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Abstract: This paper proposes new iterative algorithms by using the generalized viscosity implicit
midpoint rule in Banach space, which is also a symmetric space. Then, this paper obtains strong
convergence conclusions. Moreover, the results generalize the related conclusions of some researchers.
Finally, this paper provides some examples to verify these conclusions. These conclusions further
extend and enrich the relevant theory of symmetric space.
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1. Introduction

Definition 1 ([1]). Let E be real Banach space and E* be the dual space. | : E — 2E" is called the
normalized duality mapping and defined by

J(x) = {f € E* i< x f>= %7 = IfI°}, x € E.

Definition 2 ([2]). Let C be the nonempty set of E and for any x,y € C.

(1) If||Sx — Sy|| < |[x —y||, then S : C — C is called nonexpansive mapping. Let F(S) denote
the fixed point set of S.
) Ifllfx— fyll <k|llx—y|, ke€[0,1), then f:C — C is called contractive mapping.

Definition 3 ([3]). Let C be the nonempty set of E and for any x,y € C.

(1)  If there exists j(x —y) € J(x —y) such that (Ax — Ay, j(x —y)) >0, then A:C — E is
called accretive operator.
(2) Foranyr >0,if R(I+rA) = E, then A is called m-accretive operator.

(3) Foranyr>0,if |, = (I+ rA)Y, then J, : R(I+rA) — D(A) is called the resolvent of
m-accretive operator A.

It is well known that J, is nonexpansive mapping, and the fixed point set of J; is the
zero set of accretive operator A. Then the fixed point theory of nonexpansive mapping was
used to solve the zero point problem of the accretive operator; see [1-6] and the references
therein. It is well known that the implicit midpoint rule is a useful method for solving
ordinary differential equations. Meanwhile, the viscosity iterative algorithm is very useful
for finding solutions for variational inequality problems and the common fixed point of
nonlinear operators; see [7-14] and the references therein.

Chang et al. [1] introduced the viscosity iterative algorithm for nonexpansive mapping
and accretive operators, in 2009, as shown below.

{yn = ,ann + (1 - ,Bn)S]rxnr
Xp+1 = &nfXn + (1 — an)Yn.
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Jung [15] proposed the following algorithm, in 2016:

X1 = Jr (nf (Xn) + (1 —an)Sxn), X011 = Jr, (nf (xn) + (1 — @) Sxp + €n).

He proved that {x, }{x,} converged strongly to p € F(S) N N(A). The results gener-
alized related conclusions.

E is a real reflexive Banach space with a uniformly Gateaux differentiable norm and
C is a nonempty closed convex subset of E. Li [16] proposed a new iterative algorithm in
2017 and obtained strong convergence results:

xg=x€C,
Yn = BnSJr, (en + xn) + (1 — Bn)xn,
Xp+1 = nT(xn) + (1 — ay)yn.

In the Hilbert space, Xu et al. [17] proposed the viscosity implicit midpoint rule:

Xp + X
Xpt1 = &nf(xn) + (1 — ocn)T(rlz'M), n>0.

Under certain conditions of {«, }, they found that {x, } converged strongly to g € F(T),
and g was the solution of variational inequality ((I — f)g,x —q) > 0.

Luo et al. [18] extended the conclusions of Xu [17] from the Hilbert space to a uniformly
smooth Banach space, in 2017:

Xp + X
Xpe1 = &nf(xn) + (1 — txn)T(”Z”H>, n>0.

Under certain conditions of {a;, }, they found that {x, } converged strongly to p € F(T),
and p was the solution of variational inequality ((I — f)p,x — p) > 0.

In the Hilbert space, Ke et al. [19] introduced the generalized viscosity implicit rule for
nonexpansive mapping:

X1 = 0nf(Xn) + (1 — an)T(Snxn + (1 — Sy)xpy41), n > 0.

Under some conditions of {«,} and {s, }, they found that {x, } converged strongly to
p € F(T), and p was the solution of variational inequality ((I — f)p,x — p) > 0.

In 2018, Zhang et al. [20] proposed two iterative algorithms by using the viscosity
implicit midpoint rule in Banach space:

{ Yn = Pn (%) + (1= Bu)lr, (%)
Xp+1 = &nfXn + (1 — an)Syn.

Yn = ﬁn (%) + (1 - ,Bn)]rn (% +€n)/
Xp+1 = &nfXn + (1 — an)Syn.

Under some conditions of {a,}, {Bx} and {r,}, they found that {x,} converged
strongly to g € F(S) N N(A), and q was the solution of variational inequality
(I=1f)a.Jelq—p)) 0.

In Banach space, Zhang et al. [21] proposed an iterative algorithm by using the
generalized viscosity implicit midpoint rule, in 2019:

Xp1 = Qnf (Xn) + (1 —an) T(spxn + (1 —5p)Xn41),
X1 = &nXn + Buf () + YuT(snxn + (1 — 5p)Xps1) +en.

Under some conditions of {«a,}, {Bn}, {7n} and {s,}, they found that {x, } converged
strongly to g € F(T), and q was the solution of variational inequality ((I — f)g,j(x —q)) <O0.
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On the basis of the above research, this paper proposes new iterative algorithms by
using the generalized viscosity implicit midpoint rule in Banach space to obtain a strong
convergence conclusion. The results extend the previous results. In the end, this paper
provides some examples to verify these conclusions.

2. Preliminaries

Definition 4 ([20]). E is called uniformly convex, if there exists d; > 0 such that M <1—20,
where ||x|| = [ly|| =1, ||[x —y|| > ¢ Ve €[0,2]. g:[0,+00) — [0, +00) is a strictly increasing
convex and continuous function with g(0) = 0. If g satisfies

IAx 4+ (1= Myl* < Al + (1= M)yl = A1 = g (|lx =y, ©)
then the Banach space is uniformly convex.

Definition 5 ([22]). C is a nonempty set. If the distance function d satisfies d(p,q) = d(q,p),
V(p,q) € C, then d is symmetric. C endowed with metric d forms a symmetric space.

It is well known that the Banach space has symmetry.

Definition 6 ([23]). Forany x,y € Uand U = {x € E : ||x|| =1}, zftlzrr(z)w exists, then
—

E has a Géteaux differentiable norm. For any y € U, E has a uniformly Gdteaux differentiable

norm, if liné w is attained uniformly for x € U.
t—

As we all know, if E has a uniformly Gateaux differentiable norm, so J is single valued
and norm-to-weak* uniformly continuous on any bounded subset of E; see [23].

Definition 7 ([20]). For any bounded closed convex subset D of C, where C is a closed convex
subset of E, and D has at least two points and diam (D) denotes the diameter of D. If there exists no
diametral point, x € D such that diam(D) > sup{ ||x — y|||y € D}, so C has normal structure.

In order to prove the conclusions of this paper, we require the following lemmas.

Lemma 1 ([24]). Assume that for any A, u > 0and x € E,

o= (e (- 2.

Lemma 2 ([25]). Let {an}, {bn}, {cn} be three non-negative real sequences and satisfy

Ap+1 < (1 - tn)an +by+cu,Vn >0,

where {t,} C (0,1). If Y ty =00, by =0(ty)and Y. ¢, < oo, then nlgn a, = 0.
n=0 o0

n=1

Lemma 3 ([4,20]). Assume that E is the real reflexive Banach space which has a uniformly
Gdteaux differentiable norm, C is the nonempty closed convex subset of E with normal struc-
ture, T : C — C is the fixed contraction with T € (0,1) and S: C — C is the nonexpansive
mapping which has a fixed point. For t € (0,1), {xg,1.} is defined by

X514t = tTx; + (1 — t)SxS,T,t-
So {x} strongly converges to x' € F(S), which is the only solution of the variational inequality

(Tx' —x',j(x' —q)) >0, Vq € F(S).
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Lemma 4 ([2]). Let E be the Banach space and for j(x +y) € J(x +y), there exists

lx+yl* < [lx|* +2(y, j(x +v)), Vx,y € E.
3. Results

Theorem 1. Assume that E is a reflexive and uniformly convex Banach space with a uniformly
Gateaux differentiable norm, C is a nonempty closed convex subset of E with normal struc-
ture. f:C — C is contractive mapping with k € [0,1), A is the m-accretive operator in E
and S : C — C is the nonexpansive mapping with F(S) " N(A) # @. Forany xo € Cand n > 0,
{xn} is generated by

{ Yn = BnXn + (1= Bu)Jr,Xnt1, @

Xpa1 = & fxy + (1 — an)Syn,
where {ay}, {Bn} C (0,1) and {r,} C (0,1) satisfy the following conditions:
O E 1B —pol <o
(i1) Z ay = 00, 11m 0y = 0, |an — apy—1| = o(an);
n=0
(iii) nlgxgorn =7, n§1|rn — Ty—1] < oo.

Then {x,} and {yn} strongly converge to p € F(S) N N(A) which is the only one solution
of variational inequality ((I — f)p, Jo(p —q)) < 0,Vq € F(S)NN(A).

Proof. The proof process is divided into eleven steps.
Step 1: Show the boundedness of {x,} and {y,}.
Taking g € F(S) N N(A), then we obtain

[y = qll < Bullxn —qll + (1 = Bu) [|Jr, xns1 =4l
< Bullxn =gl + (1 = Bu) |xn41 = qll,

and then we obtain

xu1 —qll < anllfxn —qll + (1 —an)||Syn — 4|
< kan||xn — ql + anllfq —qll + (L= an)lyn — 4|
< kanl|xn —ql +anll fg =gl + (1 — an)Bullxn — 4|
+(1 = an) (1= Bu)lxns1 —ql|-
It follows that
kﬂén+(1 ) Bn

1xn1 — qll < Tp=as 10 —all + 555, 1 fa — all

n k) n k
|:1 o “nji/g(nl “n,Bni| ||xn o q” + lxniﬁ(nl*‘xr)t,gn ”flq*kqu

< max{on —q|, Hf‘] ‘7|| }

Then {x,} isbounded. So {yx}, {fxn}, {Sxn}, {Jr,xn}, {fyn}, {Jr,yn} and {Sy, } are
also bounded.

Step 2: Show that nli_r)rC}OHan — x| = 0.
From (2), we obtain
%41 = x|l = [|(1 = &n) Syn + an fXn — (1 — an—1)Syn—1 — an—1fxXn—1l|

< | foen = foxnall + (1= an)1Syn = Synall + lan —ana| - [|fxn1 = Synall  3)
< ke[| 20 = x| + (1= an)[[yn = yuall + lan = anal- [ fxn1 = Synl-

From (2), we obtain
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lyn = yn-1l = ||(1 = Bu)JruXn+1 + Buxn — (1 — Br—1)Jr, 1 Xn — Bn-1Xn—1 @)
< IB‘VIHx” - xn*1|| + (1 - ,Bn)H]rnanrl - ]r,,,lan + |,Bn - ,anl’ : Hxnfl - ]rn,lan-

From Lemma 1, we obtain

U oer = Tyl |= [|Jra s (2 en 4 (1= 22 ) ) = Ty
< r,; Lyt + (1 — =l )]rnxn+1 — Xn
= rrn (xn-i-l - xn) + (1 - r,,, )(]rnxn-&-l - xn) ’ ®)
<! Y P T Y Y T
< s -l + I AR |
Taking (4) and (5) into (3), we have
s = all < Kl — o+ ot — 1] 1 F %1 — Syt + (1 @a)Bn % — o1
+(1T—ap)(1 ,Bn)||xn+1 xn” + (1 —an)|Bn — Bu-1] - ||xn71 — Jru 1 Xn
(1 =) (1= Bu)| 1 = 22| s = T, Xwal
It follows that
k nt 1 n)Pn n—"®n—
lnsr =l < =R o — a1+ 525 2 My
(1 an)MSn Bn— IH'(l Xn— ﬁn‘f‘lxnﬁn) 1- ﬂ 1
+ an"!‘,Bn lxnﬁn M2
n(1-k) 0y
= [1= mtfip] o — ool + g
(1=an)|Bn—Bu—1|+(1—an—Bn+anfn) 7’7;;1
+ ’J‘n‘th*“n,Bn M2’
where My = max{| fx,_1 — Sy,_1/|} and M, = max{”xn 1= Jry 1 Xn — JraXnsa | }-
Taking t,, = %, then £, > a,(1 — k). From Z &y, = 00,80 Y t,; = oo.
n b n=0 n=0
Taking b, = 740_‘:57?;;)3" M, then IZ—;’ = 7'“”0(;?{:1,(‘)]\41. From |ay — a,—1| = o(an), so

bn == O(tn)
. (1=an)|Bn—PBun-1|+(1—an—Bun+anPn) 1—%;1 .
Taking ¢, = T BB M,. From nlgx;lorn =r,s0c; < N-

(2 ) 5 ) = {8 o

Z|.Bn_,3n 1| < coand Zl‘rn—f’n 1] < 0, s0 Z cp < 0.
n=

From Lemma 2, we have hm ||xn+1 — x| =
Step 3: Show that 1131 |xn — Jr,xn]| = 0.
n—oo
From (1) and ||-||* is a convex function, then we find

a1 = gl < aullfxn = ql* + (1 = @a) ||y — g
< o fxn — ‘7”2 + (1 —an)|lyn — ‘7”2
< anl|fxn — ‘1“2 + (1 —an)Bullxn — ‘7”2 + (1= an) (1= Bu) | JruXn+1 — QHZ
—(1—an)Bu(1 = Bu)g([Ixn = Jr,xns1ll)
< | fxn — q|* + (1= wn)Bulln — gl* + (1 = an) (1= ) | xus1 — 4l
= (L= an)Bn(1 = Bu)&(llxn = JryXns1l])-

It follows that
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2 n—“4nPn 2 2
lxns1 = ql1* < Zheg o xn — 4l + gt | — 4l

— BuC ) () o (s — Ty i)

= <1_ m)”xn_‘ﬂf_'— 0Cn+ﬁn D‘Wﬁn ||fxn q||2

n —Qln 1_ n
(LT )

2 n 2
< Jw — g1 + g | fxu — gl

n 1- n 1 n
Bl Cpu) o3, — Jy, 1)

Then we have

n 1_ n 1_ n
Eull—t)C=Pod oty — JryXusll) — g 120 — 41

2 2
< lxn —qll”® = llxut1 —qll*

1f B gl g 1 = T vna ) < gty | =l so from lim ey = 0 and

the boundedness of { fx, }, we find nh_r)rolog( |xn — Jr,Xn41l]) = 0.
n 1 n 1 n n
1f ) Oopo) o |1y — T, ) > gt 2 — 4l s0

H o gu(1—an) (1—Ba .
Zo[ﬁu(n+gnl(anﬁé )S(Hxn = JrnXnall) — pc,,Jrﬁf;fucnﬁn I foxn — qHz}
=

= 2 2 2
< llxo —qlI” = [[xH+1 — glI” < [|x0 —qI”

Then

\L:O[ Xp + ﬁn)—(lxnﬁ[gn)g(nxn ~Inxnll) - &y + Bn — anPn 1fxn = q”Z} <
So we have

n~>oo [‘anx(n + B )_( anﬁin)g(llxn = JruXusall) — mllﬂcn - 5]||2] =0,

and then 1im g([/s — Jy, %41 = 0.
From the property of g, so we find nlgx;lo lxn — Jr, Xn1]| = O.

We also have

||x” - ]rnan S ||xn - Irn'xl’l-‘rl” + ||]7’nx71+1 - ]ry,xn”
< xn = JraXngall + %01 — xul]-

From step 2, we have lim ||x,; — ], x| = 0.
n—oo
Step 4: Show that nl1_r)ro10||yn — Sya|| = 0.

From (2), we find
lyn — Synll < Bullxn — Synll + (1 = Bu) | JraXnt1 — Synl|
< lxn = Syull + (1 = Bu) 1y Xns1 — Xl

< ||xn+1 - SynH + Hxn - xn—&-lH + (1 - ﬁn)”]rnxn—i-l - xn”
= an| fxn — Synll + [[Xn — Xns1ll + (1 = Bu) 1T, X1 — Xul-

From steps 2 and step 3, the boundedness of {Sy,} and {fx,}, and nlgrc}o ay, =0, we
have nlgn llyn — Syx|| = 0.

Step 5: Show that nlgn |xn — ynll = 0.
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From (2), we find

10 = Yull < [0 = xnsa || + %01 = Syull + 1Syn =yl
= 1% = Xnpa |+ anl| foxn = Synll + 1Syn — yull-

From step 2 and step 4, nlgrolo ®, = 0 and the boundedness of {Sy,} and {fx,}, we
have nlgr.}OHxn — x| =0.
Step 6: Show that nlgrgonyn — Jr.yul = 0.

Using the results of step 3 and 5, we obtain

lyn = Traynll < lyn — xnll + 10 = JruXnll + 1 Xn — JraYnll
< lyn — xull + 120 = Jr, xull + 120 — yull-

So we have ;}grc}oﬂyn — Jr,ynll = 0.
Step 7: Show that nlgr.}oﬂxn — Sxyu|| = 0.
Using the results of step 4 and 5, we obtain

|20 — Sxnll < [|xn — Ynll + |yn — Synll + ISyn — Sxul|
< lxn = ynll + llyn — Synll + [lyn — xn]l-

So we have lim ||x, — Sx,|| = 0.
n—oo
Step 8: Show that nh_r)r(}oHyn — Jiyn|| = 0.

Using the results of step 6 and Lemma 1, we obtain

lyn = Jrynll < lyn = Jraynll + | Trayin = Jryn||
= llyn = Jrynll + [T (Evn + (1= 35 ) Jnuin) = Jrw
< llyn = Jnyall + 1= | Wrutin = yall

From }}i_r}ryn =r, we get nh_r)r;oHyn — Jrynl|| = 0.
Step 9: Show that lim ||x, — Jrx,| = 0.
n—oo

Using the results of step 5 and step 8, we obtain

20 = Trxnll < 20 = ynll + llyn = Jrynll + [ Jryn — Jrxal|
< 2llxn =yl + lyn — Jrynll-

So we have lim ||x,, — J;x,| = 0.
n—oo

Step 10: Show that limsup((I — f)p, J(p — x»)) = 0.

n—o0
Let {x¢} be defined by x; = tfx; + (1 —t)Sx;. From Lemma 3, we find that {x;}
strongly converges to p € Pr(s)nn(a)fp, and p is also the unique solution of the variational
inequality (I — £)p, J(p —q)) < 0,Vq € F(S) N N(A).
We have

2 1—1)(Sxt — xp, J(x¢ — xn)) + t{fxxr — xpn, J(x¢ — X))

= (
< (L= 1)[1Sxt = xe| - e — xull + (1= £) e — xu®

(e — xt, ] (xe — x0)) + |2 — x|
= (1= )]|Sxr — x]| - [|xe — x| + || — xu]|?
HE(fxr — x¢, J(x¢ — X))
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It follows that (x; — fx;, J(xt — x)) < L2[|Sxr — x¢]| - [|x¢ — xn]|. According to step 7,
we find limsup((I — f)p, J(p — xx)) = 0.
n—oo

Step 11: Show that nlgn l|x, — p|| =0.

According to Lemma 4, we obtain

st = pIP < (1= an)?1Syn = pI> + 2002 = p, J (a1 = p))
< (1= w2l = pI + 20 = pl - 051 — Pl
+20n(fp = p, J(Xns1—p)) )
< (1 —an)?*(Bullxn — pll + (1= Bu) [ xn1 — pII)
2kt~ p - nsr — pll +200(fp = p, T Gnia = p))
=(1- "‘H)Z,B;%Hzxn —pll"+ (- an) (1 — ,Bn)2|‘xn+1 =l
+2(Bn (1= w2 (1 = Bu) + kan ) [0 = pII - |01 —
+20n(fp = p, J(xn41 — g)) )
< (1= an)2B3lx0 = pI* + (1 = )21 = B) 11 = p
(B2 = )21 = Bu) + ket ) ([0 = I + 001 = p1?)
+20n(fp = p, J(Xns1—p))-
It follows that
B2 (1—an)?+(1—a)? By (1—Bn) +katr

2 ( 2
||xn+1 - p” < 1,(1,5;1)2(1,&’)2,‘5"(1,“”)2(1,&1),]@(” Hxn - pH
+

17(1,,,(”)2(1,[;")2,50:’(1,“,,)2(1,/5”,](“” (fr—p,J(xn41 —p))
_ [1_ 1—(1—ay)?—2kay

2
T—(1—an)2(1—Bn)—kan 2w = pll

+1,(1,“n)22€61n,‘3n),k“n <fp - p/](xn+1 - p)>

7(170(14)2721(0(”

. 1
Taking t,, = R e e

. From lim &, = 0, we have
n—oo
by >1— (1 — )% = 2kay = (2 — 2k — ay)ay > (2 — 2k — €)ay (Ve > 0).

[ee] [ee]
From ) a, = oo, we obtain ) t, = oo.
n=0 n=0
20,

Taking b, = a2 (1= p) (fp —p, J(xy41 — p)), then we have

bu _ 2(fp—p, ] (X1 —P))
ty 2 -2k —ay '

From lim &, = 0 and step 10, we obtain b, = o(ty).
n—oo

Letc, = 0,sowehave ) ¢, < oo.
n=0
According to Lemma 2, we have nlgn |xn — pl| = 0.
We also have
[yn =PI < Mlyn = 2ull + lxn = pll-

From step 5, we find lim llyn — p|| = 0. This completes the proof. [

Theorem 2. Assume that E is a reflexive and uniformly convex Banach space with uniformly
Gdteaux differentiable norm, C is nonempty closed convex subset of E with normal structure.
f:C — C is contractive mapping with k € [0,1), A is an m-accretive operator in E and
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%01 — Zns ||

S :C — C is nonexpansive mapping with F(S) N N(A) # . Forany xo € Cand n > 0,
{xy} is generated by

{ Yn = BnXn + (1= Bn)JraXni1 +en,
Xp+1 = "‘nfxn + (1 - "‘n)synr

where {ay}, {Bn}, {rn} C (0,1) and {e,} C E satisfy some conditions:
) ): |Bn = Bu—1| < oo
(ii) Z Ky = 00, hm na, =0, |y —apy—1] = o(an);
n=0
(iii) limr, =7, Z |ty — 11| < 00;
n—oo =1
(iv) Jlen]l = ofan).

Then {x,} and {y,} strongly converge to p € F(S) N N(A) which is the only solution of
variational inequality ((I — f)p, Jo(p —q)) < 0,Vq € F(S)NN(A).

Proof. Let
{wn = Bnzn + (1 = Bu)JruZns1,

Zy+1 = &nfzn + (1 — ay)Swy.
Then we have
(1= an)llyn — wn| + kan||xn — za||

<
< (L =an)(Bullxn = zull + (1 = Bu)lIxnt1 — znga | + [lenl]) + kan|[xn — za|
= (kan + (1= an)Bn) || 20 — zn || + (1 — ) (1 = B [[ X041 — Znta || + (1 — an) [len |-

It follows that
koo +(1 n)Pn 1 n
%ns1 — znaa || < M}Jx — 2l + s e
n 11—y,
= [1- e o — 2l + e el

. 1-k
Taking t, = %, then £, > a,(1 — k). From nZO &, = 00, we have ;Eo t, = co.

. — 1—ay)|len
Taking b, = Mif’jxmﬂenﬂ, then %:’ = % From |le,|| = o(ay), we have

by = o(tn).
o
Letc;, = 0,sowehave Y ¢, < oo.
According to Lemma 2, we have ILm |xn — zu|| = 0. According to Theorem 1, we find
n—oo

that {w, } and {z,} strongly converge to p € F(S) N N(A) which is the only solution of
variational inequality ((I — f)p, Jo(p —q)) < 0,Vq € F(S) N N(A). Then {y,} and {x,}
also strongly converge to p € F(S) N N(A). This completes the proof. [

Theorem 3. Assume that E is a reflexive and uniformly convex Banach space with a uniformly
Gdteaux differentiable norm, C is a nonempty closed convex subset of E with normal struc-
ture. f:C — C is contractive mapping with k € [0,1), A is an m-accretive operator in E
and S : C — C is nonexpansive mapping with F(S) N N(A) # . Forany xg € Cand n > 0,
{xn} is generated by

{ Yn = BnXn + (1= Bu)Jr, (Xni1 +en), ©6)

Xp+1 = (anxn + (1 - (Xn)s]/nr

where {an }, {Bn}, {rn} C (0,1) and {e,} C E satisfy some conditions:
0 LB Pual <o

(i1) Z Ay = 00, 11man =0, |an —ay_1| = o(an);
n=0
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[ee)
(ii) limry =71, ¥ |rq — 1 1| < oo;
n—oo n=1
. o0
(iv) ¥ |len]| < oo.
n=1

Then {x,} and {y,} strongly converge to p € F(S) N N(A) which is the only solution of
variational inequality ((I— f)p,Jo(p —q)) <0,Vg € F(S) N N(A).
Proof. The proof process is divided into eleven steps.
Step 1: Show the boundedness of {x, } and {y,}.
Taking g € F(S) N N(A), then we obtain
(1= B ) | Jrn (X041 + €n) = ql[ + Bullxn — 4l

<
< (L= Bn)llxns1 +en —qll + Bullxn — 4|
< (= Ba)llxn+1 —gll + (1 = Bu)llenll + Bullxn —ql|-

lyn — 4l

and then we obtain

[xus1 = qll < anllfxn —qll + (1 = an)||Syn — 4|
< ken||xn — gl + anll fq —ql] + (1 — an)lyn — 4|l
< kan|lxn — qll + anllfg —qll + (1 — an)Bnllxn — 4|
+(1—an) (L= Ba)|xn+1 — gl + (1 —an) (1 = Bn)llen]|-
It follows that
(1—ay)Bn+kay

X041 — gl < m“xn qll + aﬁﬂznananﬁn 1fa—qll

1—a,)(1—B,
+%&;ﬁ%nm

n(1—k) n(1—k —
- |:1 o D‘niﬁ(n_lxnﬁn} ||xn o q” + an:“ﬁ(n_fxr)rﬁn ”fququ

+N - [len|]
< max{||xo —ql, w +N- ||enH}~

Then {x,} is bounded. So {yn}, {fxn}, {Sxn}, {Jr.xn}, {fyn}, {Jr,yn} and {Sy,} are

also bounded.
Step 2: Show that nlglgoﬂxnﬂ —xu|| = 0.
According to (6), we find
1xn41 = Xull = llanfxn + (1= an)Syn — an—1fxn—1 — (1 — ay—1)Syn—1|

< | fxn — fxnall + (1= an) 1Syn — Syn-all +lan —ana| - [|fxn1 = Synall (@)
< katn[[xn = X1l + (1= an)lyn = ynall + lan = ana| - [| fxn-1 = Syn-all

From (6), we obtain

lyn = Yn—1ll < Bullxn — xp—1ll+(1 = Bu) || Jrw (Xns1 +n) — Ty (X +€n—1) | ®)
+|,Bn - ,anl| : Hxnfl - ]r,,,l (xn +en71)H-

From Lemma 1, we have

H]Vn Xp1+en) = Jr,_y (Xn +en1 H
T (% Gonn ) (1= 5520 ) Jry G en) ) = Ty (o + )|

< || (1= ) o (st €0) = (on + en1) + 22 (onsr + ) ©)
< 1= U (et +en) = (o enm) ||+ 52 24 — X0+ en — ey
<|1- 7"7] e (k1 4 €n) = (Xng1 +en) || 4 [ xn41 — X+ €0 — enal]-
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Taking (8) and (9) into (7), we have

41 = il < Kt = ]|+ (1= ) Bl — 1]+ (1 = a) B — Bu-1|Ms
(1= ) (1= ) |1 = 22 [ Myt (1= ) (1= B 01 —

'n

+(1—an)(1—Bn)llen — en—1ll+|an — ap_1|Ms.

It follows that
(1K) ity
st = 2all < 1 By — | 4 ettt
*1Bn = PaaIN: Ms+""r+"*'N-M4+<uen||+||en,1||>N

where Ms = max{ [[x,1 ~ J, , ( = max{ [ (o1 + €x) = (xuia + e[}

Taking t, = %, then t, > ocn(l —k) From Z &, = 00, SO Z t, = oo.
n n npPn n:O n:0
Taking b, = %Ml, then & = % From |ay —a,_1| = o(ay), so
by = o(tn).
Let ¢, = [Bu — Bu—1IN - Ma + =21l My + (Jlen] + [leq—1 )N, then
Cn < [Bn = By N - My + e N - My + (el + lleas DN (Ve >0).
From E |Bn — Bu—1| < oo, E len]] < oo, hmrn = r and Z |t —ry—1] < oo, so

n=1 n=1

n=1
[ee]
Y, cn < oo

n=1
According to Lemma 2, so we have lim ||x;,,41 — x,|| = 0.
n—oo

Step 3: Show that nlgn |20 — Jr,Xxn|| = 0.

From (1) and ||-||? is a convex function and, then we obtain

xn1 — qll* < (1—"‘71)”5%1 91> + aull fxn — gl

< (1= ) lyn — g1 + anl fxu — g7

< Bu(l—an)xn — ‘1”2"'(1 = n) (1= B) | Jr, (Xn41 + €n) — ‘7”2

+on | fon —‘JHZ

= | frn = q* + Bu (1 — n) 2w —

+(1*’Xﬂ)(1*‘8ﬂ) ( (Xp41 +en) + zfrn(xn+1 +en)) *QH

< “?Zfon _QH +.Bﬂ( _“n)Hxn QH +%Hxn+l +ey — q”z
U 0Bul (0 + ) — g2

— ) o (2 1+ e — Ty (ngs +en)])

< aullf2n — ql* + Bu(1 = an) |0 — 1>+ (1 = a) (1 = Bu) %01 + €n — q|I°
U0 0B) g (1 + e — Jr, (a1 +en)]])

< anllfxn — ql* + Bu(1 = an) |20 — q1?
+(1 = ) (1 = ) ([Ixe1 = ql1° + 2en, J(xar1 +en — 1))
7%8(””&1 +en — Jr, (Xny1 +en)l))-

It follows that
" 2 2
e = a1° < (1= gt ) 1% — 417 + gt |0 —

1— ) (1 n
+2N e - gxnﬂm gl — M (%1 + n — Jry (Xnp1 +en)]])
< [lxn — 4] mllfxn—qll + 2Nl|len| - |xnt1 +en — q]|

_WLM (IIxnt1 +en = Jr, (xn1 +en)])-
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Then we have
1) 0P . 2
Ut 0B) (41 + e — T (inrt + en) ) — gy I fxn — 4l

2 2

—2Nllen| - Ixn+1 + €n — gl < [lxn — gl = llxns1 — qlI".

If
Lteid o " 2
Ul ot g1 + en — Jry (Xt + en)l]) < g 120 — 4l

+2N/len| - [[xn+1 +en — q]-

(e )
so from Jlim o, = 0, step 1 and ZO||en|| < oo, we have n]jirc}og(ﬂxnﬂ +en — Jr, (Xpg1 +€0)||) = 0.
n=|

If
17 n 17 n n
Coal1Pd g1+ e — iy (51 + en)) 2 gt 0 =l
+2N el - (a1 +en = qll-
SO q
1—ay)(1—PBn .
L [P g (e en = Jr (onsr +en)) = gy 100 =l
n=
~2Nllea|| - [|xn1 +en = gll1< [|x0 = q]* = 641 = qll* < [|x0 — gl
Then
© [(1—an)(1—Bn) Kn 2
Xpt1+en — Jr, (Xnt1 + e - Ifxy —
£ [Py e = s+ en)) = el =
~2N|len|| - [[xn 11+ en — g} < oo,
So we have
. 1—ay)(1—PBsn Y
,}%{%(ﬁ)g(nxn—i-l +€n*Irn(xn+1+€n)H)*mexn*qllz

—2Nllen]| - [xn41 +en —qll] = O.

and then lim g([|xy11 + e — Jr, (Xn41 +en) ) = 0.
According to the property of g, we obtain nlgn lxni1 +en — Jr, (xni1 +en)]| = 0.
We also have
1% = JrXu|l < 1%n — Xna [ + X001+ en = Jr, (X1 +en) || + [len]]
+|U7’n(x'rl+l + ei’l) - Irnxn”

< ”xn - xn+l|| + Hanrl +en — Jr, (Xn+1 +€n)|| + Hen|| + ||xn+1 +e, — xn”
< 2|xn = X1 || + || %01 +en = Jr, (X1 +en) || + 2]len]].

[ee)
According to Y ||ex]| < oo and step 2, we have lim ||x, — ], x,|| = 0.
n=0 n—00

Step 4: Show that nl1_r)ro10||yn — Sya|| = 0.

From (6), we obtain

lyn = Synll < Bullxn — Synll + (1 = Bu) || Jr, (Xn+1 + €n) — Syal|
< Bullxn — xur1ll + BullXnst — Syull + (1= Bu) | Jry (Xng1 + €0) — (Xns1 +€a)|
+(1 - ﬁn)HxYl-‘rl +en — SynH
< ﬁnnxn — Xn+l|| + ||xn+l — S]/n” + (1 — ﬁ")”]”n (anrl _|_en) _ (xn+1 +en)||

+(1 = Bn)llen]|
= Bullxn — xnp1ll + anll fxn — Synll + (1= Bu) |Jr, (Xn41 +€n) — (Xpy1 + x|
+(1 = Bn)llenl|-

From step 1, step 2 and step 3, n]igoloucn =0and ZOHenH < 00, we have nlj_{{}o”y” — Sy,|| = 0.
n=|
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Step 5: Show that nlgn lxn — ynll = 0.

Using the results of step 2 and step 4, we obtain

||xn _]/VIH = ||xn — Xp41 + Xpy1 — Syn + Syn _ynH
< ||xn = xpp1ll + anll fxn — Synll + [1Syn — ynll-

According to nlgn ay = 0 and the boundedness of {fx,} and {Sy,}, we have
lim ||x;, — yu| = 0.
n—o0

Step 6: Show that nl1_r)ro10||yn — Jrynl = 0.

Using the results of step 3 and step 5, we obtain

lyn = Truynll < lyn — xull + 10 = Jr, Xull + X0 = Jr, Yl
< yn — xull + llxn = JryXnl| + |20 — Y-

So we have nh_r)roloHyn — Jr,ynll = 0.
Step 7: Show that nh_r)r.}onn — Sxyu|| =0.

Using the results of step 4 and step 5, we obtain

[0 — Sxnl| < [|xn = Ynll + |yn — Synll + [|Syn — Sxul|
< Nxn = yall + yn — Syull + [lyn — xull-

So we have lim ||x, — Sx,|| = 0.
n—oo
Step 8: Show that nlgl&)”yn — Jiyu|| = 0.

Using the results of step 6 and Lemma 1, we obtain

lyn = Trynll < llyn = Jruynll + | Jr,yn — Jrynll

= lyn = Jraynll + ]r(ﬁyn + (1 - ﬁ)]rnyn) = Jryn
< lyn = Tryll+ (1= £ | - s =yl
From lim r, = r, we have nlgroloHyn — Jryull = 0.

Step 9: Show that nlgn |xn — Jrxn|| = 0.

Using the results of step 5 and step 8, we obtain

20 = Trxnll < N0 = ynll + llyn — Jrynll + 1 Jryn — Jrxul|
< lxn = yull + lyn = Trynll + lyn — xal|-

So we have lim ||x,, — J;x,| = 0.
n—oo

Step 10: Show that limsup((I — f)p, J(p — x»)) = 0.
n—oo

According to Theorem 1, we find that {x;} strongly converges to p € Prs)nn(a)fP

which is the only solution of variational inequality ((I — f)p,J(p —q)) < 0,Vq € F(S)N
N(A).

We obtain
l[xr — xn]|* =(1 — t)(Sxt—xn,](xt—xn))+t(fxt—xn,](xt—xn)>

(1 —1)|Sxe — xt| - IIXt—xn||+(1—t)IIXt—xnII

t(fxr —xt, ] (Xt—Xn)>+tHXt—XH||

(1= 1)1Sxe — xe | - |2 — xul| + || — x>+ fr — x, T (xe — x)).

+ IA
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It follows that (x; — fx¢, J(x¢ — xy)

)y < 1T |Sxt — xt|| - [|xt — xn||. According to step 1
and step 7, we have limsup((I — f)p, J(p —
n—oo

|
Xn)) =
Step 11: Show that nlgn |x, — p|| =0.

According to Lemma 4, we obtain

1 = pIP < (1= 0?18y — pI> + 200 {0 = p, I (a1 — p))
= (1 — )2 |lyn — pII* + 2kan |20 — P - [ X0s1 = pll + 200 (P — p, ] (xu11 — )
< (1 — an)2((1 = Bu) [ Xns1 — pll + (1 = Bu) llenll + Bullxn — plI)?
+2keen||xn = p|| - [[Xn+1 — pll+200(fp — P, ] (Xnt1 — P))
= B(1— )l = pI* + (1 — ) (1= Bu)llx011 — pI°
(1= 0201 = Bolea P +280(1 = 1021 = Bl — Pl [0e1 — p
2B (1 — (1 = B 10 — P - lew|l+2Kaullxn = pIl - 041 = p
+2(1 = an)* (1= a5 = pI| - llenl| +20 (Fp = p, ] (%11 — P))
< BA(L = )% — Pl + (1 = ) (1= Bu) 041 —
(a1 = @0)*(1 = ) + ke ) ([0 = pI + 01 = pII?)
+2(1 = an)?(1 = Bu)llenll (Bullxa — pll + (1 = Bu) [ xus1 — pII)
+20(fp = P, (ons1 = ) + (1= )21 = Bur)len >

It follows that

1—an)? B3+ (1—an)?Bu (1= ) +katn
s = I < g i oo = I
e (e ) S P = P T (1 = p))

1 n 2 1 n n
e el (0Bl — pll +2(1 — B 1 — I+ flenl)

1—(1—Dén)2—2k0(n 2
T— (1) 2(1—Br) —kety, [Jn = pll
IO Ty P~ P (i = )

1_ n 2 1_ n n
+1E<lfaj)§(lfﬁ,2§'i,an (2Bulxn — pll +2(1 = Bu) %051 — pll + lenl))-

i

1- (1 a0y )2 —2kay
—(1—an)?(1=Pn) —ken *

Taking t,, = From lgn a, = 0, we have
n—oo

by >1— (1 —ay)? — 2k, = (2 — 2k — &)y > (2 — 2k — €)ay (Ve > 0).

[ee] [ee]
From Y} a;, = oo, we obtain Y f, = co.
n=0 n=0
20,

Taking b, = B 7 e (fp —p, J(x441 — p)), then we have

bu _ 2(fp—p,J(xXnt1 = p))
ty 2 -2k —ay '

From ,}E‘;"‘" = 0 and step 10, we obtain b, = o(t;).

1_}‘! 1 n n
Let ey = pomel blenl_ 58, 1x, — pl| +2(1 = By) [x0s1 = Pl + [leall), then ¢, <

1-(1— an) (1—Bn)—
en 1—ay)?(1—Bn
2L (Bl — pll+ (1~ B)[xuir — p +M)||en||,whereL = max{ ﬁfﬂm -

From the boundedness of {x,}, {||e.||} and {B,} and Z |len|| < oo, we obtain Z cp < oo
n=0 n=0

According to Lemma 2, we have nlgn |x, — p|| = 0.
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We also have
lyn =PIl < [lyn — xnll + [[xn — plI-

From step 5, we obtain lgn lly» — pl| = 0. This completes the proof. [
n—oo

4. Numerical Examples
We provide some numerical examples to verify conclusions.

Example 1. For any x € R, assume J,,x = 5%, f(x) = % and S(x) = %, then F(S) = {0}.
Assume oy, = %, Bn=smandry =1~ % From Theorem 1, they satisfy these conditions. {x,}
is generated by (2). So we find that {x,} strongly converges to 0.

From (2), we have

—21n3 + 5112 + 30n

_ . 10
Y+l = 50313 1 210m2 + 21n — 147" (10)

Let x; = 1in (10) and then we obtain the desired results; see Figure 1.

L5x 107 |
11074
5 X 10*15

0+ ...Q.....O..Q.....OO...........OO.—

—5x 1075 F

—1x 10 E ‘
10 20 30 40 50

Figure 1. Numerical results.
Example 2. For any x € R, assume J;,x = "4*, f(x) = % and S(x) = %, then F(S) = {0}.

Assume «,; = %, Bn = ﬁ, = 1— % and e, = % From Theorem 3, they satisfy these
conditions. {x,} is generated by (6). So we find that {x, } strongly converges to 0.

From (6), we have

—21n3 4 5112 4 30n n® —3n+2
Yn+1 = 3 2 Xn+ 59,5 7 3 2 (1)
203n° +210n+ + 21n — 14 29n° + 30n* + 3n° — 2n

Next, let x; = 1in (11) and then we obtain the desired results; see Figure 2.
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00006 - ]
00004 |
00002 - . ]

o....
oo i .."Ooooooooo...oo.o-oooooco.;

~00004 : : ‘ :
0 10 20 30 40 50

Figure 2. Numerical results.

Example 3. The inner product (-,-) : R3 x R® — R is defined by

(x,y) = x1y1 + X22 + X2Y3.

The usual norm ||| : R — R is defined by

[x]] = /%2 4+ 23+ 23, x = (x1,x2,x3) € R.

For any x € R3, assume J,,x = 4%, f(x) = % and S(x) = &, then F(S) = {0}. As-
sume oy = %, Bn = andry =1— % From Theorem 1, they satisfy these conditions. {x, } is
generated by (2). So we find that {x,} strongly converges to 0.

From (2), we have

e 20w 4512 +30n
"L 203103 £ 2102 +21n — 147

(12)

Let x; = (1,2,3) in (12) and then we obtain the desired results; see Figure 3.

8 x 107"
6 x 10" | ] . x}%
4 x 107 | . 1
2% 10" : « X2
0 Sosees -
=2 x 10" 1 ¢ x;3q
-4 x 107 ¢ ‘ 1

0 10 20 30 40 50

Figure 3. Numerical results.

Example 4. The inner product (-,-) : R® x R® — R is defined by

(x,y) = x1y1 + X2y2 + x2U/3.

The usual norm ||| : R — R is defined by

[x[| = \/%3 + 23 + 23, x = (x1,%2,%3) € R°.
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For any x € R3, assume J,,x = 4%, f(x) = % and S(x) = £, then F(S) = {0}. As-
sume o, = %, Bn = Mﬁ, m=1-— % and e,; = nl—z From Theorem 3, they satisfy these
conditions. {x, } is generated by (6). So we find that {x, } strongly converges to 0.

From (6), we have

e —21n3 + 51n? + 30n - n®—3n+2 13)
LT 20813 +210n2 +21n — 147" 2945 4 30n% + 313 — 212
Let x; = (1,100, 10) in (13) and then we obtain the desired results; see Figure 4.
0.0006
0.0004 - e
[ ]
0.0002 '-,.
0.0000 S00000seecenseseccesssessanene
—0.0002
0 10 20 30 40 50
Figure 4. Numerical results.
Example 5. Let {x,, } be generated by Example 1. {x,'} is generated by
{ Yn = Bn (Lj?nﬂ) + (1 - ,Bn)]rn (anr;nH’)/
Xp+1 = QnfXn + (1 — ay)Syn.
{xn"} is generated by
X1 = @nf (Xn) + (1= an) T(5pXn + (1 = $n) Xn41)-
And assume most of the conditions of Example 1 are satisfied except B, = %,

1

sn = 1— 5 and T(x) = 5, so we obtain

, 3—9n+9n?+3n3 —14n*
xn+1 - xi’l 7
—3+91n —9n? —51n3 + 6nt

and
2 —dn+2n2+nd

[/ — "

X = X
n+1 61’12 — 2}’13 n s

Let xy = 1in {x,}, {xn'} and {x," }, then we obtain the desired results; see Figure 5.
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1.5x 1013
1.0x 108 | ] *ox
50x 102 ¢ : L
0 .. Xn
~5.0% 102 | ] R
~1.0 x 10

0 10 20 30 40 50

Figure 5. Numerical results.

Figure 5 shows that iterative algorithm (2) has a faster convergence speed than the
algorithm of Zhang [20,21]. The stability and effectiveness of iterative algorithm (2) are
also better than the algorithm of Zhang [20,21].

5. Conclusions

In the paper, we propose a new iterative algorithm by using the generalized viscosity
implicit midpoint rule and Banach space, which is also a symmetric space. Under some
conditions, we find that the sequence strongly converges to a common point of the fixed
point set of nonexpansive mapping and the zero point set of the accretive operator. Our
work extends the results of Xu [17], Luo [18], Ke [19], Zhang [20] and Zhang [21]. In the
end, we give five numerical examples and show that our algorithm can achieve faster
convergence speed, stability and effectiveness. This work further extends and enriches the
relevant theory of symmetric space. In this paper, we considered extending nonexpansive
mapping to more general mappings, and will continue to research this issue to find better
iterative algorithms.
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