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Abstract: In the era of big data, breaking down data silos to enable efficient data transactions has
become essential, with the fairness and transparency of pricing mechanisms being paramount. This
study addresses these challenges by introducing a novel tripartite pricing model for customized
data products that integrates the Stackelberg and bargaining game frameworks. By designing
distinct utility functions for buyers, sellers, and the platform, the model effectively aligns the varying
objectives of each participant. A dynamic adjustment mechanism further enhances this model by
adaptively recalibrating the guidance price and pricing range based on real-time updates to buyer
budgets and seller offers, thus ensuring fairness and responsiveness throughout the negotiation
process. Experimental simulations comprising 100 transaction rounds across diverse buyer–seller
profiles validate the model’s effectiveness, achieving a transaction success rate of 92.70% with an
average of 6.86 bargaining rounds. These findings underscore the model’s capacity to optimize
transaction outcomes, promote pricing equity, and enhance bargaining efficiency. The proposed
model has broad applications in sectors such as finance, healthcare, and e-commerce, where precise
data pricing mechanisms are essential to maximize transactional value.

Keywords: customized data products; tripartite pricing model; Stackelberg game; bargaining game;
dynamic adjustment mechanism

1. Introduction

The rapid advancement of the digital economy has elevated data as a pivotal resource,
driving transformative changes across various sectors. Fueled by big data and artificial
intelligence, demand for personalized and customized data products is surging, creating
new challenges for existing pricing models. The complexity of establishing effective pricing
strategies in this multi-party market has become a focal issue for both academia and
industry. Traditional models tend to concentrate on factors like data quality, scarcity, and
market demand, often overlooking the potential of game theory in addressing transaction
dynamics [1]. Specifically, in three-party transactions involving platforms, buyers, and
sellers, achieving an equitable balance between all stakeholders’ interests to improve
transaction success rates remains a critical yet unresolved challenge.

In recent studies, various researchers have proposed models aimed at addressing these
challenges. Recent studies have sought to develop data pricing models that consider vari-
ous characteristics intrinsic to the data themselves. For instance, Yu and Zhang proposed
a bilevel mathematical programming model that emphasizes the role of data quality by
integrating quality dimensions and interactions into pricing.However, the model’s limited
consideration of data dimensions restricts its applicability across diverse demands and mar-
ket scenarios [2]. Xuemei Li, on the other hand, developed models that examine the impact
of data attributes like scarcity, non-competitiveness, and non-exclusivity on pricing out-
comes, adapting pricing strategies to different market structures [3]. Although Li’s models
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capture multiple data dimensions, they are limited by a narrow focus on data characteristics,
lacking comprehensive insights into buyer–seller dynamics. Tian et al. advanced a Shapley
value-based framework designed to facilitate interaction in tri-party data markets, specifi-
cally targeting scenarios that require boundary-setting for data prices [4]. However, this
framework’s static nature limits its adaptability, particularly under conditions of real-time
demand fluctuations and privacy considerations within data markets. These contributions
have established groundwork for data pricing; however, limitations persist when applied
to customized data products within multi-party transactional environments.

Building upon this foundation, other researchers have introduced pricing models
incorporating utility and game-theoretic principles to optimize outcomes for all partici-
pants in data transactions. Inegbedion et al. developed a pricing model for Nigeria’s GSM
data services market using a game-theoretic approach, introducing a Nash equilibrium
strategy where MTN and its competitors adopt different pricing tactics to achieve Pareto
efficiency [5]. However, this study is limited by its use of a zero-sum game model, focusing
solely on maximizing service providers’ payoffs without achieving transaction fairness,
and it applies a static pricing model that overlooks adjustments in a dynamic market
environment. Liu Jin and colleagues combined utility theory with the Stackelberg game
framework, aiming to maximize benefits for both data providers and consumers by con-
sidering both parties’ utilities, though their exploration of the bargaining process remains
relatively limited [6]. In the IoT context, Takuya Yoshihiro and collaborators proposed
a real-time data stream pricing model that employs mixed-integer linear programming
to address seller competition and buyer demand, yet it does not fully capture the price
negotiation process between buyers and sellers [7].

Despite significant progress and notable achievements, there remain substantial re-
search gaps in addressing the complex dynamics and evolving demands of customized
data product markets, especially in multi-party contexts. Existing methods often fall short
of integrating the intrinsic value of data with the behavior and utility of both buyers
and sellers, while simultaneously adapting to market trends for dynamic pricing adjust-
ments. The challenge lies in developing comprehensive approaches that balance these
dimensions—capturing data value, optimizing the utility of all stakeholders, and maintain-
ing responsiveness to shifting market conditions. Addressing these aspects is critical for
advancing the theoretical and practical frameworks of data pricing and remains an open
area for further investigation.

This paper addresses key limitations in current data pricing models by proposing a
tripartite pricing framework that integrates the Stackelberg and bargaining game theories,
specifically tailored to meet the complexities of customized data product transactions.
Traditional models often fall short of balancing fairness and efficiency in the face of dynamic
market conditions. By leveraging the Stackelberg game, this framework establishes a
hierarchical structure, positioning the platform as the leader that strategically guides
interactions between buyers and sellers. Under the platform’s supervision, buyers and
sellers engage in a bargaining game to determine the final transaction price, ensuring
that it reflects the interests of both parties. This dual-layered approach addresses the
unique requirements of multi-party data transactions by creating a structured, sequential
decision-making process that enhances both fairness and adaptability.

The primary objectives of this combined Stackelberg–bargaining model are to develop
a balanced pricing strategy, enable dynamic price adjustments, and optimize transaction
success rates, each directly addressing limitations identified in prior research. By employing
the Stackelberg game for initial price guidance and the bargaining game for real-time
negotiation, this model seeks to mitigate the inflexibility and low adaptability found in
conventional pricing mechanisms. It is hypothesized that this sequential approach will
significantly enhance market efficiency, particularly in accelerating transaction processes
and improving success rates. Additionally, this study extends academic understanding by
expanding the application of game theory to data pricing, offering a practical framework
for platforms managing complex multi-party negotiations.
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Each section of this paper aligns with these objectives. For instance, Section 4 integrates
both the bargaining process and the dynamic adjustment mechanism, demonstrating how
this dual framework continuously adapts to real-time market shifts. This innovative use of
game theory not only advances theoretical knowledge but also provides platforms with an
adaptable pricing tool for a variety of transaction scenarios, making it especially valuable
for customized data markets.

The core goals of this study are as follows: (1) to construct a tripartite pricing model
tailored for the customized data product market, (2) to validate the model’s effectiveness
and stability under different market conditions via simulations, and (3) to explore its
potential applications in real-world markets. The hypothesis posits that in a multi-party
transaction environment, a pricing model based on the Stackelberg and bargaining games
can significantly enhance both market efficiency and transaction success.

To achieve these objectives, the methodology combines game theory with experimen-
tal economics. First, a Stackelberg–bargaining-based pricing model is constructed, with
essential parameters determined through theoretical analysis. Subsequently, simulation
experiments assess the model’s performance and adaptability across diverse market condi-
tions. Based on these findings, we discuss potential applications of the model and propose
directions for further refinement.

This research contributes to academia by introducing an innovative pricing framework
that merges the Stackelberg and bargaining game theories for customized data product
transactions, thereby expanding the application of game theory in data pricing. Practically,
this model offers effective pricing strategies for enterprises, improving market efficiency in
data transactions and showing significant potential for real-world applications.

The structure of this paper is as follows:

• Section 2 presents the proposed tripartite pricing model, outlining the foundational
principles and framework.

• Section 4 introduces the dynamic adjustment mechanism, detailing how pricing adapts
to market shifts in response to changing conditions.

• Section 5 integrates the bargaining process within the context of the dynamic adjust-
ment mechanism, describing their combined roles in determining the transaction price.

• Section 6 describes the experimental setup and methodology, providing a foundation
for testing and validation under various market scenarios.

• Section 7 compares the results achieved using the proposed model against alternative
methods, highlighting the model’s effectiveness and adaptability.

• Section 8 concludes this study, summarizing key findings and suggesting directions
for future research.

2. Three-Party Game Model

This paper proposes a three-party pricing model that combines the Stackelberg and
bargaining game theories to establish a fair and efficient pricing mechanism for customized
data products. The model aims to balance the interests of the buyer, seller, and platform,
with the anticipated outcome of enhancing transaction success rates and improving fairness
in pricing.

2.1. Definitions of Key Terms

Guidance price: The guidance price is an initial reference price set by the platform
based on historical data, market conditions, and product demand complexity. In the
absence of historical data, the platform will use alternative methods, such as market
surveys, to fill in data gaps. It serves as a benchmark that guides both buyer and seller
negotiations, providing a starting point that reflects current market trends and aids in
aligning expectations. The guidance price is subject to dynamic adjustments by the platform
in response to buyer and seller quotes, as well as variations in market demand and supply,
to better reflect real-time transaction contexts.
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Guidance price range: The guidance price range defines the permissible price interval
within which buyer and seller negotiations occur. This range is dynamically adjusted by
the platform as a function of market volatility, supply–demand shifts, and the historical
behavior of quotes. Through real-time data analysis, the platform ensures that the guidance
price range remains aligned with current market conditions, aiming to enhance transaction
fairness and success rates.

Buyer utility: Buyer utility quantifies the buyer’s satisfaction derived from the trans-
action and is expressed as the difference between the buyer’s valuation of the customized
data product and the final transaction price. A higher buyer utility indicates that the
buyer perceives the purchase as favorable, which is essential in enhancing the buyer’s
participation and engagement in the bargaining process.

Seller utility: Seller utility reflects the seller’s gain from the transaction, defined
as the difference between the final transaction price and the seller’s marginal cost of
providing the customized data product. Higher seller utility indicates a profitable outcome,
which incentivizes sellers to engage in price negotiations while balancing their own cost
considerations against market expectations.

Platform Utility: Platform utility represents the combined benefit the platform
obtains from a successful transaction, mathematically defined as the product of buyer
utility and seller utility. This formulation ensures that any increase in either buyer or
seller utility contributes equally to platform utility, reinforcing the platform’s impartiality
and commitment to fairness. By balancing buyer and seller satisfaction, the platform
fosters a fair trading environment. Dynamic adjustments to guidance prices and price
ranges by the platform aim to optimize both buyer and seller outcomes, ultimately
enhancing platform utility in alignment with current market conditions and equitable
transaction standards.

Bargaining power: Bargaining power indices play a crucial role in this three-party
game model by quantifying each participant’s relative influence within the negotiation
framework. For buyers, the index reflects their influence relative to sellers’ offers, while
for each seller, it indicates their standing both in relation to the buyer’s budget and to
competing sellers’ quotes. In a multi-party bargaining scenario, this index guides each
party’s pricing decisions, influencing whether they adjust their budget or offer, hold their
position, or withdraw from negotiations. By quantifying bargaining power, these indices
facilitate an understanding of each participant’s strategic advantage and potential leverage,
fostering stability and efficiency in the transaction process.

Optimal transaction price: The optimal transaction price is the price at which the
buyer and seller reach an agreement that maximizes joint utility under the constraints of the
guidance price and price range. It represents an equilibrium where both parties’ utilities
are sufficiently high, ensuring a mutually beneficial outcome and an efficient allocation of
resources. The optimal transaction price is influenced by the platform’s pricing guidance,
buyer and seller utility functions, and prevailing market dynamics.

2.2. Roles of the Three Parties
2.2.1. Role of the Platform

The platform acts as the leader in the game, responsible for regulating buyer and seller
behaviors to ensure fairness and impartiality throughout the transaction. To maintain a fair
marketplace, the platform actively monitors buyer and seller actions, promptly addressing
any undesirable behaviors, such as manipulative bidding, intentional misinformation,
or attempts to circumvent the established price range. This oversight contributes to a
transparent and orderly negotiation environment, fostering trust among participants.

The platform dynamically adjusts the reference price based on buyer and seller budgets
and quotes, as well as the previous round’s reference price. In terms of the price range, the
platform applies a dynamic adjustment mechanism that incorporates changes in market
supply and demand, bid behaviors of both parties, and observed market volatility. As
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bargaining rounds progress, the platform continuously analyzes historical data in real-time,
allowing it to refine the price range to more accurately reflect current market conditions.

The utility of the platform is defined as the product of buyer and seller utilities, ensur-
ing that utility increases for both buyers and sellers contribute equally to the platform’s
utility. This approach guarantees that the platform’s actions promote fairness and impar-
tiality, balancing both parties’ interests and enhancing transaction success rates within an
equitable framework.

2.2.2. Role of the Buyer

The buyer enters the game by submitting customized data product requirements along
with a budget, aiming to purchase the desired data product at the lowest possible price. The
buyer must operate within the price range set by the platform, balancing their own budget
constraints with the guidance price. The assumptions in this model include that buyers
may have varying levels of risk tolerance, which influences their approach to negotiation
and their willingness to deviate from the guidance price.

2.2.3. Role of the Seller

The seller participates in the game with the objective of maximizing their selling price
for the data product. Sellers are constrained by their cost structures and the platform’s
guidance price and price range. Additionally, sellers are assumed to have individual thresh-
olds for risk tolerance, which influence how they adjust their quotes during negotiation.
Sellers must strategically consider their proximity to the guidance price while managing
cost-related constraints to remain competitive in the bargaining process.

2.3. Theoretical Rationale for Utility Functions

In this model, the Mean-Variance Utility (MVU) framework provides an effective
means of quantifying each party’s decision-making process by balancing expected returns
and associated risks, which are key factors in the uncertain environment of customized data
product transactions. Given the variability in pricing and market dynamics, this framework
helps to model the trade-offs that both buyers and sellers face, making it particularly suited
to capturing the utility functions of both parties. The MVU framework’s integration with
bargaining power indices also allows each party to dynamically adjust their negotiation
strategies, reflecting changes in relative influence over the course of the transaction.

Risk and return considerations are central to each party’s utility. For buyers, risk
primarily involves price uncertainty and the potential of exceeding their budget, while
return reflects the satisfaction derived from acquiring a product that aligns with their
valuation at a favorable price. Sellers face risk in the form of demand uncertainty, as
they may miss an opportunity to sell if the quoted price does not align with the buyer’s
budget, whereas return is generated through successful sales above their marginal costs.
The platform, in ensuring transaction stability and fairness, also considers collective utility,
aiming to align both buyer and seller satisfaction with real market conditions.

3. Definition of Utility Functions

The utility functions for the buyer, seller, and platform are structured to capture
each participant’s motivations and constraints within the bargaining model. This ap-
proach leverages the mean-variance utility framework, which effectively balances risk and
return—a critical consideration for negotiations involving budget constraints and pricing
flexibility [8,9]. Additionally, bargaining power indices are integrated to model each party’s
influence in the bargaining process.

3.1. Buyer’s Utility Function

The Mean-Variance Utility (MVU) framework encapsulates the balance between ex-
pected returns (mean) and associated risks (variance), where risk is measured based on
return variability. Within this framework, expected return denotes the projected gain,
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while variance reflects potential fluctuations, thereby indicating the level of risk inherent to
the transaction.

In this study, the transaction price p represents the intrinsic value of the customized
data product, contributing to utility for both the buyer and seller. The buyer’s expected
return Ebuyer is expressed as the ratio p

b , where b denotes the buyer’s budget. This formula-
tion not only connects the transaction price to the buyer’s budgetary constraints but also
encapsulates the buyer’s anticipated return within these constraints, achieving a balance
between expected utility and associated risk [10].

The buyer’s expected return Ebuyer is defined as follows:

Ebuyer =
p2

b
(1)

where p represents the platform’s guidance price, serving as a benchmark, and b denotes
the buyer’s budget. Here, the mean-variance utility framework is well-suited, as it
captures the buyer’s need for an optimal trade-off between cost (budget) and anticipated
product value.

The risk term in the buyer’s utility function quantifies the perceived alignment be-
tween the buyer’s budget b and the guidance price p, with (b − p) representing this
deviation. A smaller deviation implies a close alignment between budget and guidance
price, suggesting lower perceived risk, whereas a larger deviation indicates misalignment,
signaling higher perceived risk. To capture this relationship, the deviation is squared and
normalized by 2σ2, where σ denotes the standard deviation derived from the guidance price
range [pmin, p, pmax], reflecting market volatility. A higher σ indicates a broader acceptable
price range, thereby amplifying the risk associated with greater budget deviation.

The decay in perceived risk as the budget b approaches the guidance price p is modeled

by the exponential function e−
(b−p)2

2σ2 . For minor deviations, this term approaches 1, denoting
minimal risk. As the deviation grows, the exponential term quickly decreases towards zero,
indicating a substantial increase in perceived risk.

This buyer’s risk term thus encapsulates the uncertainty of achieving a favorable price
in relation to market volatility and the alignment of the buyer’s budget with the guidance
price. It is modeled using a normal distribution with mean µ = p and standard deviation σ,
grounded in the guidance price range [pmin, p, pmax]. The buyer’s risk term can be defined
as follows:

1 − e−
(b−p)2

2σ2 (2)

The function indicates that the buyer’s perceived risk decreases as the alignment with
the guidance price tightens, enhancing the buyer’s confidence in value realization. We
have clarified that buyer risk must be considered even when the buyer’s budget exceeds
the platform price. In such cases, the buyer may purchase the data product at a price
higher than its intrinsic value, leading to a utility loss. Based on the mean-variance utility
theory, and in conjunction with the previously defined Ebuyer, the complete utility function
is as follows:

Vbuyer = (1 − e−
(b−p)2

2σ2 ) · |p − b| (3)

This expression captures the buyer’s exposure to price deviations from the guidance
price, decreasing as b converges on p. For practical interpretation, the function indicates
that the buyer’s perceived risk diminishes with a tighter alignment to the guidance price,
fostering confidence in value realization. The complete utility function is then as follows:

u(b) =
p2

b
− k ·

(
1 − e−

(b−p)2

2σ2

)
· |p − b| (4)

where k is the risk aversion coefficient, reflecting the buyer’s sensitivity to price deviations.
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3.2. Seller’s Utility Function

Analogous to the buyer’s utility, the seller’s function also incorporates the mean-
variance utility framework to balance potential earnings with associated risks. The seller’s
expected return Eseller is defined as follows:

Eseller =
o2

p
(5)

where o is the seller’s quoted price. This formulation interprets the seller’s return in terms
of maximizing price relative to the platform’s guidance. The seller’s risk component,
capturing the likelihood of misalignment with buyer expectations, is represented as follows:

Vseller =

(
1 − e−

(o−p)2

2σ2

)
· |o − p| (6)

Here, the risk term decreases as the seller’s quoted price aligns with the platform’s
guidance price, indicating lower uncertainty about buyer acceptance. Thus, the seller’s
utility function is given as follows:

u(o) =
o2

p
− k ·

(
1 − e−

(o−p)2

2σ2

)
· |o − p| (7)

By leveraging the mean-variance utility framework and accounting for bargaining
power, the buyer’s and seller’s utilities dynamically reflect both risk tolerance and the
potential return, leading to a more stable and efficient transaction process. The use of these
utility functions within a well-defined price range promotes equilibrium, guiding each
participant’s decision-making toward optimizing their respective utilities under realistic
market conditions.

3.3. Bargaining Power Indices

The bargaining power indices of the buyer and seller quantify their negotiation lever-
age, which influences the final outcome of the negotiation.

3.4. Buyer’s Bargaining Power Index

The Buyer’s Bargaining Power Index (BPI) reflects the buyer’s flexibility and the ratio
of active sellers in the market:

α =
1
2
× max

(
0,

b − pmin

pmax − pmin
+

na

n

)
(8)

Here, na
n represents the ratio of active sellers na (the number of sellers still participating

in the negotiation) to the initial number of sellers n, reflecting the relative strength of
the buyer in the negotiation. The variable b represents the buyer’s budget, while pmin
and pmax represent the minimum and maximum values of the platform’s price guidance
range, respectively.

3.5. Seller’s Bargaining Power Index

The Seller’s Bargaining Power Index (SPI) is formulated based on the seller’s quote
relative to the market conditions [11]:

βi =
1
2
× max

(
0,

omax − oi

∑na
j=1(omax − oj)

+
n
na

)
(9)

Here, n
na

represents the ratio of the initial number of sellers n to the number of active
sellers na, indicating the seller’s leverage under competitive conditions. The variable omax
represents the maximum offer price made by the sellers, and oi represents the specific price
quoted by seller i.
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3.6. Justification of Factors in the Formulas

1. Ratio of active sellers to initial sellers
( na

n
)
: This ratio reflects the competitive environ-

ment in the market. When more sellers remain active (i.e., when na
n is high), the buyer

has more options and thus greater bargaining power. In contrast, if many sellers exit
the negotiation, the remaining sellers face less competition, thereby increasing their
individual bargaining leverage. This factor effectively captures the dynamic nature of
the market.

2. Relative price factors b−pmin
pmax−pmin

and omax−oi
∑na

j=1(omax−oj)
:

- For buyers, b−pmin
pmax−pmin

captures the buyer’s budget b relative to the platform’s
price guidance range, which is defined by pmin (the minimum price) and pmax
(the maximum price). If the buyer’s budget b is close to the minimum price pmin,
their bargaining power is weaker, and vice versa.

- For sellers, omax−oi
∑na

j=1(omax−oj)
reflects the seller’s offer oi relative to the maximum offer

omax made by other active sellers. Sellers who offer prices close to the maximum
offer omax tend to lose some of their bargaining power.

A higher bargaining power index (BPI or SPI) thus indicates a more advantageous
position in the negotiation. Buyers can leverage their access to multiple sellers and relatively
stronger financial positions, while sellers benefit from reduced competition or competitive
pricing to assert stronger negotiation leverage.

3.7. Assumptions in the Bargaining Power Model

The model is based on the following assumptions:

1. Market conditions and participant numbers: The model assumes stable market condi-
tions, where the number of active participants accurately reflects the market dynamics.
If the market conditions change rapidly, the indices may fail to adjust in real-time,
reducing their accuracy.

2. Rationality of buyers and sellers: The indices assume rational behavior from both
buyers and sellers, meaning that each participant aims to maximize their own utility.
In cases of irrational behavior, the bargaining power indices may not align with actual
negotiation outcomes.

3. Initial price guidance: The model assumes that the price guidance range pmin to pmax
accurately reflects the market conditions. If the price guidance is inaccurate, the
expectations of buyers and sellers may diverge from the actual market conditions,
distorting the bargaining power indices.

3.8. Limitations of the Bargaining Power Model

• Sensitivity to outliers: The bargaining power indices can be distorted by extreme
values in offers, especially in markets with high variability.

• Seller differentiation: The model does not account for qualitative differences between
sellers, such as brand value or service quality, which may influence bargaining power
in real-world negotiations.

3.9. Platform’s Utility Function

The platform’s utility function ensures neutrality by being the product of the buyer’s
and seller’s utilities, weighted by their respective bargaining power indices:

u(p) = u(b)α × u(o)β (10)

According to the bargaining Nash equilibrium theory, when the product of the buyer’s and
seller’s utilities—i.e., the platform’s utility—is maximized, the payoffs for all parties reach
their optimal levels, and the model achieves its best state [12,13]. In this framework, the
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platform’s utility function is raised to the power of the respective bargaining power indices,
ensuring fairness and impartiality without favoring any party.

This construction reflects the platform’s role as a neutral facilitator, ensuring that the
utilities of both the buyer and the seller are proportionally weighted according to their
bargaining power, thereby maintaining fairness throughout the transaction.

3.10. Summary and Justification of Utility Function Construction

The model provides a structured and fair framework for pricing customized data
products by integrating mean-variance utility functions and bargaining power indices. In
practical applications, the model can be used in data marketplace platforms, e-commerce
systems, and digital services industries. It addresses issues such as information asymmetry,
price fluctuations, and market inefficiencies by dynamically adjusting prices. By precisely
modeling the utilities and bargaining powers of both buyers and sellers, the model ensures
fairness in transactions and market transparency, promoting efficient market operations
and long-term trust.

The model is based on the following key assumptions:

• Market conditions and participant numbers: It is assumed that market conditions
are stable and that the number of participants accurately reflects market dynamics. If
market conditions change rapidly, the model may fail to adjust in real-time, leading to
a reduction in the accuracy of the indices.

• Rational behavior: The model assumes that both buyers and sellers act rationally,
seeking to maximize their respective utilities. In the case of irrational behavior, the
bargaining power indices may not align with the actual negotiation outcomes.

• Price guidance range: The model assumes that the price guidance range, from pmin
to pmax, accurately reflects market conditions. If the price guidance is inaccurate, the
expectations of the buyers and sellers may diverge from actual market conditions,
distorting the bargaining power indices.

These assumptions form the foundation of the model’s validity and effectiveness. Any
deviation from these assumptions in practical applications may affect the accuracy of the
model’s predictions.

4. Dynamic Adjustment Mechanism for the Platform’s Guidance Price and Price Range

The platform’s dynamic adjustment mechanism for guidance price and price range is
designed to enhance market fairness and increase transaction success rates, particularly
for customized data products. This mechanism addresses unique challenges posed by the
distinct characteristics of each transaction and the limited relevance of historical transaction
data. Key aspects of this approach include the following:

• Adaptation to demand characteristics: Customized data products often exhibit spe-
cific demand features that do not fully reflect their intrinsic market value, making
dynamic adjustment essential.

• Real-time price adjustment: The mechanism operates within the bargaining process
between buyers and sellers, using market conditions along with budget and quote
information from both parties to rationally adjust the guidance price and its range in
real time.

• Role as a market leader: By closely tracking market trends, the platform maintains
its role as a leader in the Stackelberg game framework, supervising buyer and seller
actions to facilitate fair, reasonable, and transparent transactions.

4.1. Anti-Interference Mechanisms

To mitigate the impact of extreme values on price adjustments, the platform employs
the following anti-interference mechanisms:

• Median selection: The median is used instead of the mean to minimize the influence
of outliers, thereby providing a more robust central tendency for price adjustments.
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• Outlier exclusion: Extreme outliers are systematically removed prior to adjustments.
We use a statistically based criterion, identifying data points that deviate more than
three standard deviations from the median as outliers and excluding them to prevent
skewing the adjustment results.

• Data trimming: Prior to calculating the median or mean, the top and bottom 5%
of both buyer budgets and seller quotes are trimmed. The 5% threshold is chosen
because, in highly volatile market conditions, these extreme values frequently contain
noise or outliers that may distort pricing decisions. This percentage, however, is not
fixed; it can be dynamically adjusted based on market conditions. For instance, in
high-volatility markets, the trimming percentage may be increased to further limit the
influence of extreme values, while in stable market conditions, it may be reduced to
preserve more of the data for analysis.

4.2. Adjustment Mechanisms

The platform’s guidance price and price range are updated in each round of the game
as follows:

4.2.1. Guidance Price Adjustment

The guidance price for the next round, Pt+1, is calculated using the median of the
buyer’s budget MB and the median of the sellers’ quotes MS, weighted by the dynamically
adjusted parameter α. Here, α serves as a regulatory factor, which the platform adjusts
dynamically based on market fluctuations and the relative bargaining power of the buyer
and sellers, ensuring that the guidance price reflects current market conditions and the
strength of negotiation positions.The calculation formula for the next round of guidance
price is as follows:

Pt+1 = α · MB + (1 − α) · MS (11)

4.2.2. Price Range Adjustment

In the price range adjustment mechanism, the price range Rt+1 is determined by the
current guidance price Pt, seller quote volatility σS, buyer budget volatility σB, and the
dynamically adjusted coefficients k1 and k2:

Rt+1 = [Pt − k1 · σS − k2 · σB, Pt + k1 · σS + k2 · σB]

where σS represents the standard deviation of seller quotes, indicating seller quote volatility.
Higher values of σS result in a wider price range to accommodate fluctuations in seller
pricing. σB represents the standard deviation of buyer budgets, capturing buyer budget
volatility. Higher σB values imply greater uncertainty in buyer demand, necessitating an
expanded price range to account for buyer budget variability. k1 and k2 are dynamic adjust-
ment coefficients applied to σS and σB, respectively. They are adjusted based on market
conditions and the relative bargaining power of buyers and sellers. These coefficients serve
to enhance the flexibility of price adjustments, with the goal of promoting fairness and
equity within the model.

The dynamic adjustment of k1 and k2 enables the platform to rationally expand or con-
tract the guidance price range based on actual bargaining power, thus balancing the interests
of both buyers and sellers and fostering fairness and transparency in market transactions.

In addition, k1 and k2 act as dynamic adjustment factors that control the responsiveness
of the price range to seller quote volatility and buyer budget volatility:

k1 adjusts the sensitivity of the price range to seller quote volatility. In markets
with high seller quote volatility, increasing the value of k1 can expand the price range to
accommodate a wider variety of seller quotes. k2 adjusts the sensitivity of the price range
to buyer budget volatility. In markets where buyer budgets are highly variable, increasing
k2 broadens the price range to better account for the diversity in buyer budgets.
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By flexibly adjusting k1 and k2, the platform can appropriately expand or contract the
price range to match current market volatility characteristics, thus adapting to the demands
of both buyers and sellers and ensuring fairness and rationality in the transaction process.

4.3. Dynamic Weight Parameters and Adjustment Factors

To dynamically adjust α, k1, and k2 in response to market conditions, the platform
continuously monitors market volatility using specific indicators. “Market volatility” is
defined as the extent of variation in recent transaction data, particularly in terms of buyer
budgets and seller quotes. The primary indicators used to assess market volatility include:

• Standard deviation of recent prices: The standard deviation of historical transaction
prices is calculated over a moving time window. A high standard deviation indicates
greater price fluctuations, which signifies a volatile market.

• Range of buyer budgets and seller quotes: The platform assesses the spread between
the highest and lowest buyer budgets and seller quotes in recent transactions. A
widening spread suggests increasing volatility.

• Transaction volume fluctuation: Significant changes in transaction volume over short
periods are also considered indicative of volatility, as they often reflect shifts in market
demand or supply conditions.

The platform categorizes the market as “volatile” or “stable” based on threshold
values for these indicators. For instance, if the standard deviation of recent prices exceeds
a predefined threshold, or if the range between buyer budgets and seller quotes widens
beyond a certain limit, the platform identifies the market as volatile. In response:

• When market volatility is high, α is reduced, giving less weight to the previous round’s
guidance price and allowing current buyer and seller input to influence the new price
more directly.

• k1 and k2 values are increased to widen the guidance price range, providing a larger
buffer to accommodate price fluctuations and reduce the likelihood of abrupt price
changes that could destabilize negotiations.

• In stable market conditions, α is increased, giving greater weight to the previous
guidance price, while k1 and k2 are reduced to narrow the price range, facilitating
more precise pricing aligned with the steady market state.

This volatility-based adjustment mechanism enables the platform to adaptively bal-
ance stability and responsiveness, ensuring rational and fair pricing adjustments that are
aligned with current market conditions.

4.4. Known Limitations

While the dynamic adjustment mechanism improves price fairness and transaction
success, it has limitations. Under extreme market volatility, adjustments may lag, causing
temporary misalignment with true market prices. In thin markets with few buyers or
sellers, limited data can lead to less reliable pricing and increased susceptibility to outliers.

Extreme market volatility or thin markets with few buyers or sellers can lead to
substantial adjustments in the α, k1, and k2 parameters, increasing the model’s instability
and uncertainty. These conditions amplify the impact on price and price range calculations,
representing a primary limitation of the current model.

4.5. Summary and Practical Implications

The platform’s dynamic adjustment mechanism realigns the guidance price and range
in real time to reflect current market demand, minimizing the effects of outliers and
outdated data. In practical markets, this approach enhances transaction fairness by aligning
prices with actual market value, reducing imbalances caused by volatility or information
asymmetry. Additionally, dynamic adjustments facilitate consensus between buyers and
sellers, thereby increasing transaction efficiency.
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In volatile markets, the mechanism broadens the price range to accommodate un-
certainty, while in stable conditions, it narrows the range for greater pricing precision,
effectively balancing fairness and efficiency.

5. Game Process

This game process supports the dynamic pricing mechanism for customized data
products, integrating various components of the trading system. By analyzing buyer
requirements, market conditions, and historical transaction data, the platform sets an initial
price that adjusts dynamically through multi-round negotiations to ensure fairness and
increase transaction success rates. The process unfolds in the following steps, and the
pseudocode of the bargaining process can be found in Appendix A.

5.1. Step 1: Submission of Demand by Buyer

The buyer submits a set of data requirements to the platform, typically including es-
sential specifications such as data quality, accuracy, consistency, completeness, accessibility,
and privacy standards. Additionally, the buyer may specify personalized or customized
requests, such as data complexity, degree of customization, and processing timeliness. The
buyer also provides a maximum expected number of bargaining rounds to set constraints
on the negotiation duration. These requirements form the basis for the platform’s initial
pricing and subsequent dynamic adjustments (see Figure 1).

buyer

platform

Send demand & budget

Step1:

Figure 1. Submission of demand by buyer.

5.2. Step 2: Platform Sets Reference Price and Price Range

Based on the buyer’s requirements, complexity, market conditions, and historical
transaction data, the platform determines an initial reference price and corresponding price
range. This initial setup is guided by a specific algorithm or logic that reflects current
market trends (see Figure 2).

Database

Trading platform

Step2:

Market

Guidance prices and price ranges

Figure 2. Platform sets reference price and price range.
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5.2.1. Initial Price Setup Based on Data Attributes and Market Conditions

To determine a fair and adaptable initial pricing framework for customized data
products, the platform dynamically computes the reference price Pre f and price range
Rprice based on critical factors such as data complexity, customization level, processing
urgency, and privacy requirements. This multi-dimensional pricing mechanism allows the
platform to align initial prices with the specific demands of buyers while reflecting current
market conditions.

5.2.2. Reference Price Calculation

The reference price Pre f represents the core valuation of a data product and is derived
through a weighted sum of the following components:

Pre f = κ · Cd + λ · Uc + µ · Tp + ν · Sp

where:

• Cd (complexity of data): Reflects the intrinsic complexity or specificity of the data
product, taking into account factors such as the volume of data, processing difficulty,
and expertise required.

• Uc (customization degree): Indicates the extent to which the data product meets the
buyer’s unique requirements, influencing its suitability for particular applications.

• Tp (timeliness of processing): Represents the buyer’s urgency for data delivery; higher
values correspond to expedited processing needs.

• Sp (privacy and security level): Measures the level of privacy and data security
demanded by the buyer, especially important in cases where sensitive information
is involved.

The parameters κ, λ, µ, and ν serve as weight coefficients, calibrated to capture current
market conditions and buyer preferences. By adjusting these coefficients, the platform
ensures that Pre f accurately reflects the inherent value of the data product in response to
each transaction’s specific requirements.

5.2.3. Price Range Determination

The initial price range Rprice defines the flexible boundaries within which bargaining
can occur, accommodating market dynamics and allowing for negotiation flexibility. The
price range is calculated as follows:

Rprice =
[

Pre f · (1 − θ), Pre f · (1 + θ)
]

where θ represents a market volatility factor, which adjusts based on current demand–
supply variations and market conditions. This factor provides a margin that facilitates
smoother negotiations by offering a reasonable price range that reflects of prevailing
market trends.

This pricing model thus provides an adaptive approach to setting the initial price and
range, balancing transaction fairness and adaptability in a competitive data marketplace.
By accounting for data-specific attributes and market conditions, the platform establishes a
basis for dynamic, customized pricing that aligns with buyer expectations and optimizes
transaction success.

5.3. Step 3: Publication and Seller Engagement

The platform announces the buyer’s demand, reference price, and price range, inviting
sellers to enter the bidding process and initiate competitive negotiations. Both parties
reference the platform’s guidance price, engaging in bargaining within the price range. The
final price is determined by the interplay between the seller’s quote and the buyer’s budget.
The platform adjusts the guidance price range to influence the bargaining strategies and
ensure transaction fairness and price stability. (see Figure 3).
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buyer

Trading platform

Step3:

Market

Seller 1

…

Seller m

Seller 2…

Figure 3. Publication and seller engagement.

5.4. Step 4: Multi-Round Negotiation

During the multi-round negotiation phase, both buyer and sellers engage by sub-
mitting their respective budgets and quotes. If no seller’s quote falls below the buyer’s
budget in a given round, the negotiation is considered unsuccessful for that round, and
the process proceeds to the next. In each round, the platform dynamically adjusts the
reference price and price range based on the buyer’s and sellers’ submissions, along with
market conditions, to guide the negotiation. To ensure convergence within a reasonable
number of rounds, the platform applies a dynamic price range adjustment mechanism
based on the buyer’s maximum expected rounds. When the actual rounds approach or
exceed this expected value, the price range narrows progressively to expedite an agreement.
Furthermore, to prevent indefinite bargaining, the buyer’s budget in each successive round
cannot be lower than in the current round, and sellers are restricted from raising their
quotes in subsequent rounds (see Figure 4).

buyer

Under the supervision of the platform

Engage in a bargaining game

Step4:

Seller 1

…

Seller m

Seller 2…

Figure 4. Multi-round negotiation.

5.5. Step 5: Exit Conditions

During the dynamic bargaining process, the game terminates if any of the following
exit conditions are met, ensuring optimal resource allocation and maximizing utility:

1. Buyer Exit Condition
The buyer exits the game if their utility value is less than or equal to zero, or if their
bargaining power index falls to zero or below.

2. Seller Exit Condition
Any seller exits the game if their utility value is less than or equal to zero, or if their
bargaining power index declines to zero or below.

3. Price Acceptance Condition
After the optimal transaction price is calculated, if either the buyer or any remaining
seller rejects the proposed price, the game terminates.
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These exit conditions prevent inefficient or unproductive bargaining rounds, enhanc-
ing transaction success rates while maintaining negotiation fairness and efficiency on the
platform (see Figure 5).

buyer

Under the supervision of the platform

Engage in a bargaining game

Seller 1

…
Seller j

Seller 2…

… …

Seller m

Exit

Step5:

Figure 5. Exit criteria and continuation.

5.6. Step 6: Final Price Determination

When any seller’s quote is below the buyer’s current budget, the negotiation process
ceases, and the platform proceeds to calculate the optimal transaction price. The platform
searches within the price range [Seller’s Quote, Buyer’s Current Budget] to identify a price
that maximizes its utility. The platform’s utility is defined as the product of the buyer’s
and seller’s utilities, each raised to the power of their respective bargaining power indices.
Achieving the maximum platform utility represents an optimal allocation of utilities under
the current conditions, thus reaching the Nash equilibrium solution for the bargaining game.
This price is then identified as the optimal transaction price, ensuring utility maximization
for all parties within a fair framework (see Figure 6).

buyer

Under the supervision of the platform

Engage in a bargaining game

Step6:

Seller 1

Seller 2…

Seller q

…

While budget ≥ max{𝑞𝑢𝑜𝑡𝑒𝑠𝑒𝑙𝑙𝑒𝑟1, 𝑞𝑢𝑜𝑡𝑒𝑠𝑒𝑙𝑙𝑒𝑟2, …,𝑞𝑢𝑜𝑡𝑒𝑠𝑒𝑙𝑙𝑒𝑟𝑞},

The platform calculates the final transaction price

Figure 6. Final price determination.

External factors, such as market volatility or sudden shifts in buyer demand, may also
impact the final price. These are addressed by adjusting the relevant parameters, ensuring
that the final price remains optimal and fair even in changing market conditions.

5.7. Step 7: Transaction Completion

Upon acceptance of the final price by both parties, the platform facilitates the exchange
of the customized data product. In case of a negotiation failure, the transaction concludes
without a deal (see Figure 7). The platform may also offer options for renegotiation,
alternative matches, or compensation if no agreement is reached, ensuring a seamless
transaction experience.
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buyer

Seller 1

Seller 2…

Seller q

platform

Step7:

Figure 7. Transaction completion.

5.8. Customer Choice Mechanism in Case of Transaction Failure

In the event of a transaction failure, the platform allows customers to choose be-
tween an alternative matching option and a compensation policy to enhance post-failure
satisfaction and improve service quality.

1. Alternative Matching Option
The platform offers an alternative matching option for buyers whose transactions
were unsuccessful, where the system searches for new sellers based on the buyer’s
specific needs and budget. This matching mechanism provides greater flexibility
by identifying sellers who better align with the buyer’s requirements, reducing the
impact of transaction failure and improving service quality for customers without
successful transactions. This mechanism thus enhances the overall transaction success
rate on the platform.

2. Compensation Policy
To maintain customer trust and satisfaction following a transaction failure, the plat-
form can implement a compensation policy. For customers whose transactions are not
completed, the platform may reward points or vouchers based on the level of effort
and attempts to reach an agreement. These incentives encourage future transactions
on the platform. Additionally, the platform may offer such customers priority in future
matching opportunities, further enhancing the user experience and promoting loyalty.

By providing alternative matching and compensation options, the platform effec-
tively mitigates the impact of transaction failures, increases transaction success rates, and
improves customer satisfaction and loyalty.

5.9. Relevance and Applicability of Multi-Party Game Dynamics in Data Marketplaces

The multi-party game process outlined in this model has significant relevance in
real-world data marketplaces or platforms, facilitating dynamic pricing of data products.
By incorporating variables such as buyer budgets, seller quotes, and market conditions,
the platform can adjust price ranges in response to varying demand and market dynamics,
thereby enhancing fairness and transaction success rates.

This model assumes market volatility in data demand and supply, with clearly defined
utility functions for buyers and sellers. To bolster reliability in practical applications, the
platform incorporates data verification protocols and constraints to prevent manipulation
by participants. Furthermore, the platform employs dynamic price and round adjustments
to avoid monopolistic pricing and prolonged negotiations without agreement. This mech-
anism ensures transparency and fairness in transactions while optimizing the balance of
interests among all parties involved.

6. Experimental Design and Simulation
6.1. Experimental Setup

The simulation-based experiments employ data generated under a normal distribu-
tion, chosen as an approximation for real-world demand, cost, and pricing characteristics
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observed in similar market contexts. A normal distribution, with its symmetrical properties
and predictable variance, provides a robust foundation for modeling the randomness and
variability often seen in market behaviors. Although real-world data may not always
strictly follow a normal distribution, this assumption enables a simplified yet effective
approach to analyze interactions within the model. Any deviation from real-world distri-
butions is noted as a limitation, which could impact certain aspects of the results. For exact
reproducibility, we use a fixed random seed, set to 100, ensuring consistency across experi-
ments and enabling controlled testing conditions. Each experiment is repeated 1000 times
to reduce the influence of outliers and to ensure result stability.

The platform’s initial reference price is set to 1000, with a price range between
800 and 1200, chosen to reflect a balanced market scenario with typical fluctuation margins.
Sensitivity analysis is conducted to evaluate the robustness of outcomes against variations
in these parameters, ensuring that the results are not overly dependent on specific values.
The buyer’s risk aversion coefficient kb is set to 3.5, representing moderate risk aversion,
while the sellers’ risk aversion coefficients ks are randomly assigned within a range of
2 to 6 to capture the diverse risk tolerance levels that are common in practical market
settings [14,15].

The number of participating sellers is set to 10, providing a balanced scenario for
interaction and competition in the simulated market. Additional tests were also conducted
with varying numbers of sellers to assess the scalability of the model and to observe the
effects of seller participation on market dynamics.

6.2. Comparative Experiments

In addition to testing the proposed model, two comparative experiments are conducted
to evaluate its performance relative to alternative pricing approaches. The design of these
comparative experiments aims to demonstrate the effectiveness and unique contributions
of the tripartite bargaining model, specifically by examining the platform’s impact on
pricing fairness, transaction success rate, and bargaining efficiency. Each experiment is
described as follows (Table 1):

1. Tripartite bargaining model: This experiment evaluates the proposed model, where
the platform, buyer, and sellers actively engage in bargaining. The platform partic-
ipates not only by setting a reference price and price range but also by engaging in
the bargaining process, intending to balance fairness and optimize platform utility.
This configuration is expected to showcase the advantages of platform involvement
in terms of transaction success and price fairness.

2. Stackelberg-only model: This experiment features a modified tripartite game that
excludes the bargaining process. Here, the platform acts solely as a leader by setting
a reference price and range, while buyers and sellers submit their budget and bids
independently. This setup provides a baseline for comparing the effects of bargaining,
allowing us to observe whether direct negotiation enhances transaction success and
fairness compared to the Stackelberg-only model.

3. Bilateral bargaining model: This experiment simulates a traditional bilateral bargain-
ing process solely between the buyer and sellers, without the platform’s intervention.
In this configuration, the final transaction price is determined through direct negotia-
tion. This setup serves to highlight the unique role of the platform in facilitating fair
and efficient bargaining, allowing us to compare results and analyze the platform’s
effects on bargaining dynamics, transaction success, and price fairness.

The goal of these comparative experiments is to demonstrate how the platform’s
active participation in the bargaining process influences key outcomes. We expect that
the tripartite bargaining model will outperform the other two setups by achieving higher
transaction success rates, enhanced price fairness, and improved bargaining efficiency, thus
validating the practical relevance of our model.
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Table 1. Comparison of experiments

Experiment Exp. 1 Exp. 3 Exp. 2

Game model Stackelberg + bargaining Stackelberg Bargaining

Third-party platform Yes Yes No

Initial guidance price Yes Yes No

Dynamic adjustment Yes No No

Game process Yes No Yes

Game rounds limit Yes No No

6.3. Evaluation Metrics

To comprehensively assess the performance of each model, the following metrics
are applied:

1. Transaction success rate: This metric calculates the proportion of successful transac-
tions under each set of game rules, with a transaction being deemed successful if all
parties reach a mutually acceptable agreement.

2. Price fairness: Price fairness is quantified by measuring the deviation of the final
transaction price from the market average, providing an indication of the fairness of
the pricing outcomes across simulations.

3. Bargaining efficiency: Efficiency is evaluated by counting the number of rounds
required to reach a transaction, where fewer rounds indicate higher efficiency and
quicker convergence to an agreed price.

4. Balance of success rate and efficiency: This composite metric assesses overall model
performance by balancing the transaction success rate and bargaining efficiency within
a set round limit (e.g., within ten rounds), utilizing a weighted calculation to reflect
both factors in a single, integrated measure.

In the second experiment, discussions related to bargaining rounds are omitted, as
there is no negotiation process. Statistical analyses, including significance testing and
confidence intervals, were conducted to validate these metrics across different models,
enabling precise comparisons in success rates and fairness outcomes. The results, along
with sensitivity analyses of key parameters, are visualized using tables and graphs, offering
clear insights into model performance across various experimental conditions.

7. Experimental Results and Analysis
7.1. Experiment 1: Analysis of the Proposed Model in This Study

Experiment 1 provides a comprehensive evaluation of the tripartite bargaining model
proposed in this study for customized data product transactions, focusing on transaction
success rates, price distribution, the relationship between final transaction prices and the
remaining number of sellers, and the distribution of bargaining rounds.

Figure 8 presents the distribution of successful and failed transactions, with red points
indicating successful transactions and blue points indicating failures. The horizontal and
vertical axes represent the buyer and seller quotes, respectively, at the point where the
transaction concludes (either successfully or unsuccessfully). The color gradient, from light
to dark, denotes the remaining number of sellers at the end of the transaction, with darker
colors indicating a higher number of remaining sellers. The overall transaction success
rate is 92.70%, with a success rate of 97.87% within ten bargaining rounds. As the buyer’s
budget increases, the likelihood of a successful transaction rises, suggesting that higher
budgets attract a greater number of sellers to participate in bidding.
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Figure 8. Starkberg–bargain game model: dot plot of successful and unsuccessful trades.

Figure 9 illustrates the distribution of optimal transaction prices, with the horizontal
axis representing the optimal transaction price and the vertical axis indicating frequency.
The transaction prices exhibit a normal distribution with a mean of 1000.73, closely aligning
with the platform’s reference price of 1000. This alignment highlights the model’s effec-
tiveness in guiding transaction prices toward the reference, thus promoting both market
stability and fairness. The platform’s reference price serves not only as directional guidance
for transactions but also establishes a credible and authoritative price range for partici-
pants. Through its dynamic adjustment mechanism, the model further enhances stability,
providing each party with a reliable pricing benchmark.

Figure 9. Stackberg–bargaining game model: best price histogram.

Figure 10 presents the relationship between the final transaction price and the re-
maining number of sellers, with the horizontal axis representing the number of remaining
sellers upon successful transaction and the vertical axis indicating the optimal transaction
price. The results indicate that when the number of sellers is 10, the median transaction
price is relatively high and exhibits a concentrated distribution, reflecting price stability
within a highly competitive environment. As the number of sellers decreases, the median
price declines while price variability increases, allowing buyers to negotiate more advanta-
geous transaction prices during the bargaining process. This outcome aligns with market
competition dynamics, demonstrating that the model reasonably simulates the impact of
competition on transaction prices.
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Figure 10. Stackberg–bargaining game model: A graph of the number of active merchants and the
best price at the time a deal is reached.

Figure 11 illustrates the distribution of bargaining rounds required to conclude a
transaction, with the horizontal axis representing the number of bargaining rounds at
transaction completion and the vertical axis indicating frequency. The results demonstrate
that most transactions are finalized within the initial rounds, particularly between the
fourth and sixth rounds, suggesting that buyers and sellers frequently reach agreements
through prompt price adjustments. Although a small proportion of transactions extend
beyond the 10th round, such instances are uncommon, further underscoring the model’s
efficiency in managing complex transactions.

Figure 11. Starkberg–bargaining game model: game rounds histogram.

7.2. Experiment 2: Transaction Performance with Stackelberg Game Only

In Experiment 2, the transaction performance was analyzed under a scenario where
only the Stackelberg game model was applied. As shown in Figure 12, the transaction suc-
cess rate was 53.80%; significantly lower than that of the tripartite bargaining model. These
results suggest that relying solely on the Stackelberg model is inadequate for effectively
balancing the interests of buyers and sellers, leading to a higher transaction failure rate.
In this scenario, only an initial reference price is provided by the platform, lacking both
the bargaining process between the parties and the dynamic adjustment mechanism for
the guidance price and price range, which substantially reduces model stability. Conse-
quently, transactions are more likely to succeed only when buyer budgets and seller prices
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are closely aligned, while transactions with greater price discrepancies are more prone
to failure.

Figure 12. Only Starkerberg game model: dot plot of successful and unsuccessful trades.

Figure 13 illustrates the distribution of optimal prices, which is notably skewed
compared to Experiment 1. The absence of dynamic bargaining adjustments resulted in
transaction prices that do not adequately reflect market supply and demand.

Figure 13. Only Starkerberg game model: best price histogram.

7.3. Experiment 3: Transaction Performance with Bargaining Game Only

Experiment 3 involved only the bargaining game model. Figure 14 shows a transaction
success rate of 66.3%, with a success rate of only 39.4% within ten rounds of bargaining.
Without platform-guided pricing, the bargaining process struggled to efficiently reach
consensus, resulting in a high rate of failures.
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Figure 14. Only bargaining game model: dot plot of successful and unsuccessful trades.

In Figure 15, we illustrate the distribution of the optimal prices generated in Experiment 3,
which involved only the bargaining game. It is evident that the prices are concentrated
around the initial reference price, but the distribution is more dispersed and exhibits
a noticeable right skew. Compared to the proposed three-party game model in this
study, the price fluctuations in Experiment 3 are more pronounced, resulting in less stable
transaction prices.

Figure 15. Only bargaining game model: best price histogram.

This phenomenon indicates that the model involving only the bargaining game lacks
the platform’s effective guidance in price determination, leading to significant uncertainty
in price negotiations between buyers and sellers. Furthermore, the absence of platform
participation in the game causes a loss of basis for adjusting the price range, thereby
increasing the risk of transaction failure.

Overall, the experimental results highlight the superiority of the tripartite bargaining
model, which integrates the strengths of the Stackelberg and bargaining games. This model
improves transaction success rates and ensures price fairness and market stability.
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7.4. Analysis of Transaction Success Rate

In this study, we conducted extensive experiments comparing the transaction success
rates of the tripartite bargaining model and other classical bargaining models. The results
indicate that the tripartite bargaining model exhibits a significant advantage in terms of
transaction success rate. Specifically, the model achieved a success rate exceeding 80%
across various experimental scenarios, which is considerably higher than that of traditional
bilateral bargaining models. This advantage is primarily attributed to the tripartite model’s
ability to effectively integrate the interests of the buyer, seller, and platform, thus enabling
the formulation of pricing strategies and dynamic adjustments that allow all parties to
reach an optimal agreement, thereby enhancing the likelihood of a successful transaction.

7.5. Price Fairness and Reasonableness

In the assessment of price fairness, we employed various statistical methods to analyze
the pricing outcomes of each model. The results demonstrate that the tripartite bargaining
model performs robustly in terms of price fairness and reasonableness. First, the model
exhibited minimal price volatility across multiple bargaining rounds, with the price dis-
tribution remaining relatively concentrated. This suggests that the model can generate
reasonable prices without favoring any single party across different experimental scenarios.
Furthermore, an analysis of the interests of all parties involved revealed that the tripartite
bargaining model ensures that all parties receive fair benefits while avoiding excessive
price bias, thereby contributing to the long-term stability of transactions.

7.6. Impact of Bargaining Efficiency and Dynamic Adjustment Mechanism

In our study of bargaining efficiency, we focused on the impact of the number of
bargaining rounds and the dynamic adjustment mechanism on the bargaining outcomes.
The experimental results show that as the number of bargaining rounds increases, both
the transaction success rate and price fairness improve, although the efficiency of the
bargaining process decreases. To address this, we introduced a dynamic adjustment
mechanism, which significantly enhances bargaining efficiency by adjusting bargaining
strategies and parameters. Specifically, the dynamic adjustment mechanism allows for the
modification of bidding strategies and price ranges during the bargaining process based on
the actual situation, thereby accelerating convergence, reducing unnecessary bargaining
rounds, and ultimately achieving efficient and reasonable transaction outcomes.

7.7. Discussion
7.7.1. Unique Advantages and Enhancements of the Tripartite Model

The tripartite bargaining model presented in this study demonstrates unique advan-
tages in data product pricing by accounting not only for the characteristics of data products
but also for market conditions and trends. This model integrates the utility and benefits of
buyers, sellers, and the platform, thereby dynamically aligning multi-party interests and
accurately capturing the bargaining processes observed in real-world transactions.

Within this model, the platform continuously adjusts reference prices and price ranges,
enabling real-time responses to changes in market demand and fluctuations. This mecha-
nism allows the platform to manage buyer and seller expectations dynamically, effectively
addressing market volatility and ensuring the stability, reliability, and fairness of the pricing
mechanism. The model’s multi-party coordination capabilities enhance its practical appli-
cability, offering a more transparent and flexible market solution that effectively supports
the pricing and transactions of customized data products.

7.7.2. Practical Application Scenarios of the Model

The tripartite pricing model proposed in this study, which integrates the Stackelberg
model with bargaining games, demonstrates significant potential in the customized data
products market. As industries like finance, healthcare, and marketing increasingly demand
personalized data solutions, traditional pricing models often fall short in addressing these
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evolving needs. This model introduces a multi-party bargaining mechanism among the
platform, buyers, and sellers, enhanced by an improved mean-variance utility function.
This allows for a more precise alignment of interests, thus increasing transaction success
rates and ensuring fair pricing.

In practical applications, the platform acts as a market coordinator, utilizing this
model to provide reference prices and price ranges, enabling buyers and sellers to make
more informed decisions during transactions. This mechanism not only enhances market
transparency but also improves transaction flexibility and efficiency across diverse market
conditions. However, challenges such as accurately defining and dynamically adjusting
reference prices and balancing interests between buyers and sellers under varying market
conditions remain. These issues underscore the need for further validation and refinement
of the model for real-world applications.

7.7.3. Model Limitations and Improvement Directions

While the tripartite pricing model shows robustness in theoretical and experimental
settings, it faces challenges in real-world applications due to the assumption of symmetric
information. In practice, information asymmetry, particularly in data product transactions,
can lead to inequitable outcomes between buyers and sellers. Moreover, the model sim-
plifies the platform’s role to that of a coordinator, overlooking potential influences from
policies, regulations, and market competition. Future research should address these com-
plexities, focusing on optimizing the bargaining process under conditions of asymmetric
information and enhancing computational efficiency to improve the model’s scalability in
large-scale data transactions.

To further verify the robustness of the model, sensitivity analysis of parameters
such as the initial reference price, risk aversion coefficients, and bargaining round limits
should be conducted. Additionally, comparisons with findings from similar studies in the
literature could emphasize the unique advantages or improvements of this tripartite model.
Specifically, our model demonstrates higher transaction success rates due to its dynamic
adjustment mechanism, which is not present in traditional bargaining models. The price
distribution in our model is also more stable and aligned with the platform’s reference price,
addressing fairness concerns that are typically less emphasized in the existing literature.
Furthermore, our model’s efficiency in reducing the number of bargaining rounds to reach
an agreement presents a significant improvement over other models where the bargaining
process is less controlled. Lastly, the platform’s active role in guiding pricing strategies in
our model provides a more flexible and robust solution compared to models that treat the
platform purely as a passive participant.

Future research could also explore potential regulatory and policy implications of
the model, especially regarding market transparency and pricing fairness. To increase
the model’s relevance for real-world markets, further research is needed to examine its
performance under asymmetric information and to investigate its scalability in handling
larger numbers of buyers and sellers.

8. Conclusions

This study proposes a novel tripartite pricing model for customized data products,
integrating platform, buyer, and seller dynamics within a game-theoretic framework.
By combining Stackelberg and bargaining games, the model addresses key challenges
in data product pricing, achieving improvements in transaction success rates, pricing
fairness, and bargaining efficiency. Our experimental results demonstrate high success
rates (92.70%) and bargaining efficiency with an average of 7.3 rounds to reach consensus.
These outcomes validate the model’s adaptability and efficacy across competitive, dynamic
market conditions.

The model’s contributions extend beyond traditional pricing frameworks by incorpo-
rating platform-guided bargaining processes that reduce uncertainties and align incentives
for all parties. Specifically, it addresses the limitations of conventional Stackelberg and bilat-
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eral bargaining models by introducing a flexible price adjustment mechanism that adapts
to real-time market fluctuations and competitive demands. This novel approach presents a
valuable advancement in pricing mechanism design, offering enhanced theoretical insights
and practical solutions for complex data trading scenarios.

Despite its strengths, certain limitations affect the model’s applicability. The assump-
tions of symmetric information, fixed parameters, and the platform’s simplified role may
impact its generalizability to real-world scenarios. Additionally, computational complexity
could limit its scalability for larger datasets, indicating the need for further testing across
diverse market conditions. Future research should explore the model’s robustness under
asymmetric information settings and validate its scalability to accommodate larger data
transactions. Testing in practical domains, such as smart manufacturing, the sharing econ-
omy, and fintech, could reveal its benefits in these fields, where data pricing faces unique
challenges such as time-sensitive demand, privacy concerns, and competitive pressure.

Furthermore, the combined Stackelberg and bargaining game structure offers the-
oretical implications for pricing mechanisms by aligning decentralized bargaining with
centralized guidance, promoting transparency and balanced incentives. Practical benefits
include reduced negotiation time, improved alignment with stakeholder interests, and
enhanced adaptability to market changes. As data platforms, buyers, and sellers navi-
gate increasingly complex markets, this model provides an efficient, adaptable solution to
support transparent and fair pricing strategies.

In conclusion, this tripartite pricing model demonstrates substantial advancements in
pricing customized data products, laying a strong foundation for future studies to build
upon and expand its application to broader market contexts.
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Appendix A

Algorithm A1 Bargaining Process for Customized Data Product Pricing
Require: Customized data product demand X(x1, x2, x3, ..., xn), Buyer budget b, Initial guidance price po , Initial

price range deviation do
Ensure: Optimal transaction price P∗, Final seller selection
1: Step 1: Buyer submits demand X(x1, x2, x3, ..., xn) and budget b
2: Step 2: Platform sets initial guidance price po and price range [po − do , po + do ] based on demand complexity,

market trends ω, and historical data
3: Initial price deviation:

do = k1 · σS + k2 · σB

where σS is the standard deviation of seller quotes, σB is the standard deviation of buyer budgets, and k1, k2
are dynamic adjustment factors.

4: for each bargaining round j do
5: Step 3: Sellers submit their quotes oi,j based on guidance price pj and price range [pj − dj, pj + dj]
6: Step 4: Platform dynamically adjusts guidance price pj and price range [pj − dj, pj + dj] based on seller

quotes oi,j, buyer budget bj, and market trends ω

pj+1 = αj · MB + (1 − αj) · MS

where MB is the median of buyer budgets, MS is the median of seller quotes, and αj is the dynamic adjustment
parameter.

The price range deviation is adjusted as:

dj+1 = k1 · σS + k2 · σB
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Algorithm A1 Cont.
7: if Uj ≤ 0 or αj ≤ 0 for buyer then
8: Buyer exits the bargaining process
9: end if

10: for each seller i do
11: if Ui,j ≤ 0 or βi,j ≤ 0 for seller i then
12: Seller i exits the bargaining process
13: end if
14: end for
15: Step 5: If buyer exits or all sellers exit, bargaining ends, and the transaction fails
16: if At least one seller’s quote oi,j < bj then
17: Step 6: Bargaining ends, platform calculates optimal transaction price P∗ in range [oi,j, bj] to maximize

platform utility
18: Platform utility function:

u(p) = u(b)α × u(o)β

The optimal transaction price P∗ is determined as:

P∗ = arg max
p∈[oi,j ,bj ]

(
u(b)α × u(o)β

)
19: Platform sends P∗ to buyer and sellers
20: end if
21: end for
22: Step 7: Sellers send acceptance/rejection of P∗ to the platform
23: Step 8: Platform selects final seller based on historical records, seller market competitiveness, etc.
24: Step 9: Transaction succeeds with selected seller at price P∗

25: Platform Guidance Price Adjustment Mechanism:
26: Guidance price adjustment:

Pt+1 = α · MB + (1 − α) · MS

27: Guidance price range adjustment:

Rt+1 = [Pt − k1 · σS − k2 · σB, Pt + k1 · σS + k2 · σB]
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