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Abstract: This paper presents an efficient numerical manifold method for solving the Burgers’
equation. To improve accuracy and streamline the solution process, we apply a nonlinear function
transformation technique that reformulates the original problem into a linear diffusion equation. We
utilize a dual cover mesh along with an explicit multi-step time integration method for spatial and
temporal discretization, respectively. Constant cover functions are employed across mathematical
covers, interconnected by a linear weight function for each manifold element. The full discretization
formulation is derived using the Galerkin weak form. To efficiently compute the inverse of the
symmetric positive definite mass matrix, we employ the Crout algorithm. The performance and
convergence of our method are rigorously evaluated through several benchmark numerical tests.
Extensive comparisons with exact solutions and alternative methods demonstrate that our approach
delivers an accurate, stable, and efficient computational scheme for the Burgers’ equation.

Keywords: convection-dominated equation; dual cover mesh; Hopf–Cole transformation; Galerkin
method; Runge–Kutta scheme

1. Introduction

Burgers’ equation [1] is a fundamental quasi-linear partial differential equation (PDE)
that appears in various fields, including gas dynamics, acoustic wave, biological process,
and traffic flow modeling. It provides a simpler version of the Navier–Stokes equations,
capturing the interplay between nonlinear convection and diffusion. The focus of this study
is on the following problem:

ut + uux = νuxx, (x, t) ∈ (a, b)× (T0, ∞), (1)

u(x, T0) = u0(x), x ∈ (a, b), (2)

u(a, t) = 0 = u(b, t), t ∈ [T0, ∞), (3)

in which u = u(x, t) represents the fluid velocity, T0 is the initial time, and ν denotes the
kinematics viscosity coefficient. 1/ν indicates the Reynolds number.

Despite its simple form, the Burgers’ equation presents significant analytical chal-
lenges due to its nonlinearity, with exact solutions only available for specific cases [2,3].
Computationally solving Burgers’ equation is also hindered by the complex interaction
between the nonlinear convection term and linear dissipation. In convection-dominated
scenarios, where the viscosity ν is small, resolving sharp gradients and shock waves be-
comes particularly difficult. These difficulties necessitate the development of stable and
accurate numerical techniques.

Throughout the past several decades, different computational techniques have been
introduced to solve this challenge, including the finite difference method (FDM) [4–7],
finite element method (FEM) [8–10], spectral methods [11–14], and finite volume method
(FVM) [15,16]. However, the performance of these approaches depends heavily on the

Symmetry 2024, 16, 1521. https://doi.org/10.3390/sym16111521 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16111521
https://doi.org/10.3390/sym16111521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8829-8168
https://orcid.org/0009-0003-2414-6100
https://orcid.org/0000-0002-9679-1446
https://doi.org/10.3390/sym16111521
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16111521?type=check_update&version=1


Symmetry 2024, 16, 1521 2 of 20

quality of the spatial discretization. Accurately resolving steep gradients often requires
fine meshes, which increase computational cost and can lead to numerical instabilities.
Although the local discontinuous Galerkin method (LDG) [17–19] helps mitigate mesh
dependency, it introduces additional degrees of freedom within each element, further
escalating computational costs.

Alternatively, meshless methods avoid the reliance on structured grids and can achieve
better flexibility in capturing complex nonlinear behavior, such as the characteristic-based
element-free Galerkin method (EFCGM) [20,21], semi-Lagrangian EFG method [22], re-
producing kernel particle method [23], radial basis function method [24], and finite point
method [25]. The numerical manifold method (NMM) [26], a partition-of-unity mesh-free
approach [27], utilizes a dual cover mesh for spatial discretization, offering greater flexibil-
ity in representing complex geometries and material domains. Compared to conventional
mesh-based approaches, this method does not require the mesh to strictly conform to
problem geometry shape and achieves higher accuracy with fewer degrees of freedom.
Due to these advantages, the NMM has shown significant potential in solving nonlinear
PDEs, particularly in solid mechanics [28–36] and fluid flow problems [37–39].

In our previous work [40], we enhanced the NMM by integrating the characteristic
method to solve the Burgers’ equation. The results showcased the high accuracy and
stability of this approach across a wide range of benchmark examples, demonstrating its
capability to yield reliable solutions. However, a notable challenge arises as the viscosity
coefficient ν decreases. In this case, the method necessitates smaller time steps and finer
cover sizes to accurately capture sharp gradients. This issue has a significant impact on
computational efficiency.

The Hopf–Cole (H-C) transformation was independently proposed by Hopf [41] and
Cole [2] in 1950s. This transformation can convert the Burgers’ equation into a linear
diffusion equation by removing the nonlinear convective term. In this way, the solution
process of the original problem can be greatly simplified [42,43]. Since then, several
studies [44–50] have applied this function transformation technique to numerically solve
the Burgers’ equation, and diversified numerical methods were adopted to discretize the
transformed linear diffusion equation. Öziş et al. [51] employed the FEM with linear
elements to solve the resulting linear diffusion equation, while Zhao et al. [52] applied an
LDG method. Mukundan and Awasthi [53] also tackled the transformed equation using
the method of lines combined with a backward difference scheme.

The present study develops a Runge–Kutta numerical manifold Galerkin method
(RKNMGM) to tackle the Burgers’ equation using the H-C transform. The problem domain
is spatially discretized with a dual cover mesh. The unknowns of the transformed equation
are approximated using piecewise constant cover functions combined with first-order
polynomial weighting functions over manifold elements. Temporally, the time deriva-
tive term is integrated using the total variation diminishing Runge–Kutta scheme with
second-order accuracy (TVD-RK2) [54]. Due to the TVD property for limiting numerical
oscillations, this scheme offers enhanced efficiency and stability compared to the explicit
Crank–Nicolson method adopted in our previous study [40]. The full discretization formu-
lation the RKNMGM is derived from is based on the Galerkin weak form, resulting in a
symmetric system of equations. The Crout algorithm is utilized to efficiently compute the
inverse of the symmetric positive definite mass matrix. Finally, the solution to the original
Burgers’ equation is recovered from the results of the transformed problem by applying
the H-C transformation once more.

Several benchmark numerical examples on the Burgers’ equation are conducted to
assess the performance of the RKNMGM. Diversified parameter settings are considered to
ensure a comprehensive evaluation of the method’s robustness. Our results are rigorously
compared against exact solutions and alternative numerical approaches, highlighting the
accuracy and efficiency of the current method. Additionally, we investigate the convergence
behavior of the RKNMGM across various mesh configurations, which provides insights
into its stability and reliability under different discretization strategies. Through extensive
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analysis and discussion, the effectiveness of this method for steep gradient problems
is demonstrated.

2. H-C Transformation

By importing an auxiliary function θ(x, t), the H-C transform uses the following
formulation to substitute u(x, t), i.e.,

u ≡ −2ν
∂

∂x
ln θ = −2ν

θx

θ
. (4)

With Equation (4), we can transform the original problem defined by Equations (1)–(3)
into the following simpler problem:

Governing Equation: substituting Equation (4) into Equation (1) leads to

θt = νθxx, ∀(x, t) ∈ (a, b)× (T0, ∞). (5)

Initial Condition (IC): replacing Equation (2) with Equation (4) gives

θ(x, 0) = exp
[
−(2ν)−1

∫ x

0
u0(s) ds

]
, ∀x ∈ (a, b). (6)

Boundary Condition (BC): applying the transformation upon Equation (2) results in

θx(x, t) = 0, θx(b, t) = 0, ∀t ∈ [T0, ∞). (7)

In the following sections, we will present the numerical algorithms developed to
solve the transformed problem, followed by the procedure used to recover the solution of
Equations (1)–(3) from the computed results.

3. The RKNMGM Scheme
3.1. Spatial Discretization

The RKNMGM utilizes NMM’s dual cover mesh for the spatial discretization of the
problem domain. Such mesh comprises two interrelated collections of overlapping regions.
The first is mathematical covers (MCs), whose union forms a superset of the problem
domain. The second is physical covers (PCs), in which each PC occupies the portion of an
MC that intersects with the problem domain. The intersections of adjacent PCs generate
manifold elements (MEs), which serve as the foundational units for discretization.

For the transformed problem modeled by Equations (5)–(7), we can build its dual
cover mesh with the following procedure:

Step 1 Adopt the uniform mesh with N + 3 nodes with x1 = a and xN+1 = b, and the
MCs are Ck = [xk−1, xk+1], k = 1, 2, . . . , N + 1, which are shown as the bases of the
overlapping triangles at the lowest row in Figure 1;

Step 2 Computing the intersection of each MC and the problem domain [a, b] leads to
the boundary PCs C1 = [x1, x2] and CN = [xN , xN+1], and the interior PCs
Ck = [xk−1, xk+1], k = 2, 3, . . . , N, which are illustrated as the bases of the over-
lapping triangles in the middle row in Figure 1;

Step 3 Computing the intersections of every adjacent pair of PCs gives the MEs: Ek = [xk, xk+1],
k = 1, 2, . . . , N, which are rendered as the triangle bases in the uppermost row in
Figure 1.
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Figure 1. Procedure to build the dual cover mesh for the RKNMGM: Step 1 to generate the MC
collection {Ck}N+1

k=1 ; Step 2 to create the PC set {Ck}N+1
k=1 ; and Step 3 to form the ME series {Ek}N

k=1.

3.2. Approximation

In the RKNMGM, the approximation of unknown variables is conducted over MCs,
while the integration is calculated over MEs. Below, the approximation approach and
integration formulations used in our method are described.

Given the dual cover mesh ({Ck}N+1
k=1 , {Ci}N+1

k=1 , {Ek}N
k=1), we approximate the un-

known variable θ over Ei by a linear polynomial—that is,

θk(x) ≈ θ̂k(x) = p(x)dk, x ∈ Ek, k = 1, 2, · · · , N, (8)

where p(x) = (1, x) represents the linear polynomial basis function and dk = (d1
k , d2

k)
⊤

denotes the coefficient. In the RKNMGM, the cover functions θk are the unknown to be
determined. Thus, we will represent the coefficient by these cover functions below.

Noting xk ∈ Ck and xk+1 ∈ Ck+1, it is manifest that xk and xk+1, as the two ends of Ek,
satisfy Equation (8)—that is,

θ̂k(xk) = d1
k + d2

k xk, xk ∈ Ck, (9)

θ̂k+1(xk+1) = d1
k + d2

k xk+1, xk+1 ∈ Ck+1. (10)

In the present study, we assume the cover function keeps constant over each MC.
Therefore, substituting θ̂k(xk) = θk and θ̂k(xk+1) = θk+1 into Equations (9) and (10) leads to

dk =

(
d1

k
d2

k

)
=

1
h

(
−1 1

xk+1 −xk

)(
θk

θk+1

)
, (11)

where h = xk+1 − xk due to the adopted uniform mesh, k = 1, 2, . . . , N.
Furthermore, by substituting Equation (11) into Equation (8), we can obtain the final

approximation formulation,

θ̂k(x) = Nk(x)θk, k = 1, 2, · · · , N, (12)

in which Nk(x) is Ek’s linear weight function—that is,

Nk(x) = h−1(xk+1 − x, x− xk
)
, k = 1, 2, · · · , N. (13)

and θk = (θk, θk+1)
⊤ contains the cover functions, which are the unknown to be determined.
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3.3. Weak Formulation

Since the system defined in Equations (5)–(7) is self-adjoint, the Galerkin weighted
residual method can yield a symmetric system of equations. Consequently, we apply this
method to transform Equation (5) into its weak form.

Choose the first-order Soblev space H1[a, b] as the trial and test function space. Multi-
plying both sides of Equation (5) by any test function w(x) from H1[a, b], we obtain

⟨w, θt⟩ = ⟨w, θxx⟩, (14)

where the notation ⟨·, ·⟩ represents the inner product in L2[a, b].
By applying integration by parts to the above equation, we arrive at

⟨w, θt⟩ = ⟨wx, − νθx⟩+ w(b)θx(b, t)− w(a)θx(a, t). (15)

We eliminate the last two terms on the right-hand side of Equation (15) by applying
the Neumann BC in Equation (7); then, we have

∫ b

a
w

∂θ

∂t
dx = −ν

∫ b

a

∂w
∂x

∂θ

∂x
dx. (16)

3.4. Semi-Discretization Scheme

Now, we derive the semi-discretization scheme from the weak form presented in
Equation (16) by approximating θ(x, t) and w(x) with Equation (12), i.e.,

θ(x, t) =
N

∑
k=1

Nk(x)θk, (17)

w(x) = Nj(x), x ∈ Ej, j = 1, 2, · · · , N. (18)

Then, substituting the above formulations into Equation (16) leads to

Mk
∂θk
∂t

= −νKkθk, k = 1, 2, · · · , N, (19)

where Mk and Kk are the mass matrix and stiffness matrix on Ei, respectively, taking the
formulas below

Mk =
∫

Ek

N⊤k (x)Nk(x)dx, Kk =
∫

Ek

dN⊤k (x)
dx

dNk(x)
dx

dx. (20)

For calculating the integrals over Ek in Equation (20), we substitute Equation (13) into
Equation (20), and subsequently employ the simplex integration method [55,56] to obtain
the analytically exact expressions of Mi and Ki, i.e.,

Mk =
h
6

(
2 1
1 2

)
, Kk =

1
h

(
1 −1
−1 1

)
, k = 1, 2, · · · , N. (21)

3.5. Time Integration Scheme

Next, we employ the TVD-RK2 [54] to solve the ODE problem of Equation (19) with
the initial condition in Equation (6). As Mi is symmetric positive definite, we can rewrite
the semi-discretized system Equation (19) into the following general form:

dθk
dt

= −νM−1
k Kkθk ≡ L(θk), (22)

where L denotes the spatial operator.
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For solving Equation (22) for t ∈ [T0, T0 + T], the TVD-RK2 scheme advances θk over
a time step ∆t in the following two phases:

θ
(n+ 1

2 )
k = θ

(n)
k + ∆tL(θ(n)k ),

θ
(n+1)
k =

1
2

[
θ
(n)
k + θ

(n+ 1
2 )

k + ∆tL(θ(n+
1
2 )

k )

]
,

n = 1, 2, . . . , T/∆t, (23)

where θ
(n)
k represents θ(xk, T0 + n∆t). Particularly, θ

(0)
k = (θ

(0)
k , θ

(0)
k+1) contains the initial

cover functions over Ck and Ck+1, respectively.
Since the cover function remains constant during a time step, we have θ

(0)
k = θ(x, T0),

∀x ∈ Ck, and k = 1, 2, · · · , N + 1. Particularly, we take θ
(0)
k = θ(xk, T0), where xk is the

midpoint of Ck. According to Equation (6), we have

θ
(0)
k = θ(xk, T0) = exp

[
− 1

2ν

∫ xk

0
u0(s) ds

]
. (24)

As described in Equation (23), the TVD-RK2 scheme is an explicit time integration
method. To ensure the computational stability, ∆t has to satisfy the CFL condition [54]:

∆t ≤ h
2 ∥θ(n)∥∞

, (25)

in which θ(n) contains all N + 1 cover functions, and the norm indicates

∥θ(n)∥∞ = max{|θ(n)1 |, |θ
(n)
2 |, · · · , |θ(n)N+1|}. (26)

3.6. Solution Restoration

Given {θk}N+1
k=1 as the solution of Equations (5)–(7) by the RKNMGM, we recover the

solution of Equations (1)–(3) using the H-C transform once more.
First, use the central differential formula to compute θx, and Equation (4) becomes

u(n)
k ≡ u(xk, n∆t) ≈

ν
(

θ
(n)
k−1 − θ

(n)
k+1

)
hθ

(n)
k

, (27)

where k = 1, 2, · · · , N + 1, and n = 1, 2, · · · , T/∆t.
Since the collection {u(n)

k }
N+1
k=1 comprises the numerical prediction on the MCs for

Equations (1)–(3), we can use the NMM approximation provided in Equation (12) again to
compute the solution at any point within the problem domain, i.e.,

u(x, n∆t) =
N

∑
k=1

Nk(x)

(
u(n)

k
u(n)

k+1

)
, n = 1, 2, · · · , T/∆t. (28)

Here, it worth noting that the weighting function Nk(x) possesses the Kronecker delta
property in the ME Ek.

4. Implementation Aspects

The numerical implementation of the RKNMGM for solving Equations (1)–(3) can be
described in Algorithm 1.

In Line 10, Equation (23) is repeatedly executed, and it is computationally heavy to
compute the inverse of the mass matrix M.

As M is symmetric positive definite, we employ Crout’s method, described in
Algorithm 2, to compute M−1.
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Assume u∗ and û as the exact solution and the prediction obtained by the RKNMGM
at (x, t), respectively. The accuracy of the RKNMGM at (x, t) can be measured by the
relative error ϵ = |u∗ − û|/|u∗|.

To further evaluate the global accuracy of our method, assume u∗ and û to denote the
exact solution and the prediction computed by the RKNMGM on all PCs. The global errors
can be computed by

∥u∗ − û∥2 =

[
1

N + 1

N

∑
k=0

(u∗(xk, t)− û(xk, t))2

]1/2

(29)

∥u∗ − û∥∞ = max
0≤k≤N

∣∣u∗(xk, t)− û(xk, t)
∣∣. (30)

where the operators ∥ · ∥2 and ∥ · ∥∞ represent the L2 and L∞ norms, respectively.

Algorithm 1: The RKNMGM scheme for solving Equations (1)–(3)
input : ν, [a, b], T, u0(x), ∆t, N
output : u(x, T)

1 Build the dual cover mesh ({Ci}N+1
i=1 , {Ci}N+1

i=1 , {Ei}N
i=1);

// Compute M and K
2 for i← 1 to N do
3 Add Mi into M at the diagonal starting at (i, i) ;
4 Add Ki into K at the diagonal starting at (i, i) ;
5 end
// Solving Equations (5)−(7)

6 Compute θ
(0)
i , i = 1, 2, . . . , N + 1, according to Equation (24);

7 for n← 1 to T
∆t do

8 Compute Equation (23) for θ
(n)
1 , θ

(n)
2 , . . . , θ

(n)
N+1;

9 end
// Solution restoration

10 for i← 1 to N + 1 do
11 Compute Equation (27) for u(xi, T);
12 end
13 Compute Equation (28) for u(x, T), ∀x ∈ [a, b];

Algorithm 2: Crout’s Method to Solve M−1

Input: M, N
Output: M−1

1 Decompose M = LU;
2 for k← 1 to N + 1 do

// Forward substitution by solving Ly = I(:, k)
3 for p← 1 to N + 1 do

4 y(p) =
[

I(p, k)−∑
p−1
q=1 L(p, q)y(q)

]/
L(p, p);

5 end
// Backward substitution by solving Ux = y

6 for p← N + 1 to 1 do

7 x(p) =
[
y(p)−∑N+1

j=p+1 U(p, q)x(q)
]/

U(p, p);

8 end
9 M−1(:, k) = x;

10 end
11 return M−1;
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5. Validation Problems

Problem 1. Given the problem presented in Equations (1)–(3) on (x, t) ∈ [0, 1]× (0, T] with

u0(x) = sin(πx), x ∈ (0, 1), (31)

Cole [2] gave the exact solution

u(x, t) =
2πν ∑∞

m=1 Am exp(−νm2π2t)m sin(mπx)
A0 + ∑∞

m=1 Am exp(−νm2π2t)m cos(mπx)
, (32)

where, using f (s) = exp{(2πν)−1[cos(πs)− 1]}, the coefficients are

A0 =
∫ 1

0
f (s)ds, Am = 2

∫ 1

0
f (s) cos(mπs)ds, m = 1, 2, 3, . . . . (33)

Below, we employ the RKNMGM scheme to numerically solve this problem. Using
Equation (4), we transform the governing equation from Equation (1) into Equation (5),
then convert the IC in Equation (31) into

θ(0)(x) = exp
[

cos(πx)− 1
2νπ

]
, ∀x ∈ (0, 1), (34)

and the homogeneous BC in Equation (7) becomes

θx
∣∣
x=0 = 0 = θx

∣∣
x=1, ∀t ∈ (0, T]. (35)

As shown in Figure 2, we evaluate the convergence characteristics of the RKN-
MGM for this problem with ν = 0.1 when T = 0.1. Five different ME sizes, i.e.,
h = 1/50, 1/100, 1/200, 1/400, 1/800, are adopted. During the computations, we keep
∆t = 10−6 as the time step length. It can be observed from the figure that the global
errors of the RKNMGM in the L2 and L∞ consistently decrease while refining the spatial
discretization, showcasing the good stability and convergence characteristic.

50 100 200 400 800
Number of MEs (log10 )

22

20

18

16

14

12

10

Er
ro

r (
lo

g 2
)

L2 norm
L  norm

Figure 2. Convergence performance of the RKNMGM for Problem 1.

Then, we examine the numerical solution of Problem 1 for different T while using a
viscosity coefficient of ν = 0.1. For each case, the parameters of the RKNMGM are set to
be h = 0.05 and ∆t = 0.001. As depicted in Figure 3, we present the comparison of the
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solution curves produced by the RKNMGM against the exact solutions. The figure clearly
indicates that the results from our method closely match the analytical formulations.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

So
lu

tio
n 

u(
x,

T)

Viscosity  = 0.1

T = 0.2

T = 0.4

T = 0.6

T = 0.8

T = 1.0

RKNMGM (T=0.2)
RKNMGM (T=0.4)
RKNMGM (T=0.6)
RKNMGM (T=0.8)
RKNMGM (T=1.0)
Exact (T=0.2)
Exact (T=0.4)
Exact (T=0.6)
Exact (T=0.8)
Exact (T=1.0)

Figure 3. RKNMGM results using ∆t = 10−5, h = 1/200 for Problem 1 with ν = 0.1.

Table 1 presents the comparison of our results with exact solutions and those provided
by the EFCGM [20] and the ENMCGM [40] at specific points and different times. Here, the
EFCGM adopts 20 nodes with ∆t = 10−3, the ENMCGM uses h = 1/2000 with ∆t = 10−7,
while the RKNMGM employs h = 1/200 with ∆t = 10−5. Compared with the EFCGM, our
method needs finer discretization to achieve similar accuracy. However, the RKNMGM
can strictly satisfy the homogeneous BC, which is challenging for the EFCGM due to using
the MLS approximation. Besides, the EFCGM adopts the cubic spline weight function
and utilizes Gaussian quadrature to calculate integrals, while our method employ a linear
weight function and directly uses exact integration formulations. Compared with the
ENMCGM, the present method requires much less MEs and smaller time step size, and the
accuracy is better. These comparisons demonstrate that the efficiency and effectiveness of
our method is on par with the EFCGM as well as the ENMCGM.

Table 1. Numerical results and relative errors ϵ of different methods for Problem 1 (ν = 0.1).

T x Exact EFCGM
[20] ϵ

ENMCGM
[40] ϵ Present ϵ

0.4
0.25 0.308894 0.308892 7.21×10−6 0.308901 2.19 × 10−5 0.308859 1.14 × 10−4

0.50 0.569632 0.569629 6.06 × 10−6 0.569705 1.27 × 10−4 0.569603 5.08 × 10−5

0.75 0.625438 0.625446 1.30 × 10−5 0.625473 5.61 × 10−5 0.625460 3.61 × 10−5

0.6
0.25 0.240739 0.240747 3.31 × 10−5 0.240737 8.40 × 10−6 0.240718 8.61 × 10−5

0.50 0.447206 0.447214 1.90 × 10−5 0.447261 1.24 × 10−4 0.447184 4.73 × 10−5

0.75 0.487215 0.487214 2.00 × 10−6 0.487215 5.16 × 10−8 0.487219 9.21 × 10−6

0.8
0.25 0.195676 0.195679 1.75 × 10−5 0.195665 5.40 × 10−5 0.195659 8.56 × 10−5

0.50 0.359236 0.359241 1.38 × 10−5 0.359269 9.17 × 10−5 0.359214 6.16 × 10−5

0.75 0.373922 0.373923 3.33 × 10−6 0.373893 7.69 × 10−5 0.373911 3.00 × 10−5

1.0
0.25 0.162565 0.162560 2.99 × 10−5 0.162547 1.10 × 10−4 0.162554 6.92 × 10−5

0.50 0.291916 0.291919 1.04 × 10−5 0.291928 4.13 × 10−5 0.291900 5.38 × 10−5

0.75 0.287474 0.287472 8.37 × 10−6 0.287426 1.68 × 10−4 0.287464 3.45 × 10−5
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We then address this problem with a viscosity coefficient of ν = 0.01 using the
RKNMGM, employing h = 0.02 and ∆t = 10−6. Figure 4 illustrates the comparison
between our results and the exact solutions, indicating that the RKNMGM yields an
outstanding agreement.
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Figure 4. RKNMGM results using ∆t = 10−6, h = 1/500 for Problem 1 with ν = 0.01.

Table 2 provides a comparison of our results and those obtained from various numeri-
cal methods with the exact solution across different final times. In this test, the EFCGM
adopts 50 nodes with ∆t = 10−3, the ENMCGM uses h = 1/2000 with ∆t = 10−7, while the
RKNMGM employs h = 1/500 with ∆t = 10−6. The RKNMGM achieves similar accuracy
to the EFCGM [20] while strictly enforcing the homogeneous BC, a challenge for the latter.
Additionally, our method proves more accurate than the ENMCGM [40], even though the
ENMCGM uses a finer spatial discretization and smaller time steps.

Table 2. Numerical results and relative errors ϵ of different methods for Problem 1 (ν = 0.01).

T x Exact EFCGM
[20] ϵ1 Ref. [40] ϵ3 Present ϵ

0.4
0.25 0.341915 0.341914 2.73 × 10−6 0.342154 6.99×10−4 0.341947 9.38 × 10−5

0.50 0.660711 0.660712 1.56 × 10−6 0.660903 2.91 × 10−4 0.661311 9.08 × 10−4

0.75 0.910265 0.910256 9.39 × 10−6 0.910337 7.96 × 10−5 0.911848 1.74 × 10−3

0.6
0.25 0.268965 0.268958 2.55 × 10−5 0.269190 8.37 × 10−4 0.268971 2.30 × 10−5

0.50 0.529418 0.529426 1.46 × 10−5 0.529653 4.43 × 10−4 0.529732 5.92 × 10−4

0.75 0.767243 0.767247 4.85 × 10−6 0.767409 2.16 × 10−4 0.768302 1.38 × 10−3

0.8
0.25 0.221482 0.221491 4.10 × 10−5 0.221680 8.94 × 10−4 0.221479 1.09 × 10−5

0.50 0.439138 0.439142 8.54 × 10−6 0.439380 5.51 × 10−4 0.439314 3.99 × 10−4

0.75 0.647395 0.647438 6.61 × 10−5 0.647604 3.22 × 10−4 0.648058 1.02 × 10−3

1.0
0.25 0.188194 0.188193 5.11 × 10−6 0.188367 9.19 × 10−4 0.188189 2.81 × 10−5

0.50 0.374420 0.374423 7.91 × 10−6 0.374653 6.22 × 10−4 0.374524 2.79 × 10−4

0.75 0.556051 0.556051 5.31 × 10−7 0.556273 4.00 × 10−4 0.556476 7.64 × 10−4
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Problem 2. For Equations (1)–(3) on (x, t) ∈ (0, 1)× (0, T] with

u0(x) =
2νπ sin(πx)
a + cos(πx)

, x ∈ (0, 1), a > 0, (36)

Wood [3] has provided the exact solution

u(x, t) =
2νπ sin(πx)e−π2νt

a + cos(πx)e−π2νt
, a > 1. (37)

Before performing Algorithm 1 of the RKNMGM for the numerical analysis on this
problem, we use Equation (4) to transform Equation (1) into Equation (5). Taking the
parameter a = 2, we use the H-C transform to turn the IC in Equation (36) into

θ(0)(x) =
2 + cos(πx)

3
, ∀x ∈ (0, 1), (38)

and adapt the homogeneous BC in Equation (7) into the Neumann BC in Equation (35).
As shown in Figure 5, the numerical results of the RKNMGM for Problem 2 are

compared against the analytical solutions when T = 1.0. Diversified viscosity coefficients
are considered, i.e., ν = 0.1, 0.01, 0.001, and smaller ν leads to a more smoothly changing
curve. During the computation, the time step size and ME size are set as ∆t = 10−4 and
h = 1/200, respectively. A close agreement with the exact solutions can be found from
Figure 5. It is indicated that our method is effective and stable.
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Figure 5. The results of the RKNMGM against the exact solutions for Problem 2 when T = 1.0.

Then, we evaluate the convergence performance of the RKNMGM for Problem 2 in
the case of T = 0.1. In Table 3, the global errors of the RKNMGM are demonstrated for
different ME numbers and viscosity coefficients. During the computations, set ∆t = 10−6,
and diversified viscosity coefficients are adopted. It can be observed from the table that
refining the dual cover mesh can give more accurate results for all of the cases. Besides, we
can also find the phenomena that when the viscosity coefficient ν is reduced, the errors in
both the L2 and L∞ norm decrease.

Next, we evaluate the results from the current method against those obtained from
the ENMCGM [40] for Problem 2, focusing on two cases: ν = 0.01 and ν = 0.001. During
the test, both methods utilize 2000 MEs. The RKNMGM employs a time step of ∆t = 10−6,
while the ENMCGM uses ∆t = 10−7. Table 4 presents the numerical results and the relative
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errors with respect to the analytical solution in Equation (37). The comparison reveals
that the present method demonstrates greater accuracy and stability for both ν = 0.01 and
ν = 0.001. Further, the RKNMGM can use a larger time step size while achieving better
computational performance.

Table 3. Convergence behavior of the RKNMGM using ∆t = 10−6 and various ME numbers for
Problem 2 with T = 0.1.

N
ν = 0.01 ν = 0.001 ν = 0.0001

∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞

50 1.62 × 10−5 1.62 × 10−6 1.63 × 10−7 2.39 × 10−7 1.63 × 10−7 2.39 × 10−7

100 4.04 × 10−6 4.06 × 10−7 4.06 × 10−8 5.97 × 10−8 4.06 × 10−8 5.97 × 10−8

200 1.01 × 10−6 1.02 × 10−7 1.02 × 10−8 1.49 × 10−8 1.02 × 10−8 1.49 × 10−8

400 2.53 × 10−7 2.54 × 10−8 2.54 × 10−9 3.73 × 10−9 2.54 × 10−9 3.73 × 10−9

800 6.31 × 10−8 6.35 × 10−9 6.35 × 10−10 9.32 × 10−10 6.35 × 10−10 9.32 × 10−10

1600 1.58 × 10−8 1.59 × 10−9 1.59 × 10−10 2.33 × 10−10 1.59 × 10−10 2.33 × 10−10

Furthermore, the accuracy of the RKNMGM is compared with higher-order meth-
ods, such as the fifth-order FVM (FVCW) [15] and the collocation methods proposed
by Ganaie [13] and Mittal [12]. In this test, these three references adopt the parameters
∆t = 10−4 and h = 1/40, while we choose ∆t = 10−6 and h = 1/1200. Table 5 provides
the exact solutions and numerical results on specific points. The data indicate that the
RKNMGM demonstrates good accuracy, while it is slightly lower than that of the FVCW
scheme. The latter benefits from the six-order Padé-based approximation. Our method out-
performs the other two higher-order collocation methods in terms of accuracy. When using
the same computing parameters as adopted in the other three methods, i.e., ∆t = 10−6 and
h = 1/140, the relative error of our method is 1.03× 10−4 at all of the measured points.
Although higher-order approaches exhibit impressive results, they may also demonstrate
increased computational complexity. In contrast, the RKNMGM is more simple and easy
to implement owing to using constant cover functions and linear weight functions. These
comparisons highlight the effectiveness and efficiency of the RKNMGM, showcasing its
competitive performance among various methods using higher-order approximation.

From Tables 4 and 5, it is noteworthy that the present method exhibits almost uniform
relative errors across different points, whereas the the other four methods do not possess
this characteristic. This can be attributed to the time integration scheme adopted in this
work, which maintains the TVD property, effectively suppressing numerical oscillations
near sharp gradients.

Table 4. Computing results and their relative errors obtained from different numerical methods for
Problem 2 when T = 0.1.

x
ν = 0.01 ν = 0.001

Ref. [40] ϵ1 Present ϵ Ref. [40] ϵ2 Present ϵ

0.1 0.00653527 2.68 × 10−5 0.00653544 4.13 × 10−7 0.00065750 2.14 × 10−6 0.00065750 4.11 × 10−7

0.2 0.01305544 8.02 × 10−6 0.01305533 4.13 × 10−7 0.00131383 4.91 × 10−7 0.00131383 4.11 × 10−7

0.3 0.01949374 5.35 × 10−6 0.01949363 4.13 × 10−7 0.00196281 6.73 × 10−7 0.00196281 4.11 × 10−7

0.4 0.02565934 3.54 × 10−6 0.02565924 4.13 × 10−7 0.00258576 2.41 × 10−7 0.00258576 4.11 × 10−7

0.5 0.03110745 1.97 × 10−6 0.03110738 4.13 × 10−7 0.00313849 1.42 × 10−7 0.00313849 4.11 × 10−7

0.6 0.03492868 6.54 × 10−7 0.03492864 4.14 × 10−7 0.00352972 5.91 × 10−8 0.00352972 4.11 × 10−7

0.7 0.03549597 5.27 × 10−7 0.03549594 4.14 × 10−7 0.00359443 1.13 × 10−7 0.00359443 4.12 × 10−7

0.8 0.03050154 6.40 × 10−6 0.03050133 4.15 × 10−7 0.00309581 6.95 × 10−7 0.00309580 4.12 × 10−7

0.9 0.01816643 9.56 × 10−6 0.01816660 4.15 × 10−7 0.00184754 3.56 × 10−6 0.00184754 4.12 × 10−7
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Table 5. The results and relative errors of different numerical approaches for Problem 2 (ν = 0.1)
when T = 0.001.

x Exact FVCW [15] ϵ Ganaie [13] ϵ Mittal [12] ϵ Present ϵ

0.1 0.06574976 0.06574976 2.78 × 10−10 0.065750 3.66 × 10−6 0.065750 3.66 × 10−6 0.06574973 4.11 × 10−7

0.2 0.13138294 0.13138294 8.94 × 10−11 0.131383 4.91 × 10−7 0.131383 4.91 × 10−7 0.13138288 4.11 × 10−7

0.3 0.19628087 0.19628087 1.37 × 10−10 0.196281 6.73 × 10−7 0.196281 6.73 × 10−7 0.19628079 4.11 × 10−7

0.4 0.25857574 0.25857574 1.21 × 10−9 0.258576 1.01 × 10−6 0.258576 1.01 × 10−6 0.25857563 4.11 × 10−7

0.5 0.31384936 0.31384935 1.07×10−8 0.313848 4.32 × 10−6 0.313850 2.05 × 10−6 0.31384923 4.11 × 10−7

0.6 0.35297182 0.35297179 1.00 × 10−7 0.352972 5.07 × 10−7 0.352972 5.07 × 10−7 0.35297168 4.11 × 10−7

0.7 0.35944286 0.35944291 1.33 × 10−7 0.359443 3.91 × 10−7 0.359443 3.91 × 10−7 0.35944271 4.12 × 10−7

0.8 0.30958038 0.30958039 9.47 × 10−9 0.309580 1.24 × 10−6 0.309579 4.47 × 10−6 0.30958026 4.12 × 10−7

0.9 0.18475374 0.18475374 3.45 × 10−8 0.184752 9.43 × 10−6 0.184751 1.48 × 10−5 0.18475367 4.12 × 10−7

Problem 3. Next, consider Equations (1)–(3) on (x, t) ∈ (0, 1)× (0, T] with

u0(x) = 4x(1− x), ∀x ∈ (0, 1). (39)

The exact solution of this problem is the same as Equation (32), but the coefficients A0 and Am take
the following formulation [4]:

A0 =
∫ 1

0
f (s)ds, Am = 2

∫ 1

0
f (s) cos(mπs)ds, m = 1, 2, 3, . . . . (40)

where f (s) = exp
[
(3ν)−1s2(2s− 3)

]
. Using Equation (4), Equation (1) is transformed into

Equation (5), the IC in Equation (36) becomes θ(0)(x) = f (x), ∀x ∈ (0, 1), and the BC in
Equation (7) turns to be Equation (35).

For this example, we first assess the convergence performance of the RKNMGM using
the time step size ∆t = 10−5 and various ME sizes—specifically, h = 1/40, 1/80, 1/120,
1/160, and 1/200. Here, we use a viscosity coefficient of ν = 0.1 and set the final time as
T = 0.1. As illustrated in Figure 6, the global errors are presented in both L2 and L∞ norms.
The figure clearly demonstrates that our method converges as the discretization is refined.
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Figure 6. Convergence study of the RKNMGM using ∆t = 10−5 and different ME numbers for
Problem 3 in the case of ν = 0.1 and T = 0.1.

As shown in Figures 7 and 8, the results of the RKNMGM align well with the exact
solutions, corresponding to the diffusive coefficients ν = 0.1 and ν = 0.01. In these compu-
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tations, we adopt ∆t = 10−5 and h = 1/200. Notably, these curves exhibit similarities to
those observed in Problem 1 owing to their similar exact solution formulations.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Th
e 

So
lu

tio
n 

u(
x,

T)

Viscosity  = 0.1

T = 0.4

T = 0.6

T = 0.8

T = 1.0

RKNMGM (T=0.4)
RKNMGM (T=0.6)
RKNMGM (T=0.8)
RKNMGM (T=1.0)
Exact (T=0.4)
Exact (T=0.6)
Exact (T=0.8)
Exact (T=1.0)

Figure 7. RKNMGM results using ∆t = 10−5, h = 1/200 for Problem 3 with ν = 0.1.
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Figure 8. RKNMGM results using ∆t = 10−5, h = 1/200 for Problem 3 with ν = 0.01.

We further assess the accuracy of the RKNMGM at specific points for this example.
For this test, the profile of the problem includes ν = 0.1 and T = 0.4, 0.6, 0.8, 1.0. Table 6
presents a comparison of the numerical results obtained from our method with those
solved by the fourth-order FDM [4] and the ENMCGM [40]. In the tests, the FDM uses
∆t = 10−3 with h = 1/80, the ENMCGM employs ∆t = 10−7 with h = 1/2000, and we
adopt ∆t = 10−6 with h = 1/500. It is evident that the RKNMGM can provide higher
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accuracy than the other two methods. Although our approach requires a finer mesh than
the fourth-order FDM, it utilizes only constant cover functions and linear approximations,
significantly reducing computational cost. Moreover, compared to the ENMCGM, which
uses 2000 MEs, our method achieves greater accuracy with just 500 MEs, demonstrating
the remarkable efficiency of the current approach.

Table 6. Comparison of the results and relative errors obtained from different numerical methods for
Problem 3 (ν = 0.1).

T x Exact Hassanien
[4] ϵ1 Sun [40] ϵ2 Present ϵ

0.4
0.25 0.3175229 0.31752 9.07 × 10−6 0.3175292 1.99 × 10−5 0.3175169 1.89 × 10−5

0.5 0.5845373 0.58454 4.69 × 10−6 0.5846054 1.17 × 10−4 0.5845327 7.86 × 10−6

0.75 0.6456155 0.64562 6.96 × 10−6 0.6456419 4.09 × 10−5 0.6456196 6.41 × 10−6

0.6
0.25 0.2461385 0.24614 6.27 × 10−6 0.2461348 1.49 × 10−5 0.2461345 1.60 × 10−5

0.5 0.4579764 0.45798 7.85 × 10−6 0.4580298 1.17 × 10−4 0.4579721 9.37 × 10−6

0.75 0.5026758 0.50268 8.45 × 10−6 0.5026707 1.00 × 10−5 0.5026757 1.87 × 10−7

0.8
0.25 0.1995553 0.19956 2.35 × 10−5 0.1995441 5.62 × 10−5 0.1995525 1.39 × 10−5

0.5 0.3673982 0.3674 4.92 × 10−6 0.3674304 8.77 × 10−5 0.3673946 9.88 × 10−6

0.75 0.3853355 0.38534 1.16 × 10−5 0.385303 8.44 × 10−5 0.3853338 4.54 × 10−6

1.0
0.25 0.1655986 0.1656 8.26 × 10−6 0.1655804 1.10 × 10−4 0.1655965 1.27 × 10−5

0.5 0.2983431 0.29834 1.04 × 10−5 0.2983543 3.75 × 10−5 0.2983400 1.03 × 10−5

0.75 0.2958567 0.29586 1.12 × 10−5 0.2958057 1.72 × 10−4 0.2958545 7.45 × 10−6

Problem 4. There exist the following specific solutions [8] for the problem presented in Equations (1)–(3)

u(x, t) =
x/t

1 +
√

αt exp(βx2/t)
, (x, t) ∈ (0, 1.2)× [1, ∞), (41)

where α = exp(−1/8ν), β = 1/4ν.

Consider the Burgers’ equation on (x, t) ∈ (0, 1.2) × (1, T], with Equation (42) at
t = 1.0 as the IC, i.e.,

u0(x) =
x

1 +
√

α exp(βx2)
, x ∈ (0, 1.2). (42)

In this case, the BC in Equation (3) becomes

u(0, t) = u(1.2, t) = 0, ∀t ∈ [0, ∞). (43)

Equation (41) provides the exact solution for this problem.
To numerically solve this problem with the RKNMGM, we use Equation (4) to convert

Equation (1) into Equation (5) and transform the IC and BC into the following forms:

θ(0)(x) =
exp(−βx2) +

√
α

1 +
√

α
, ∀x ∈ (0, 1.2) (44)

θx
∣∣
x=0 = 0 = θx

∣∣
x=1.2, ∀t ∈ (1, T]. (45)

Figure 9 shows the convergence performance of the RKNMGM for Problem 4 with
ν = 0.005. Various spatial discretizations are considered, including cases with 50, 100, 200,
400, 800, and 1600 MEs. A consistent time step of ∆t = 10−5 was used throughout the
computations. As depicted in the figure, the global errors of the RKNMGM decrease with
increasing ME numbers, demonstrating clear convergence.
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Figure 9. The convergence behavior of the RKNMGM using ∆t = 10−5 and various spatial discretiza-
tions for Problem 4 in the case of ν = 0.005 and T = 1.5.

Table 7 compares the accuracy of the RKNMGM with other numerical methods,
including the FEM [8] and our previously proposed ENMCGM scheme [40]. The ENMCGM
utilizes 2000 MEs and employs ∆t = 10−7 for both of the cases ν = 0.005 and ν = 0.001,
while the present method utilizes ∆t = 10−5 and uses 400 MEs and 2000 MEs for ν = 0.005
and ν = 0.001, respectively. Here, the computing settings used in the FEM have not been
given by the author. The accuracy is evaluated in terms of global errors in both L2 and L∞
norms for two cases of viscosity, ν = 0.005 and ν = 0.001, with results presented for three
different final times T. The RKNMGM demonstrates superior accuracy compared to the
other two methods. This comparison shows the significant advantage of the RKNMGM in
computational efficiency.

Table 7. The global errors of the results computed by the RKNMGM compared with other numerical
methods for Problem 4 with diversified cases of ν and T.

ν T
FEM [8] ENMCGM [40] Present

∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞

0.005
1.7 2.107 × 10−3 8.099 × 10−3 5.7479 × 10−4 2.4558 × 10−3 1.9582 × 10−4 5.8596 × 10−4

2.4 3.345 × 10−3 1.165 × 10−2 7.8821 × 10−4 3.0273 × 10−3 1.3592 × 10−4 3.7217 × 10−4

3.1 4.820 × 10−3 1.587 × 10−2 8.9660 × 10−4 3.2024 × 10−3 1.0157 × 10−4 2.5996 × 10−4

0.001
1.7 4.123 × 10−3 3.6675 × 10−2 7.2690 × 10−3 6.7517 × 10−2 3.5527 × 10−4 2.0779 × 10−3

2.4 1.432 × 10−3 1.0812 × 10−2 1.0116 × 10−2 8.5248 × 10−2 2.8907 × 10−4 1.8220 × 10−3

3.1 5.761 × 10−3 4.0855 × 10−2 1.1546 × 10−2 9.0540 × 10−2 2.3257 × 10−4 1.4406 × 10−3

Figure 10 displays our results for Problem 4 with a viscosity coefficient of ν = 0.01,
compared to the exact solution. We use a time step size of ∆t = 10−5 and 200 MEs. As the
final time T varies from 1.0 to 3.0, the curve becomes progressively smoother. The figure
clearly demonstrates a close correspondence between our results and the exact solutions.

Additionally, Figure 11 presents our findings alongside the exact solution for this
example with ν = 0.001. In this case, we maintain a time step of ∆t = 10−5 while refining
the spatial discretization to 2000 MEs. Noticeable steep gradients are evident in the curves
for T = 1.0, 1.5, 2.0, 2.5, and 3.0. Overall, it is evident that the results from the RKNMGM
closely match the exact solutions.
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Figure 10. RKNMGM results using ∆t = 10−5 and 200 MEs for Problem 4 with ν = 0.01 and different
T against the exact solutions.
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Figure 11. RKNMGM results using ∆t = 10−5 and 2000 MEs for Problem 4 with ν = 0.001.

6. Conclusions

The problem of the Burgers’ equation, as depicted in Equations (1)–(3), acts as a crucial
framework for analyzing intricate nonlinear behaviors in fluid dynamics. In this paper, we
proposed a Runge–Kutta numerical manifold Galerkin method (RKNMGM) specifically
designed to solve this problem. This approach utilizes a dual cover mesh and PU-like
weighted functions over manifold elements to enhance accuracy. To address the nonlinear
advective term, we employed the H-C transform, shifting the original problem into a more
manageable linear PDE. We conducted several benchmark numerical tests to evaluate the
performance of the RKNMGM. Based on the numerical results, several notable advantages
of the RKNMGM are worth highlighting, as follows:

(1) The H-C transform simplifies the Burgers’ equation, significantly reducing the com-
plexity of solving the original equation while preserving essential physical characteris-
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tics. The solution to the original problem can be conveniently recovered from that of
the transformed problem using the H-C transform once again.

(2) By adopting the dual cover approximation with constant cover functions and linear
weight functions, computational costs are reduced while Dirichlet boundary condi-
tion can be accurately imposed. Additionally, integrals over manifold elements are
computed using simplex integration formulas instead of Gaussian quadrature, further
enhancing accuracy and efficiency.

(3) We introduced the fully explicit TVD-RK2 scheme for temporal discretization in the
NMM. Although both the TVD-RK2 and the Crank–Nicolson method have second-
order accuracy, the TVD property possessed in the former one brings our present
method an advantage in suppressing numerical oscillations, as evidenced in the
numerical experiments.

(4) The final computational formulation, derived from the Galerkin weak form, results in
a symmetric mass matrix, whose inverse can be efficiently obtained using the Crout
method. This facilitates implementation and parallelization of the RKNMGM.

(5) Our numerical results for the Burgers’ equation under diversified initial condition
values were thoroughly compared with exact solutions and other numerical methods.
These comparisons demonstrate that our method effectively captures steep gradients,
even for very small viscosity coefficients.

It is important to acknowledge that this study concentrates exclusively on the one-
dimensional Burgers’ equation. In our future research, we look forward to extending our
exploration to high-dimensional cases, which will broaden the applicability of the findings
presented here. This investigation will enable us to address more complex PDEs that are
significant in the realm of fluid dynamics.
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