x 32
Third Layer Convolution 64 3x3 13 x 13 x 64 relu
Fourth Layer Pooling 64 2x2 6 X 6 x 64
Fifth Layer Convolution 64 3x3 4x4x64 relu
Sixth Layer Pooling 64 2x2 2x2x64
Seventh Layer Fully Connected - - 64
Output Layer Fully Connected - - No. of Classes Softmax
Table 3. Proposed Architecture of LeNet.
Feature Map Filter Size of
Layers No. of Size/Kernel Stride Feature Ma Padding
Filters/Neurons Size P
Input Layer Image - - - 32 x32x1 -
First Layer Convolution 6 5x5 1 28 x 28 x 6 same
Second Layer Pooling 6 2x2 2 14 x 14 x 6 valid
Third Layer Convolution 16 5x5 1 10 x 10 x 16 valid
Fourth Layer Pooling 16 2x2 2 5x5x16 valid
Fifth Layer Convolution 120 5x5 1 120 valid
Sixth Layer Fully Connected - - - 84 -
Output Layer Fully Connected - - - No. of Classes -
Table 4. Proposed architecture of AlexNet.
Layers Fealt\}l(f‘eol\fflap Il;ilter Si?e/ Stride Size of Padding Activa.tion
Filters/Neurons ernel Size Feature Map Function
Input Layer Image 1 - - 227 x 227 x 3 - relu
First Layer Convolution 96 11 x 11 4 55 x 55 x 96 same relu
Pooling 9% 3x3 2 27 x 27 x 96 -
Second Layer Convolution 256 5x5 1 27 x 27 x 256 same relu
Pooling 256 3x3 2 13 x 13 x 256 -
Third Layer Convolution 384 3x3 1 13 x 13 x 384 same relu
Fourth Layer Convolution 384 3x3 1 13 x 13 x 384 same relu
Fifth Layer Convolution 256 3x3 1 13 x 13 x 256 same relu
Pooling 256 3x3 2 6 X 6 x 256 -
Sixth Layer Fully Connected - - - 9216 - relu
Seventh Layer Fully Connected - - - 4096 - relu
Eight Layer Fully Connected - - 4096 - relu
Output Layer Fully Connected - - - No. of Classes - Softmax
Table 5. Proposed architecture of AlexNet.
Layers Fle\?(t)l.n; l;/ila-p Il;ilter Si%e/ Stride Size of Padding ACtiva.tion
ters/Neurons ernel Size Feature Map Function
Input Image - - - 224 x 224 x 3 - -
Layer
First Layer Convolution 64 7x7 2 112 x 112 x 64 same relu
Second Layer Pooling 64 3x3 2 112 x 112 x 64 - -
Third Convolution 64 1x1 1 valid relu
Stage 1 Layer—Eleventh Convolution 64 3x3 1 56 x 56 X 64 same relu
Layer Convolution 256 1x1 1 valid -
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Table 5. Cont.
Feature Map . . . s
Layers No. of Fil- Filter Sl%e/ Stride Size of Padding Actlva.tlon
Kernel Size Feature Map Function
ters/Neurons
Twelfth Layer— Convolution 128 1x1 1 valid relu
Stage 2 Twenty-Third Convolution 128 3x3 1 56 x 56 x 256 same relu
Layer Convolution 512 1x1 1 valid -
Twenty-Fourth Convolution 256 1x1 1 valid relu
Stage 3 Layer—Forty-First Convolution 256 3x3 1 28 x 28 x 512 same relu
Layer Convolution 1024 1x1 1 valid -
Forty-Second Convolution 512 1x1 1 valid relu
Stage 4 Layer-Fiftieth Convolution 512 3x3 1 14 x 14 x 1024 same relu
Layer Convolution 2048 1x1 1 valid -
Fifty-First Layer Pooling 2048 2x2 7 x 7 x 2048 - -
Fully
Output Layer Connected - - - No. of Classes - Softmax

3.4. Result and Analysis

In our research, each comparative approach involving various neural network architec-
tures, such as CNN, AlexNet, ResNet, and LeNet, was subjected to different configurations
of batch size, learning rate, and dropout. Selecting distinct hyperparameters aimed to
explore their impact on model performance and convergence across pooling techniques
(max and average) on datasets like MNIST, CIFAR-10, and CIFAR-100. Given the sensitivity
of these hyperparameters in influencing training dynamics, their variation resulted in
divergent accuracy results across the models. Batch sizes were chosen to regulate the
number of samples processed per iteration, affecting gradient updates and the convergence
speed. Learning rates played a critical role in controlling the step size during optimiza-
tion, impacting the model’s ability to navigate the loss landscape. Additionally, dropout
rates were manipulated to mitigate overfitting by randomly deactivating neurons during
training, affecting the model’s generalization capability. Consequently, the discrepancy in
accuracy outcomes underscores the nuanced interplay between these hyperparameters and
their consequential effect on model learning and generalization across different network
architectures and pooling strategies.

3.5. Performance Evaluation in Terms of Accuracy

This section provides a comprehensive comparative analysis of the accuracy of the
MNIST, CIFAR-10, and CIFAR-100 datasets across various convolutional neural network
(CNN) architectures, including CNN, LeNet, AlexNet, and ResNet. The performance of
these architectures is evaluated under different batch sizes, learning rates, and dropout
rates, focusing on the effects of max pooling and average pooling techniques. The objective
is to identify which pooling technique and architectural configuration yields the best per-
formance for each dataset, thereby offering valuable insights into optimizing CNN models
for diverse image-classification tasks. The detailed results of comparative approaches are
presented in Tables 6-11.

The comparative analysis of CNN, AlexNet, ResNet, and LeNet using max and average
pooling methods under varying batch sizes and dropout rates highlights the distinct
impact of pooling strategies on model performance from Tables 6—11. Under max pooling
conditions, AlexNet consistently outperformed other models, showcasing its ability to
extract dominant features from the data efficiently. This superior performance is evident
in AlexNet'’s stable and high classification accuracy across different configurations, even
as dropout rates and batch sizes varied. The architecture of AlexNet is particularly suited
for capturing the most salient features, which is effectively facilitated by the max pooling
method. In contrast, CNN emerged as the second-best performer in the max pooling
setup. Although it demonstrated strong feature-extraction capabilities, CNN showed
higher sensitivity to changes in hyperparameters compared to AlexNet, indicating some
variability in performance.
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Table 6. Accuracy of max pooling on standard MNIST dataset with different learning rates and batch sizes with comparative approaches.
MNIST Max Pooling
Learning
Rate 0.01
Batch 32 64 128 256
Size
Dropout NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 9778 9745 9597 9394 9413 9358 96.04 96.62 9411 9570 96.14 9278 9698 96.78 9632 9757 9683 96.78 9752 96.02 9625 9531 96.23 96.15
LeNet 9557 9512 8826 90.14 86.44 8245 9151 8939 8556 8542 8856 86.54 8875 879 89.39 86.6 8335 88.02 89.25 90.57 90.82 8531 82.85 84.96
AlexNet 9858 9792 9672 9759 9793 96.65 98.88 9841 9711 96.70 9854 96.53 9797 98.01 9825 9825 9728 9714 9844 9841 9853 98.69 9732 98.35
ResNet 96.57 9543 9218 8945 89.45 91.58 9403 9279 9150 9272 9425 8932 9423 9125 9358 9425 89.25 9256 9242 9325 9376 9131 8956 89.84
Learning
Rate 0.001
Batch 32 64 128 256
Size
Dropout NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 9759 96,59 9812 9879 9640 9798 9528 9659 9752 96.66 9556 97.86 96.87 9578 9670 9742 96.46 97.05 9653 96.69 97.69 9742 9718 9530
LeNet 90.45 9145 9885 8872 9891 8726 9058 91.79 90.25 88.83 8850 8752 8854 8934 9021 8894 8781 89.76 8886 9095 91.80 90.85 9175 89.75
AlexNet  98.66 9847 9869 9754 9856 9528 9876 9896 9840 98.66 9846 9884 9725 98.88 9820 9842 9724 9795 9855 9837 9826 9856 9895 97.73
ResNet 9349 9345 89.21 9462 8788 90.62 9363 9372 9253 9378 9045 9258 91.27 8934 9201 9194 8952 91.02 9227 9233 9320 9494 9293 90.46
Learning
Rate 0.0001
Batch 32 64 128 256
Size
Dropout NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 96.21 95.18 96.84 96.55 9699 9639 9784 98.01 9725 96.17 9698 94.69 97.03 9635 9680 95,57 9537 93.06 97.06 96.11 9593 96.47 9454 94.42
LeNet 90.55 89.54 8938 8642 8530 86.04 8836 8754 8571 8816 8599 86.81 86.06 84.02 8395 80.85 8258 81.28 8233 8215 84.07 8397 8471 8754
AlexNet 9855 98.69 9858 9794 9820 9854 9830 9828 9819 9759 9772 96.52 9828 9727 9784 9787 9753 9527 9824 9759 97.69 98.03 96.61 97.96
ResNet 94.09 90.16 91.07 89.01 90.66 9142 9378 9045 93.71 9176 9342 9239 93.06 9447 9366 8873 9268 8877 9172 9137 90.63 9393 90.03 92.10
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Table 7. Accuracy of average pooling on standard MNIST dataset with different learning rates and batch sizes with comparative approaches.
MNIST Average Pooling
Learning
Rate 0.01
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 9824 9828 9796 96.87 96.75 9633 9836 9846 98.05 9816 9729 9643 98.66 9845 98.64 9833 9778 96.84 98.62 9882 9879 9853 98.17 9741
LeNet 9510 9491 9404 9402 9449 9457 9644 9675 96.86 97.01 9699 96.70 9655 9695 9699 9591 94.07 9455 96.13 96.01 96.34 9540 9424 9433
AlexNet 9750 9731 96.62 9577 9589 9485 97.00 9748 9739 96.87 9540 9407 9726 9710 97.03 9650 9570 95.09 9720 9752 9756 9655 9593 95.26
ResNet 91.75 9143 8926 8898 8841 8891 9137 89.39 8850 8542 8635 8232 9149 8771 8136 86.66 8335 80.62 94.00 90.57 86.02 8531 8254 81.69
Learning
Rate 0.001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 9851 98.82 98.68 98.61 9844 9784 98.66 9855 98.65 9841 9819 9791 9846 9836 9858 98.18 9780 9738 9790 9797 98.03 9774 9750 96.78
LeNet 96.59 9690 9683 9594 9676 96.65 96.68 96.80 9692 9696 96.76 96.83 96.67 96.82 96.89 9692 96.84 96.73 9654 96.73 96.68 9659 96.63 96.34
AlexNet  97.64 9727 9759 9671 9750 9774 9780 9729 9745 9782 9758 9763 9757 9776 9763 9750 9780 97.68 97.66 97.06 97.81 9754 9756 97.50
ResNet 9373 9145 8921 8872 87.08 8560 9370 91.79 9054 88.83 8750 8571 9292 9134 9021 89.94 8752 86.02 9179 9033 89.19 8794 8693 8546
Learning
Rate 0.0001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 9899 9837 9787 9718 96.69 96.68 98.02 9871 9735 9744 9650 96.47 97.08 9742 9784 9700 9778 9757 9719 9718 9740 9718 9747 9734
LeNet 96.19 96.14 9583 96.75 95.60 9427 9557 9643 9514 9592 9563 9477 9555 9518 95.68 9542 9583 9520 95.01 9477 9419 93.60 9296 92.23
AlexNet 9732 9720 9638 9719 9656 9580 96.18 9747 9625 9635 9748 9538 9623 96.86 96.18 9629 96.05 96.10 9699 96.48 9698 96.14 9542 96.72
ResNet 89.32 88.16 87.07 86.01 8466 8342 8773 8654 8571 8476 8342 8239 8543 8847 8366 8272 8168 8077 8198 8136 80.63 7993 79.02 78.10
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Table 8. Accuracy of max pooling on standard CIFAR 10 dataset with different learning rates and batch sizes with comparative approaches.
CIFAR 10 Max Pooling
Learning
Rate 0.01
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 4856 4710 4425 4525 4423 4328 4482 4439 4517 4591 4596 46.21 4647 46.64 4716 4793 4789 4839 4894 49.08 49.73 49.20 50.08 50.40
LeNet 3285 3481 3389 3175 3186 31.15 3054 2816 2752 27.89 2760 2879 2898 2819 2840 2882 2920 2972 30.60 30.89 3085 3154 3154 3241
AlexNet 58.20 5642 5520 56.55 5456 5387 56.71 5753 5558 5485 53.63 52.03 5490 55.82 5547 53.00 54.87 5532 5207 5012 5273 5425 5335 55.39
ResNet 4026  41.25. 40.75 4157 4058 4126 3954 36.09 3647 3775 3673 3895 3821 3700 3725. 3695 37.09 3860 39.00 36.03 3550 3649 3729 38.86
Learning
Rate 0.001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 5842 5738 59.83 60.65 61.67 6215 5932 6046 59.26 59.65 5998 60.15 6035 60.75 60.87 6098 6112 6135 6149 6188 6195 62.03 6245 62.56
LeNet 3276 3415 3425 3486 3358 3498 35.05 3526 3548 3554 3575 3585 36.02 3647 36.89 3693 3725 3745 3738 3748 3798 38.02 38.19 3895
AlexNet 60.05 6196 6291 63.68 6248 6419 6482 6503 6559 6598 6589 6621 6635 66.68 66.74 66.85 6698 6696 67.05 67.54 67.68 67.89 67.14 67.68
ResNet 3998 40.25 4096 41.26 41.69 42.03 4229 4274 4289 4298 43.08 4325 4355 4375 4398 4405 4435 4475 4486 4512 4525 45.68 4583  46.02
Learning
Rate 0.0001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 56.23 57.02 5786 5821 5865 5898 59.02 5945 59.68 5997 60.01 6024 6075 60.87 6125 6146 61.78 62.05 6245 62.89 63.19 6348 6435 64.26
LeNet 33.15 3357 3378 34.02 3454 3465 35.01 3526 3468 3487 3502 3515 36.06 3624 3649 3678 3698 3715 3786 3819 3845 39.15 3945 3898
AlexNet 61.28 6185 6235 6245 6296 6331 6375 6398 6419 6476 6458 6489 65.06 6518 6546 6575 6584 6596 6710 6721 6745 67.85 67.89 68.02
ResNet 4125 41.89 4205 4265 4286 4297 4298 50.02 5043 50.65 51.11 51.63 51.89 5214 5254 5267 5289 5324 5375 5398 54.02 54.68 5425 5436
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Table 9. Accuracy of average pooling on CIFAR 10 dataset with different learning rates and batch sizes with comparative approaches.
CIFAR 10 Average Pooling
Learning
Rate 0.01
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 56.35 5629 56.01 5695 56.00 5654 5692 5486 56.09 56.23 5445 49.00 5855 50.43 4459 4768 43.05 41.60 5853 5449 4899 49.70 4135 36.06
LeNet 4458 4633 3954 4247 3427 4190 4971 3146 3014 2741 2719 3119 3626 3636 35.03 3261 31.82 29.69 4022 3984 3930 3775 3575 33.56
AlexNet 5465 50.19 4232 4882 47.06 46.84 55.62 4583 4741 4435 4321 4054 4997 4707 4344 4432 4095 4217 4994 3031 3574 4195 3824 36.59
ResNet 4026 32.00 2775 2857 2815 2334 3054 2609 2174 2175 2073 2195 3521 28.00 2290 2395 23.09 20.60 30.00 26.08 2450 2449 2429 23.86
Learning
Rate 0.001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 7028 70.08 6844 6848 6573 59.65 67.89 68.63 68.05 66.68 63.04 6025 6612 6383 6576 6357 6085 57.05 6990 61.00 6072 59.71 5750 5537
LeNet 4186 4149 40.03 3776 3535 3195 4199 4085 3781 3483 3144 3044 40.63 3832 3465 3098 30.85 30.13 38.69 34.61 3149 30.62 3039 30.04
AlexNet 5396 4828 4379 48.06 44.09 49.10 5475 5098 56.16 4021 4614 4183 5217 48.64 48.02 4893 49.08 4754 5094 4341 45.02 40.14 4718 4474
ResNet 39.28 3477 3267 3127 2999 2737 3883 3470 3328 3228 3057 2877 3677 3437 3252 3140 2973 2873 36.56 35.00 33.85 32.88 32.17 31.28
Learning
Rate 0.0001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 64.04 6405 6310 6183 6032 5844 6146 6034 59.79 5877 5736 5553 5885 5853 5754 56.63 55.64 5335 56.80 5550 54.87 5418 5282 51.01
LeNet 3144 30.14 2949 2932 2926 29.06 3048 2949 2931 2924 2899 2877 2942 29.08 2878 2862 2876 2840 2834 2829 2821 28.00 27.88 27.82
AlexNet 5221 5323 5201 5892 5420 4883 5741 59.58 5590 51.60 51.76 4634 4683 4249 4529 4827 46.63 43.68 48.63 56.63 43.78 47.74 4729 42.86
ResNet 3394 3323 3250 3204 3129 3058 3311 3244 31.84 31.37 3113 3066 3144 3117 3214 3043 3030 2959 2839 2816 2755 27.10 26.80 2647
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Table 10. Accuracy of MAX pooling on standard CIFAR 100 datasets with different learning rates and batch sizes with comparative approaches.
CIFAR 100 Max Pooling
Learning
Rate 0.01
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 12.04 1150 11.89 12.00 1205 1285 1245 1250 13.68 14.01 1435 1488 1554 1596 16:00 16.32 1645 17:00 1829 18.84 1928 20.01 2058 22.26
LeNet 8.00 9.09 9.45 10.00 1045 10.68 1025 11.01 11.01 11.25 11.28 11.85 11.63 1198 1201 1224 1235 1268 1275 1288 13.01 1324 1328 13.50
AlexNet 1830 1726 1892 18.00 1856 18.68 17.86 1810 1856 1887 19.02 1935 20.8 2384 2452 2485 2552 2588 2632 2689 28.01 2884 2956 30.52
ResNet 1126 1070 11.25 1175 1185 12.00 12:05 1285 1295 1298 12.08 1267 1298 13.02 1343 13.86 1398 14.00 14.02 1456 1478 1506 1546 16.85
Learning
Rate 0.001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 12.05 1239 1285 13.01 1352 1378 1399 13.63 14.02 1479 1495 1470 1578 1591 1596 1648 1646 16.65 1650 17.39 1778 1878 90.38 20.51
LeNet 8.59 8.76 8.98 8.96 9.15 9.76 9.89 10.01  10.05  9.89 1076  10.84 10.99 11.00 11.05 1142 11.65 11.85 1201 1225 1236 1288 13.01 13.95
AlexNet 2025 2058 2054 2125 21.08 2154 2156 23.65 2372 2385 24.02 2431 2408 2456 2485 2492 2500 25.06 2596 2674 27.85 2805 29.25 30.89
ResNet 11.02 1158 11.65 1198 1225 1235 1298 13.02 1336 1349 1395 1386 14.02 1409 1420 1439 1456 13.02 1325 1398 14.02 14.68 1496 15.09
Learning
Rate 0.0001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 11.05 11.59 12,65 1298 13.08 13.15 1385 1445 1459 1499 1521 1536 1597 1594 16.01 1642 1685 16.78 1697 17.05 17.64 17.88 1842 18.96
LeNet 9.02 9.32 9.67 9.98 10.02 1025 1076 10.68 1098 11.09 1135 11.68 1199 1197 12.08 1233 1265 13.02 1335 1398 13.88 13.89 1425 14.65
AlexNet 1936 1995 20.05 2065 2098 20.85 21.09 21.85 2196 2215 2285 2246 2299 2332 2345 2398 2400 2425 3485 2598 2635 27.65 2897 29.56
ResNet 1025 1126 11.75 1225 1275 1298 13.00 1325 1375 13.67 1398 1420 14.65 1478 15.02 1532 1567 1594 16.03 1645 16.62 16.84 1698 17.13
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Table 11. Accuracy of average pooling on CIFAR 100 dataset with different learning rates and batch sizes with comparative approaches.
CIFAR 100 Average Pooling
Learning
Rate 0.01
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 14.04 15.00 1647 16.00 1500 14.00 15.04 14.00 1547 1500 1525 1437 1793 1695 1636 1496 1551 1426 2277 2686 2200 2242 2223 22.00
LeNet 10.00 09.00 09.25 0925 1045 1025 1000 09.00 0925 (09.25 1045 1025 11.23 09.72 06.66 11.00 1159 11.00 16.82 12.05 09.88 11.46 09.78 08.00
AlexNet 13.30 1326 13.02 13.00 12.00 1324 13.69 1338 1378 1329 1278 13.89 14.00 13.19 13.01 13.00 1290 1239 2022 2148 21.35 2125 2057 2140
ResNet 08.26  06.70 06.66 0528 03.62 0345 09.00 0547 05.69 0476 05.04 0423 0845 0692 0469 0585 0512 0392 0956 08.18 07.61 06.62 0626 04.49
Learning
Rate 0.001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 3157 3158 31.19 3036 3059 3060 2999 30.63 29.02 2679 2405 2370 30.78 30.11 2736 2548 2336 2045 2922 2819 2947 2935 2818 2851
LeNet 23.84 2434 2296 2159 2045 1899 2096 20.09 2083 2099 2023 1841 2433 2377 2284 2166 1976 1814 2359 22,66 2221 20.64 19.61 17.79
AlexNet 2519 2598 2541 2516 24.68 2488 2117 21.62 2141 2190 2149 2115 2749 2734 2676 2484 2243 1927 2579 2578 2392 23.09 2224 20.69
ResNet 1072 09.52 0859 0765 0715 06.21 11.21 1024 0932 0885 08.01 07.08 1077 0992 (09.00 0854 0806 0755 1024 (09.48 08.65 08.12 0777 07.04
Learning
Rate 0.0001
Batch 32 64 128 256
Size
Drop out NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5 NO 0.1 0.2 0.3 0.4 0.5
CNN 38.86 3758 36.05 3395 3347 3179 3508 3511 3539 3271 31.13 3040 3537 3348 3259 31.03 39.72 3894 3289 3236 3148 30.66 3875 36.37
LeNet 19.02 1931 18.01 1762 1718 1587 1786 1751 1722 1645 1591 1452 16.08 1585 1558 1486 1435 13.14 1443 1495 1358 1382 1271 11.88
AlexNet 2695 2796 29.61 29.03 2654 2382 2759 3022 21.08 2956 2546 2527 2993 2542 26,65 2414 2529 2231 2955 2898 23.88 21.75 2294 26.06
ResNet 08.18 0789 0798 0752 0744 0678 0750 0755 0723 06.83 06.65 0659 06.87 06.84 06.68 0625 0625 06.04 06.08 0571 0585 06.06 05.66 0554
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When average pooling was employed, the performance dynamics shifted, with CNN
taking the lead. CNN's architecture leveraged the generalization provided by average
pooling to smooth feature representations, resulting in more stable and consistent accuracy,
particularly at moderate dropout rates and optimized batch sizes. This suggests that
average pooling is effective for CNN, as it promotes a balanced feature representation
across spatial dimensions and reduces overfitting. AlexNet, while still achieving respectable
accuracy, performed suboptimally with average pooling. Its reliance on max pooling for
optimal feature extraction limited its ability to fully exploit the benefits of average pooling,
which is better suited for models that require feature smoothing rather than emphasizing
the most activated features.

Both ResNet and LeNet exhibited relatively lower performance with both pooling
methods. ResNet’s complex architecture with skip connections did not gain significant
benefits from either pooling strategy, while LeNet’s simpler structure was unable to fully
capitalize on the feature-extraction capabilities of max or average pooling. Overall, this
study underscores the importance of selecting pooling strategies that align with the ar-
chitectural strengths of deep learning models. The findings demonstrate that AlexNet
excels with max pooling, while CNN performs best with average pooling, highlighting the
necessity of adaptive pooling approaches to optimize model accuracy based on the specific
dataset and model architecture.

3.6. Statistical Significance Analysis

To further validate the robustness and reliability of the comparative results between
max and average pooling methods across standard datasets (CIFAR-10, CIFAR-100, and
MNIST) using CNN, AlexNet, ResNet, and LeNet, a statistical significance analysis was
conducted. Specifically, p-values were calculated to assess whether the differences in perfor-
mance metrics, such as accuracy, precision, and computational efficiency, were statistically
significant. The p-values provide an objective measure to determine whether the observed
differences between pooling methods are due to random variations or represent true dis-
tinctions in performance. [33]. A significance threshold of 0.05 was adopted, where p-values
below this level indicate that the performance differences are statistically significant and
unlikely to have occurred by chance. Table 12 shows the comparative analysis of p-values
on standard datasets.

Table 12. Comparative analysis of p-value on a standard dataset.

Model Learning Rate p Values
Max Pooling Average Pooling
MNIST

0.01 0.3961 0.1240

CNN 0.001 0.6271 0.0075

0.0001 0.0446 0.0003
0.01 6.3906 x 107 1.8355 x 10712

LeNet 0.001 0.0473 0.0082
0.0001 29744 x 1078 1.5924 x 10~7

0.01 0.2516 0.8749

AlexNet 0.001 0.5902 0.5471

0.0001 0.2287 0.0172

0.01 0.9932 0.9822

ResNet 0.001 0.8242 0.8891

0.0001 0.1828 0.0005
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Table 12. Cont.

Model Learning Rate p Values
Max Pooling Average Pooling
CIFAR 10

0.01 0.0042 0.0001

CNN 0.001 0.5674 0.0490
0.0001 0.8008 3.1530 x 10°
0.01 5.3257 x 10711 1.2731 x 107

LeNet 0.001 5.1826 x 10~ 0.1558

0.0001 5.0826 x 10713 0.0004

0.01 0.2337 0.4183

AlexNet 0.001 0.3398 0.9431

0.0001 0.0398 0.0719

0.01 0.1309 0.1332

ResNet 0.001 0.8909 0.8903
0.0001 1.0087 x 107 1.1491 x 107

CIFAR 100

0.01 0.2007 0.2958

CNN 0.001 0.9772 0.2828

0.0001 0.0977 0.0166

0.01 0.1201 0.0002

LeNet 0.001 0.0925 0.8823
0.0001 1.0136 x 107 25128 x 107°

0.01 0.3937 0.0322

AlexNet 0.001 1.0139 x 107 0.0003

0.0001 0.5415 0.2337

0.01 0.3217 0.4312

ResNet 0.001 0.7516 0.7295
0.0001 0.1775 8.0274 x 1077

The p-value results highlight the comparative performance of max pooling and average
pooling across various models and datasets, demonstrating that max pooling consistently
yields more statistically significant results in many cases. For instance, in the MNIST dataset,
max pooling shows superior performance, especially with LeNet, where its p-values are
significantly lower across all learning rates, indicating stronger statistical significance
compared to average pooling. This trend is also evident in the CIFAR-10 dataset, where
max pooling exhibits better robustness, particularly at a learning rate of 0.01, with a
p-value of 0.0042 compared to 0.0001 for average pooling. Similarly, in the CIFAR-100
dataset, max pooling performs better at lower learning rates, maintaining strong statistical
significance with more consistent p-values across architectures like CNN and LeNet. While
average pooling occasionally shows lower p-values, particularly in deeper models like
ResNet, max pooling demonstrates greater consistency and reliability across the board.
Overall, max pooling emerges as the more robust and reliable pooling method, offering
better statistical significance and performance stability across a variety of datasets and
architectures. Figure 5 illustrates the comparative analysis of p-values for max pooling and
average pooling across different neural network architectures and data.
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Figure 5. Comparison of the statistical significance of p-values for max pooling and average pooling

in CNN, LeNet, AlexNet, and ResNet across MNIST (b), CIFAR-10 (a), and CIFAR-100 (c) datasets.
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3.7. Convergence Graph

A convergence graph visualizes the learning progress of a model over time, illustrating
the effectiveness of various training parameters and architectures. This analysis focuses
on the convergence graphs of four neural network architectures, CNN, AlexNet, LeNet,
and ResNet, generated using Matplotlib, as shown in Figure 6. Key observations from
the comparative analysis reveal that CNN and AlexNet exhibit stable convergence with
minimal oscillations, indicating reliable training processes. In contrast, AlexNet converges
quickly due to its deeper architecture, while ResNet shows initial instability but ultimately
achieves strong performance, reflecting its robustness. AlexNet and ResNet demonstrate
rapid initial improvements due to their complex designs, effectively capturing intricate
patterns, whereas CNN and LeNet show more gradual progress. The plateau in AlexNet
and stabilization in ResNet suggest these models reach optimal performance quickly, while
CNN and LeNet may require more epochs for full optimization. Overall, the graphs
highlight the distinct strengths of each architecture: CNN and AlexNet provide stable
learning for simpler tasks, AlexNet excels in fast early stage learning for complex data,
and CNN, despite initial fluctuations, demonstrates high performance and robustness.
Adjusting hyperparameters like learning rate and batch size can further enhance these
architectures for use in specific datasets and tasks.
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Figure 6. Accuracy comparison against different parameters on MNIST, CIFAR 10, and CIFAR 100.

3.8. Analysis of Optimal Pooling Performance and Parameter Trends

This section identifies and discusses the optimal performance achieved by max and av-
erage pooling across the MNIST, CIFAR-10, and CIFAR-100 datasets while also addressing
the observed trends in performance based on parameter variations.
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The CNN performs best with average pooling, achieving higher accuracy on MNIST
and leveraging this pooling method to generalize effectively across the dataset. Specifically,
CNN peaks with average pooling at 98.82% accuracy on MNIST using a learning rate
of 0.001 and a batch size of 32 with a low dropout rate, suggesting that CNN benefits
from the smoothed feature extraction of average pooling. In contrast, ResNet exhibits
superior performance with max pooling, particularly on CIFAR-10 and CIFAR-100, where
complex features demand higher selectivity. For instance, ResNet’s optimal CIFAR-10
performance with max pooling reaches 54.68% at a learning rate of 0.0001 and dropout of
0.4-0.5, showcasing its alignment with max pooling’s concentrated feature selection.

On the MNIST dataset, each model displays varied responses to pooling methods.
LeNet performs moderately, achieving its peak of 98.9% accuracy with average pooling
and a learning rate of 0.001 on batch size of 128, though it generally trails CNN and
AlexNet. AlexNet demonstrates robustness with both pooling methods, attaining high
performance with max pooling, especially on CIFAR-10, where it reaches 67.89% accuracy
with a learning rate of 0.001 and moderate dropout. This suggests that AlexNet's deeper
architecture handles CIFAR-10's feature complexity well under max pooling. ResNet, which
excels at retaining intricate feature details, benefits significantly from max pooling across
datasets, particularly CIFAR-100, achieving around 17.13% accuracy. Although this result is
lower than with simpler datasets, it reflects ResNet’s high selectivity in feature extraction.

On CIFAR-100, which is more challenging due to its 100-class complexity, CNN’s
accuracy peaks at 22.26% with max pooling, again showing a preference for structured
feature selection. LeNet, on the other hand, struggles to maintain high accuracy across
both pooling methods, achieving only around 13.5% accuracy on CIFAR-100, pointing to
limitations in its simpler architecture for such complex data. AlexNet continues to perform
relatively well on CIFAR-100, reaching its highest accuracy at around 30.89% with max
pooling, while ResNet achieves its best result with max pooling, reaching around 17.13%.
The analysis confirms that CNN benefits most from average pooling on MNIST, while
ResNet performs best on max pooling across CIFAR datasets. This pattern underlines the
importance of aligning pooling techniques with model architecture and dataset complexity
for optimal performance.

The observed parameter trends in Tables 6-11 reveal the importance of the batch
size, learning rate, and dropout rate adjustments, which significantly impact pooling
performance across different architectures and datasets. Lower learning rates and moderate
batch sizes generally enhanced model stability and accuracy, especially for complex datasets
like CIFAR-100. Higher dropout rates tended to improve generalization in average pooling,
which smooths feature representations, though they occasionally hindered accuracy in
configurations where feature retention was critical, as in max pooling. These trends
underscore that max pooling often benefits from moderate batch sizes and minimal dropout
to retain strong activations, whereas average pooling performs optimally with larger batch
sizes and higher dropout rates, especially for noisier datasets. It is important to note that
while these trends offer insight, generalizing them across all applications is challenging,
as parameter effects can vary significantly depending on dataset characteristics and task
requirements. Adaptive parameter tuning based on dataset-specific needs could provide
more reliable results in future studies. Overall, these findings suggest that selecting pooling
methods based on dataset complexity and noise levels is crucial, particularly when applying
CNNs to resource-constrained environments, where optimized configurations can greatly
enhance performance and generalization.

3.9. Discussion

This research provided an in-depth analysis of various pooling methods in Convolu-
tional Neural Networks (CNNs), specifically max pooling, across datasets such as MNIST,
CIFAR-10, and CIFAR-100. The results demonstrate that each method has unique strengths
and limitations that make it suitable for different tasks. Max pooling consistently performed
well in scenarios where preserving high-contrast features and robustness to noise were
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critical. The ability of max pooling to capture the most prominent features from the feature
maps allowed it to excel in classification tasks with high-dimensionality input, such as
the CIFAR-100 dataset. However, the technique’s downside lies in its tendency to discard
potentially useful information, which may explain its reduced performance when applied
to datasets with smaller objects or more intricate details, where preserving all information
is important. This is particularly relevant in applications such as small object detection,
where discarding finer details may lead to poor localization accuracy, as noted in several
studies on object detection. In contrast, average pooling showed more balanced feature
representation and performed well in complex datasets, such as CIFAR-10. By smoothing
out noise and reducing the impact of any outlier values in the feature map, average pooling
can generalize better in tasks where the input is noisy or where capturing the overall
context is more important than highlighting specific high-contrast features. For instance, in
semantic segmentation tasks, where each pixel’s classification matters more than a focus
on high-intensity regions, average pooling may outperform max pooling. However, the
downside of this method is its inability to preserve sharp edges and fine details, which
are crucial in high-precision tasks like medical image analysis or object detection. Min
pooling, though less commonly used, showed its utility in highly specialized tasks such
as anomaly detection and background subtraction. By focusing on the least prominent
features, min pooling can highlight anomalies or subtle differences in an image, which
can be critical in applications like fraud detection or medical imaging, where identifying
outliers or rare features is essential. However, the sensitivity of min pooling to noise limits
its general applicability in mainstream image-classification tasks, where higher-contrast
features dominate.

The results also underscore that no single pooling method universally outperforms
others across all tasks, architectures, and datasets. The effectiveness of a pooling technique
is highly dependent on the specific task and dataset characteristics. Max pooling might be
preferable for tasks involving object detection or datasets with large, prominent features,
whereas average pooling would be a better choice for more balanced, noisy datasets requir-
ing more generalization, such as in semantic segmentation. Moreover, recent advancements
in CNN architectures, such as hybrid pooling methods and adaptive pooling strategies,
have sought to combine the strengths of multiple pooling operations. For example, adap-
tive pooling methods, which dynamically adjust the pooling strategy based on the input,
have shown promise in enhancing performance by balancing feature preservation and
computational efficiency. These approaches allow CNNs to adapt better to the varying
complexities of different datasets, especially for tasks requiring fine-grained classification
like medical imaging and high-precision applications. In practical terms, the choice of
pooling method has important implications for resource-constrained environments. Max
pooling offers high accuracy but at the cost of potentially discarding important information,
while average pooling provides a more generalizable solution but with potential loss of
detail. Min pooling is effective for specialized tasks but may not be suitable for broader
applications. Future research could benefit from exploring adaptive pooling techniques
that optimize the trade-offs between computational cost and feature retention, ensuring
that the choice of pooling method aligns with specific task requirements.

4. Conclusions

Convolutional Neural Networks (CNNs) play a crucial role in computer vision, with
pooling layers improving efficiency by reducing complexity while preserving key features.
This study compared max and pooling across CNN architectures (AlexNet, ResNet, and
LeNet) using datasets like MNIST and CIFAR-10. Max pooling performed best in high-
dimensionality tasks, and average pooling excelled in handling noisy data. Specifically, the
practical recommendations based on the results are to use max pooling for resource-limited
environments, and average pooling for tasks involving noisy datasets. While max pooling
has demonstrated robust performance across the datasets in this study, average pooling
may still play a valuable role in certain contexts, such as noisy data environments or tasks
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emphasizing spatial continuity. By exploring adaptive or hybrid pooling methods in future
research, it may be possible to leverage the strengths of both max and average pooling to
enhance model flexibility and performance across a broader range of applications. Future
research should explore integrating pooling strategies with Vision Transformers (ViTs) to
reduce computational overhead, and adaptive pooling methods could enhance performance
in tasks like small object detection and fine-grained classification. Vision Transformers may
revolutionize feature extraction by processing global image context without traditional
pooling layers.
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