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Abstract: The significant characteristics of Associate Laguerre polynomials (ALPs) have noteworthy
applications in the fields of complex analysis and mathematical physics. The present article mainly
focuses on the inclusion relationships of ALPs and various analytic domains. Starting with the
investigation of admissibility conditions of the analytic functions belonging to these domains, we
obtained the conditions on the parameters of ALPs under which an ALP maps an open unit disc
inside such analytical domains. The graphical demonstration enhances the outcomes and also proves
the validity of our obtained results.

Keywords: associate Laguerre polynomial; cardioid domain; three-leaf-type domain; Limacon domain

1. Introduction

Let H = H[b, m] denote the class of analytic functions in the open unit disc M = {ζ ∈
C : |ζ| < 1} of the form

g(ζ) = b + bnζn + bn+1ζn+1 + . . . , ∀ζ ∈ M, (1)

where b ∈ C and n are the positive integers. Let S be the subclass of H that contains
normalized univalent functions. Convex and starlike functions are two important sub-
classes of univalent functions and they map the unit disc onto convex and starlike domains,
respectively. Let g be an analytic function. Then, g ∈ C, if and only if

Re{(ζg′(ζ))′/g′(ζ)} > 0, ∀ζ ∈ M,

where C is the class of convex functions. Let g be an analytic function. Then, g ∈ S*, if and
only if

Re{(ζg′(ζ))/g(ζ)} > 0, ∀ζ ∈ M,

where S* is the class of starlike functions. Let k and l be two analytic functions. Then,
the function k is said to be subordinate to l, written as k ≺ l or k(ζ) ≺ l(ζ) if there ex-
ists a Schwarz function v that is analytic in M, with v(0) = 0 and |v(ζ)| < 1, such that
k(ζ) = l(v(ζ)). Associate Laguerre polynomials (ALPs) play a significant role in various
fields of mathematics and physics and has made significant contributions in several areas of
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mathematical research. Associate Laguerre polynomials are mostly used in mathematical
physics [1], the Geometric Function Theory (GFT) and engineering [2]. In GFT, they are
used for solving differential equations and approximate analytic functions. Moreover, they
are also useful for analyzing the growth, distortion and coefficient bounds of univalent
functions, as well as function expansions and orthogonal polynomials [3]. These appli-
cations help with the study of function behavior in GFT, especially in subclasses such as
convex and starlike functions.

An associate Laguerre polynomial denoted by Lβ
m(ζ) [4] is the solution of the following

differential equation:

ζy′′(ζ) + (1 + β − ζ)y′(ζ) + my(ζ) = 0, β ∈ C. (2)

The associate Laguerre polynomial with β ∈ C is defined as

Lβ
m(ζ) =

(1 + β)m

m! 1F1(−m; 1 + β; ζ), (3)

where 1F1 is the confluent hypergeometric function, m is a non-negative integer, and (b)m
is the renowned Pochhammer symbol, defined as

(b)0 = 1, (b)m = b(b + 1) . . . (b + m − 1), m ∈ N.

The initial couple of phrases of the associate Laguerre polynomial are

Lβ
0 (ζ) = 1,

Lβ
1 (ζ) = β − ζ + 1,

Lβ
2 (ζ) =

ζ2

2
− (β + 2)ζ +

(β + 2)(β + 1)
2

,

Lβ
3 (ζ) = − ζ3

6
+

(β + 3)ζ2

2
− (β + 3)(β + 2)ζ

2
+

(β + 3)(β + 2)(β + 1)
6

.

To obtain the normalized form of an ALP, we consider the following function:

Fβ,m(ζ) =
m!

(β + 1)m
Lβ

m(ζ), ζ ∈ M. (4)

The function Fβ,m fulfills the normalized condition Fβ,m(0) = 1. Moreover, Fβ,m is the
solution of the following differential equation:

ζ2y′′(ζ) + (1 + β − ζ)zy′(ζ) + mzy(ζ) = 0, β ∈ C. (5)

Ma and Minda introduced in 1992 [5] a unified presentation of starlike and convex functions
by using a general function ϕ(ζ) instead of 1+ζ

1−ζ . By substituting different functions for ϕ(ζ),
many researchers introduced several new subclasses of analytic functions; for more details,
see [6–8]. Working in the same manner, we obtained conditions on the parameters for
which the subordination Fβ,m ≺ ϕ(ζ) holds. The well-known functions ϕs(ζ) = 1 + sin(ζ),
ϕt(ζ) = 1 + 4

5 ζ + 1
5 ζ4, ϕc(ζ) = 1 + 4

3 ζ + 2
3 ζ2, and ϕl(ζ) = (1 + Sζ)2 where 0 < S ≤ 1√

2
investigated by different researchers in [9–12], are taken as ϕ(ζ). These functions map the
open unit disc onto different types of domains illustrated in Figure 1. The recent work on
these types of domains can be seen in [13–16].
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Figure 1. Image domain of ϕs, ϕt, ϕc and ϕl .

Mondal [17] discussed the mapping properties of ALP in the Leminiscate, Exponential
and Nephroid Domain. Inspired by this work, we obtained some significant results in the
present article. Firstly, we discussed the admissibility criteria for some analytic functions.
We used these conditions to obtain the inclusion relationship between ALPs and those
analytic functions. All of the results are explained graphically. Let Q be the set of univalent
and analytic functions p and injective on ∂M/E(p), where

E(p) = {ς ∈ ∂M : lim
ζ→ς

p(ζ) = ∞},

such that p′(ς) ̸= 0 for ς ∈ ∂M/E(p).

Definition 1 ([18]). Assume that D is a set in C and p ∈ Q, and m is a positive integer. Define
Ψm[D, p] as a class of admissible functions, which consists of those functions Ψ : C3 ×M → C
that meet the admissibility criteria Ψ(r, s, t; ζ) /∈ D whenever r = p(ς), s = nςp′(ς) and
Re( t

s + 1) ≥ n( ςp′′(ς)
p′(ς) + 1), where ς ∈ M, ς ∈ ∂M/E(p) and n ≥ m ≥ 1 is a positive integer.

In this paper, we will construct the admissibility criteria for numerous types of analytic
functions belonging to different types of domains like Sine, the three-leaf-type domain, the
cardioid domain and the Limacon domain. These results are important for constructing
inclusion relations between the ALP and the specified function. Including these proofs of
lemmas increases the reliability of our conclusions.

2. A Set of Lemmas

Lemma 1 ([18]). Let Ψ ∈ Ψm[D, p], with p(0) = b. For q ∈ H[b, m] if Ψ(q(ζ), ζq′(ζ),ζ2q′′(ζ); ζ) ∈
D, then q(ζ) ≺ p(ζ), ∀ζ ∈ M

Lemma 2. Let q ∈ H[1, m], with q(ζ) ̸= 1 and m ≥ 1. Let D ⊂ C, and Ψ : C3 ×M → C hold
Ψ(r, s, t; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4, n≥m ≥ 1.

r = 1 + sin(eιϑ), s = neιϑcos(eιϑ), (6)

Re((t + s)e−ιϑ) ≥ n2cos(cosϑ)cosh(sinϑ)

{
−sin2(cosϑ)cosϑ + sinh 2(sin ϑ) sin ϑ

cos2(cosϑ) + cosh2(sinϑ)
+ 1

}
. (7)

If Ψ(q(ζ), ζq′(ζ),ζ2q′′(ζ); ζ) ∈ D for ζ ∈ M, then q(ζ) ≺ ϕs(ζ) in M. When we take two
dimensions, if Ψ : C2 ×M → C holds, Ψ(r, s; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4,
n ≥ m ≥ 1.

r = 1 + sin(eιϑ), s = neιϑcos(eιϑ).

If Ψ(q(ζ),ζq′(ζ);ζ)∈ D for ζ ∈ M, then q(ζ) ≺ ϕs(ζ) in M.

Proof. Since ϕs(ζ) = 1 + sin ζ, then ϕs
′(ζ) = cos ζ , ϕs

′′(ζ) = − sin ζ.
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Taking ς = eιϑ and p(ζ) = ϕs(ζ), we have

r = 1 + sin(eιϑ),

s = neιϑcos(eιϑ),

so,

Re((t + s)e−ιϑ) = Re(
t
s
+ 1)Re(se−ιϑ). (8)

Re(
t
s
+ 1) ≥ nRe(

ςϕs
′′(ς)

ϕs
′(ς)

+ 1). (9)

Also, we have

Re(
ςϕs

′′(ς)

ϕs
′(ς)

+ 1) = Re(−eιϑ tan(eιϑ) + 1).

Therefore,

Re(
ςϕs

′′(ς)

ϕs
′(ς)

+ 1) =
− sin 2(cos ϑ) cos ϑ + sin ϑ sinh 2(sin ϑ) + cosh 2(sin ϑ) + cos 2(cos ϑ)

cosh 2(sin ϑ) + cos 2(cos ϑ)
. (10)

Combining (9) and (10), we obtain

Re(
t
s
+ 1) ≥ n

− cos ϑ sin 2(cos ϑ) + sin ϑ sinh 2(sin ϑ) + cosh 2(sin ϑ) + cos 2(cos ϑ)

cosh 2(sin ϑ) + cos 2(cos ϑ)
. (11)

So, we have
Re(se−ιϑ) = Re(e−ιϑneιϑcos(eιϑ)).

After some simplification, we obtain

Re(se−ιϑ) = n cos(cos ϑ) cosh(sin ϑ). (12)

Combining (8), (11) and (12), we obtain

Re((t + s)e−ιϑ) ≥ n2 cos(cos ϑ) cosh(sin ϑ)(
− cos ϑ sin 2(cos ϑ) + sinh 2(sin ϑ) sin ϑ

cosh 2(sin ϑ) + cos 2(cos ϑ)
+ 1). (13)

So, the function Ψ satisfies the admissibility criteria if relation (7) holds. Since it is proven that
Ψ ∈ Ψm[D, p] with p(z) = ϕs(ζ), then by using Lemma (1), If Ψ(q(ζ), ζq′(ζ), ζ2q′′(ζ); ζ) ∈ D
for ζ ∈ M, then q(ζ) ≺ ϕs(ζ) in M. which gives us the required subordination.

Lemma 3. Let q ∈ H[1, m], with q(ζ) ̸= 1 and m ≥ 1. Let D ⊂ C, and Ψ : C3 ×M → C holds,
Ψ(r, s, t; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4, n ≥ m ≥ 1.

r = 1 +
4
5

eιϑ +
1
5

e4ιϑ, s =
4
5

neιϑ(1 + e3ιϑ), (14)

Re((t + s)e−ιϑ) ≥ 2n2(1 + cos3ϑ). (15)

If Ψ(q(ζ), ζq′(ζ), ζ2q′′(ζ); ζ) ∈ D for ζ ∈ M, then q(ζ) ≺ ϕt(ζ) in M. When we take two
dimensions, if Ψ : C2 ×M → C holds, Ψ(r, s; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4,
n≥m ≥ 1.

r = 1 +
4
5

eιϑ +
1
5

e4ιϑ, s =
4
5

neιϑ(1 + e3ιϑ).

If Ψ(q(ζ),ζq′(ζ);z) ∈ D for ζ ∈ M, then q(ζ) ≺ ϕt(ζ) in M.
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Proof. Consider ϕt(ζ) = 1 + 4
5 ζ + 1

5 ζ4, ϕt
′(ζ) = 4

5 + 4
5 ζ3, ϕt

′′(ζ) = 12
5 ζ2.

Let us take ς = eιϑ, then we obtain

r = 1 +
4
5

eιϑ +
1
5

e4ιϑ,

s =
4n
5

eιϑ(1 + e3ιϑ),

and so, we have

Re((t + s)e−ιϑ) = Re(
t
s
+ 1)Re(se−ιϑ). (16)

Re(
t
s
+ 1) ≥ nRe(

ςϕt
′′(ς)

ϕt
′(ς)

+ 1). (17)

Now, we obtain

Re(
ςϕt

′′(ς)

ϕt
′(ς)

+ 1) = Re(
12
5 e3ιϑ

4
5 (1 + e3ιϑ)

+ 1).

After some computations, we obtain

Re(
ςϕt

′′(ς)

ϕt
′(ς)

+ 1) =
5
2

. (18)

Combining (16) and (17), we obtain

Re(
t
s
+ 1) ≥ 5

2
n. (19)

Now, we obtain

Re(se−ιϑ) = Re(
4n
5

eιϑ(1 + e3ιϑ)e−ιϑ).

After some simplification, we obtain

Re(se−ιϑ) =
4n
5
(1 + cos 3ϑ). (20)

After combining (15), (18) and (19), we obtain

Re((t + s)e−ιϑ) ≥ 2n2(1 + cos 3ϑ).

Therefore, by using Lemma (1), we obtain the required subordination.

Lemma 4. Let q ∈ H[1, m], with q(ζ) ̸= 1 and m ≥ 1. Let D ⊂ C, and Ψ : C3 ×M → C holds,
Ψ(r, s, t; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4, n≥m ≥ 1.

r = 1 +
4
3

eιϑ +
2
3

e2ιϑ, s =
4n
3

eιϑ(1 + eιϑ), (21)

Re((t + s)e−ιϑ) ≥ 2n2(1 + cosϑ). (22)

If Ψ(q(ζ), ζq′(ζ),ζ2q′′(ζ); ζ) ∈ D for ζ ∈ M, then q(ζ) ≺ ϕc(ζ) in M. When we take two
dimensions, if Ψ : C2 ×M → C holds, Ψ(r, s; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4,
n ≥ m ≥ 1.

r = 1 +
4
3

eιϑ +
2
3

e2ιϑ, s =
4n
3

eιϑ(1 + eιϑ).

If Ψ(q(ζ), ζq′(ζ); ζ) ∈ D for ζ ∈ M, then q(ζ) ≺ ϕc(ζ) in M.
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Proof. Consider ϕc(ζ) = 1 + 4
3 ζ + 2

3 ζ2, ϕc
′(ζ) = 4

3 + 4
3 ζ, ϕc

′′(ζ) = 4
3 . Let us take ς = eιϑ,

then we obtain

r = 1 +
4
3

eιϑ +
2
3

e2ιϑ,

s =
4n
3

eιϑ(1 + eιϑ),

and we take

Re((t + s)e−ιϑ) = Re(
t
s
+ 1)Re(se−ιϑ). (23)

Re(
t
s
+ 1) ≥ nRe(

ςϕc
′′(ς)

ϕc
′(ς)

+ 1). (24)

Now, we obtain

Re(
ςϕc

′′(ς)

ϕc
′(ς)

+ 1) = Re(
4
3 eιϑ

4
3 (1 + eιϑ)

+ 1).

After some computations, we obtain

Re(
ςϕc

′′(ς)

ϕc
′(ς)

+ 1) =
3
2

. (25)

Combining (23) and (24), we obtain

Re(
t
s
+ 1) ≥ 3n

2
. (26)

Now, we obtain

Re(se−ιϑ) = Re(
4n
3

eιϑ(1 + eιϑ)e−ιϑ).

After some simplification, we obtain

Re(se−ιϑ) =
4n
3
(1 + cos ϑ). (27)

After combining (22), (25) and (26), we obtain

Re((t + s)e−ιϑ) ≥ 2n2(1 + cos ϑ).

Hence, by using Lemma (1), we obtain the required subordination.

Lemma 5. Let q ∈ H[1, m], with q(ζ) ̸= 1 and m ≥ 1. Let D ⊂ C, and Ψ : C3 ×M → C holds,
Ψ(r, s, t; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4, n ≥ m ≥ 1.

r = 1 + 2Seιϑ + S2e2ιϑ, s = 2Sneιϑ(1 + Seιϑ), (28)

Re((t + s)e−ιϑ) ≥ 2Sn2(1 + Scosϑ)(
1 + 2S2 + 3S cos ϑ

1 + S2 + 2S cos ϑ
). (29)

If Ψ(q(ζ), ζq′(ζ),ζ2q′′(ζ); ζ) ∈ D for ζ ∈ M, then q(ζ) ≺ ϕl(ζ) in M. When we take two
dimensions, if Ψ : C2 ×M → C holds, Ψ(r, s; ζ) /∈ D for all ζ ∈ M, and for π/4 ≥ ϑ ≥ −π/4,
n ≥ m ≥ 1.

r = 1 + 2Seιϑ + S2e2ιϑ, s = 2Sneιϑ(1 + Seιϑ).

If Ψ(q(ζ),ζq′(ζ);ζ)∈ D for ζ ∈ M, then q(ζ) ≺ ϕl(ζ) in M.
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Proof. Consider ϕl(ζ) = (1 + Sζ)2, ϕl
′(ζ) = 2S(1 + Sζ), ϕl

′′(ζ) = 2S2.
Let us take ς = eιϑ, then we obtain

r = 1 + 2Seιϑ + S2e2ιϑ,

s = 2Sneιϑ(1 + Seιϑ),

and we take

Re((t + s)e−ιϑ) = Re(
t
s
+ 1)Re(se−ιϑ). (30)

Re(
t
s
+ 1) ≥ nRe(

ςϕl
′′(ς)

ϕl
′(ς)

+ 1). (31)

Now, we obtain

Re(
ςϕl

′′(ς)

ϕl
′(ζ)

+ 1) = Re(2S2(eιϑ)2S(1 + Seιϑ) + 1).

After some computations, we obtain

Re(
ςϕl

′′(ς)

ϕl
′(ς)

+ 1) =
1 + 2S2 + 3S cos(ϑ)
1 + S2 + 2S cos(ϑ)

. (32)

Combining (30) and (31), we obtain

Re(
t
s
+ 1) ≥ n(

1 + 2S2 + 3S cos(ϑ)
1 + S2 + 2S cos(ϑ)

). (33)

Now, we obtain

Re(se−ιϑ) = Re(2Sneιϑ(1 + Seιϑ)e−ιϑ).

After some simplification, we obtain

Re(se−ιϑ) = 2Sn(1 + S cos ϑ). (34)

After combining (29), (32) and (33), we obtain

Re((t + s)e−ιϑ) ≥ 2Sn2(1 + S cos ϑ)(
1 + 2S2 + 3S cos(ϑ)
1 + S2 + 2S cos(ϑ)

).

Thus, by using Lemma 1, we obtain the required subordination.

3. Main Results

Theorem 1. For Re(β) > 2m, Fβ,m(ζ) ≺ ϕs(ζ).

Proof. Let q(ζ) = Fβ,m(ζ). Assume that D = {0}. Define

Ψ(q, ζq′, ζ2q′′; ζ) = ζ2q′′(ζ) + (1 + β − ζ)ζq′(ζ) + mζq.
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It follows from relation (5) that Ψ(q, ζq′, ζ2q′′; ζ) ∈ D. In Lemma 2, we proved that
Ψ(r, s, t; ζ) /∈ D for r, s and t, which are stated in Equations (6) and (7). So,

|Ψ(r, s, t; ζ)| = |(t + (1 + β − ζ)s + mζr)|
≥ |(t + s) + (β − ζ)s| − |mζr|
≥ |(t + s) + (β − ζ)neιϑ cos(eιϑ)| − m|r|
≥ |(t + s)e−ιϑ + (β − ζ)n cos(eιϑ)||eιϑ| − m|1 + sin(eιϑ)|

≥ Re(β)− 2m > 0

provided that Re(β) > 2m. Therefore, Ψ(r, s, t; ζ) /∈ D implies that Re(β) > 2m. Hence,
using Lemma 2, we obtain the required result.

For m ∈ N, is the value β0 = 2m the best possible value in Theorem 1? We attempt to
explore this by experimenting with graphical representations of Fβ,m(M) and ϕs(M). Here,
it is important to note that F ⊂ ϕs when F ≺ ϕs. We thus make our cases for m = 2, 3, 4.

For m = 2, Re(β) > 4 implies that Fβ,m(M) ⊂ ϕs(M). Moreover, Figure 2 shows that
for real β, the subordination property for which Fβ,m(M) ⊂ ϕs(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (1.6, 1.7). This result is bounded at
β0 = 1.6 and also holds for all values of β0 > 1.7.

Figure 2. Graph of Fβ,m(M) for fixed m = 2.

For m = 3, Re(β) > 6 implies that Fβ,m(M) ⊂ ϕs(M). Moreover, Figure 3 shows that
for real β, the subordination property for which Fβ,m(M) ⊂ ϕs(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (3.0, 3.1). This result is bounded at
β0 = 3.0 and also holds for all values of β0 > 3.1.

Figure 3. Graph of Fβ,m(M) for fixed m = 3.

For m = 4, Re(β) > 8 implies that Fβ,m(M) ⊂ ϕs(M). Moreover, Figure 4 shows that
for real β, the subordination property for which Fβ,m(M) ⊂ ϕs(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (4.6, 4.7). This result is bounded at
β0 = 4.6 and also holds for all values of β0 > 4.7.
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Figure 4. Graph of Fβ,m(M) for fixed m = 4.

Theorem 2. For Re(β) > 5
4 m − 3

2 , Fβ,m(ζ) ≺ ϕt(ζ).

Proof. Let q(ζ) = Fβ,m(ζ). Assume that D = {0}. Define

Ψ(q, ζq′, ζ2q′′; ζ) = ζ2q′′(ζ) + (1 + β − ζ)ζq′(ζ) + mζq,

then it follows that Ψ(q, ζq′, ζ2q′′; ζ) ∈ D. By using Lemma 3, it is proven that Ψ(r, s, t; ζ) /∈ D
for r, s and t, which is stated in (13) and (14).

|Ψ(r, s, t; ζ)| = |(t + (1 + β − ζ)s + mζr)|
≥ |(t + s) + (β − ζ)s| − |mζr|

≥ |(t + s) + (β − ζ)
4m
5

eιϑ(1 + e3ιϑ)| − m|r|

≥ |(t + s)e−ιϑ + (β − ζ)
4n
5
(1 + e3ιϑ)||eιϑ| − m|1 + 4

5
eιϑ +

1
5

e4ιϑ|

≥ Re((t + s)e−ιϑ) +
4n
5

Re(β − ζ)(1 + cos 3ϑ)− m(1 +
4
5
(cos ϑ) +

1
5
(cos 4ϑ))

≥ 12
5

+
8
5

Re(β)− 2m > 0

provided that Re(β) > 5
4 m − 3

2 .

For m ∈ N, is the value β0 = 5
4 m− 3

2 the best possible value in Theorem 2? We attempt
to explore this by experimenting with graphical depictions of Fβ,m(M) and ϕt(M). Here, it
is important to note that F ⊂ ϕt when F ≺ ϕt. We thus make our cases for m = 2, 3, 4.

For m = 2, Re(β) > 1 implies that Fβ,m(M) ⊂ ϕt(M). Moreover, Figure 5 shows that
for real β, the subordination property for which Fβ,m(M) ⊂ ϕt(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (2.2, 2.3). This result is bounded at
β0 = 2.2 and also holds for all values of β0 > 2.3.

Figure 5. Graph of Fβ,m(M) for fixed m = 2.

For m = 3, Re(β) > 9
4 implies that Fβ,m(M) ⊂ ϕt(M). Moreover, Figure 6 shows that

for real β, the subordination property for which Fβ,m(M) ⊂ ϕt(M) follows for β ≥ β0,
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where β0 can be any possible value in the interval (4.0, 4.1). This result is bounded at
β0 = 4.0 and also holds for all values of β0 > 4.1.

Figure 6. Graph of Fβ,m(M) for fixed m = 3.

For m = 4, Re(β) > 7
2 implies that Fβ,m(M) ⊂ ϕt(M). Moreover, Figure 7 shows that

for real β, the subordination property for which Fβ,m(M) ⊂ ϕt(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (5.8, 5.9). This result is bounded at
β0 = 5.8 and also holds for all values of β0 > 5.9.

Figure 7. Graph of Fβ,m(M) for fixed m = 4.

Theorem 3. For Re(β) > 9
8 m − 1

2 , Fβ,m(ζ) ≺ ϕc(ζ).

Proof. Let q(ζ) = Fβ,m(ζ). Assume that D = {0}. Define

Ψ(q, ζq′, ζ2q′′; ζ) = ζ2q′′(ζ) + (1 + β − ζ)ζq′(ζ) + mζq.

It follows that Ψ(q, ζq′, ζ2q′′; ζ) ∈ D. By using Lemma 4, it is proven that Ψ(r, s, t; ζ) /∈ D
for r, s and t, which is stated in (20) and (21).

|Ψ(r, s, t; ζ)| = |(t + (1 + β − ζ)s + mζr)|
≥ |(t + s) + (β − ζ)s| − |mζr|
≥ |(t + s) + (β − ζ)s| − m|r|

≥ |(t + s)e−ιϑ + (β − ζ)
4m
3
(1 + eιϑ)||eιϑ| − m|1 + 4

3
eιϑ +

2
3

e2ιϑ|

≥ Re((t + s)e−ιϑ) +
4n
3

Re(β − ζ)(1 + cos ϑ)− m(1 +
4
3
(cos ϑ)) +

2
3
(cos 2ϑ))

≥ 4
3
+

8
3

Re(β)− 3m > 0

provided that Re(β) > 9
8 m − 1

2 .

For m ∈ N, is the value β0 = 9
8 m− 1

2 the best possible value in Theorem 3? We attempt
to explore this by experimenting with graphical depictions of Fβ,m(M) and ϕc(M). Here, it
is important to note that F ⊂ ϕc when F ≺ ϕc. We thus make our cases for m = 2, 3, 4.
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For m = 2, Re(β) > 7
4 implies that Fβ,m(M) ⊂ ϕc(M). Moreover, Figure 8 shows that

for real β, the subordination property for which Fβ,m(M) ⊂ ϕc(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (1.3, 1.4). This result is bounded at
β0 = 1.3 and also holds for all values of β0 > 1.4.

Figure 8. Graph of Fβ,m(M) for fixed m = 2.

For m = 3, Re(β) > 23
8 implies that Fβ,m(M) ⊂ ϕc(M). Moreover, Figure 9 shows

that for real β, the subordination property for which Fβ,m(M) ⊂ ϕc(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (2.2, 2.3). This result is bounded at
β0 = 2.2 and also holds for all values of β0 > 2.3.

Figure 9. Graph of Fβ,m(M) for fixed m = 3.

For m = 4, Re(β) > 4 implies that Fβ,m(M) ⊂ ϕc(M). Moreover, Figure 10 shows
that for real β, the subordination property for which Fβ,m(M) ⊂ ϕc(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (3.3, 3.4). This result is bounded at
β0 = 3.3 and also holds for all values of β0 > 3.4.

Figure 10. Graph of Fβ,m(M) for fixed m = 4.

Theorem 4. For Re(β) > (1+S)
2S m − S

1+S , Fβ,m(ζ) ≺ ϕl(ζ).

Proof. Let q(ζ) = Fβ,m(ζ). Assume that D = 0. Define

Ψ(q, ζq′, ζ2q′′; ζ) = ζ2q′′(ζ) + (1 + β − ζ)ζq′(ζ) + mζq.



Symmetry 2024, 16, 1545 12 of 14

It follows that Ψ(q, ζq′, ζ2q′′; ζ) ∈ D. By using Lemma 5, it is proven that Ψ(r, s, t; ζ) /∈ D
for r, s and t, which is stated in (27) and (28).

|Ψ(r, s, t; ζ)| = |(t + (1 + β − ζ)s + mζr)|
≥ |(t + s) + (β − ζ)s| − |mζr|
≥ |(t + s) + (β − ζ)s| − m|r|
≥ |(t + s)e−ιϑ + 2Sn(β − ζ)(1 + Seιϑ)||eιϑ| − m|1 + 2Seιϑ + S2e2ιϑ|
≥ 2S2 + 2S(1 + S)Re(β)− (1 + S)2m > 0

provided that Re(β) > (1+S)
2S m − S

1+S .

where we take S = 7
10 . For m ∈ N, is the value β0 = 3

2 m − 3
4 the best possible value

in Theorem 4? We attempt to explore it by experimenting with a graphical depiction of
Fβ,m(M) and ϕl(M). Here, it is important to note that F ⊂ ϕl when F ≺ ϕl . We thus make
our cases for m = 2, 3, 4.

For m = 2, Re(β) > 240
119 implies that Fβ,m(M) ⊂ ϕl(M). Moreover, Figure 11 shows

that for real β, the subordination property for which Fβ,m(M) ⊂ ϕc(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (0.7, 0.8). This result is bounded at
β0 = 0.7 and also holds for all values of β0 > 0.8.

Figure 11. Graph of Fβ,m(M) for fixed m = 2.

For m = 3, Re(β) > 769
238 implies that Fβ,m(M) ⊂ ϕl(M). Moreover, Figure 12 shows

that for real β, the subordination property for which Fβ,m(M) ⊂ ϕc(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (1.3, 1.4). This result is bounded at
β0 = 1.3 and also holds for all values of β0 > 1.4.

Figure 12. Graph of Fβ,m(M) for fixed m = 3.

For m = 4, Re(β) > 529
119 implies that Fβ,m(M) ⊂ ϕl(M). Moreover, Figure 13 shows

that for real β, the subordination property for which Fβ,m(M) ⊂ ϕc(M) follows for β ≥ β0,
where β0 can be any possible value in the interval (2.1, 2.2). This result is bounded at
β0 = 2.1 and also holds for all values of β0 > 2.2.
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Figure 13. Graph of Fβ,m(M) for fixed m = 4.

4. Conclusions

The main focus of the present research is to investigate the inclusion relation of an ALP
with different analytic domains. We derived the admissibility criteria for analytical func-
tions. Moreover, we determined the conditions on the parameters β and m, under which
Fβ,m(ζ) is subordinate to the different analytic domains. The graphical representations
provide a clear view of the inclusion relation. The suggested technique accurately reflects
subordination tendencies. The investigation of inclusion relations of different analytic
domains and associated Laguerre polynomials is a promising area of research that can
significantly contribute to various fields of science and mathematics. By exploring these
relationships, researchers can develop new mathematical theories, enhance computational
methods and create innovative applications across disciplines such as physics, engineering,
biology and beyond. This interdisciplinary approach fosters a deeper understanding of
fundamental principles and paves the way for future advancements in both theoretical and
applied sciences.
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