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Abstract: Recurrent neural networks (RNNs) have produced significant results in many fields, such
as natural language processing and speech recognition. Owing to their computational complexity
and sequence dependencies, RNNs need to be deployed on customized hardware accelerators to
satisfy performance and energy-efficiency constraints. However, designing hardware accelerators for
RNNs is challenged by the vast design space and the reliance on ineffective optimization. An efficient
automated design space exploration (DSE) strategy that can balance conflicting objectives is wanted.
To address the low efficiency and insufficient universality of the resource allocation process employed
for hardware accelerators, we propose an automated two-stage design space exploration (DSE)
strategy for customized RNN accelerators. The strategy combines a genetic algorithm (GA) and a
reinforcement learning (RL) algorithm, and it utilizes symmetrical exploration and exploitation to
find the optimal solutions. In the first stage, the area of the hardware accelerator is taken as the
optimization objective, and the GA is used for partial exploration purposes to narrow the design space
while maintaining diversity. Then, the latency and power of the hardware accelerator are taken as the
optimization objectives, and the RL algorithm is used in the second stage to find the corresponding
Pareto solutions. To verify the effectiveness of the developed strategy, it is compared with other
algorithms. We use three different network models as benchmarks: a vanilla RNN, LSTM, and a GRU.
The results demonstrate that the strategy proposed in this paper can provide better solutions and can
achieve latency, power, and area reductions of 9.35%, 5.34%, and 11.95%, respectively. The HV of
GRMD is reduced by averages of 6.33%, 6.32%, and 0.67%, and the runtime is reduced by averages
of 18.11%, 14.94%, and 10.28%, respectively. Additionally, given different weights, it can make
reasonable trade-offs between multiple objectives.

Keywords: recurrent neural networks; customized accelerators; design space exploration; reinforcement
learning

1. Introduction

In recent years, the performance of recurrent neural networks (RNNs) has been steadily
improving in tasks concerning the field of sequential data processing, such as machine
translation and speech recognition. RNNs are artificial neural networks with internal
circular connections, allowing data and information to circulate within these networks [1].
This enables RNNs to remember and process long-term sequential information. However,
due to this internal recursion process, RNNs exhibit temporal sequence dependencies,
where the output produced at each time step depends on the output of the previous
time step. These dependencies generally make RNNs more difficult to train and less
computationally efficient than classic convolutional neural networks (CNNs). Additionally,
to address the vanishing and exploding gradient issues that can occur when processing
long data sequences, different RNN models, such as long short-term memory (LSTM) [2]
and gated recurrent units (GRUs) [3], have been proposed. This has led to larger and
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more complex network structures accompanied by continuous computational complexity
increases. Traditional processors are unable to efficiently handle these computational tasks,
making the design of hardware accelerators for RNNs an important research direction.
H. Cho et al. developed a hybrid architecture based on a GPU and a field-programmable
gate array (FPGA) to accelerate RNNs [4]. Z. Zaghloul et al. proposed a new GRU hardware
implementation method [5]. M. Wasef et al. accelerated a completely reconfigurable RNN
via a system-on-a-chip approach on an FPGA [6].

Despite the progress achieved in terms of RNN hardware, several challenges remain.
First, most optimization works focus on specific RNN structures, making them inherently
limited by their network details and unable to be generalized to other RNNs. This means
that even minor network structure changes can force the hardware resource configurations
to be redesigned, highlighting the lack of a general design space exploration (DSE) method.
Second, due to the large and complex RNN structures, the microarchitecture of hardware
accelerators has become more complex, calling for additional hardware resources to be con-
sidered and allocated. These parameters of hardware accelerators, such as their bandwidth
and memory, form a high-dimensional and vast design space. For example, the design
space of a general matrix multiply (GEMM) accelerator is in the order of 109 [7], and evaluat-
ing the design of a single accelerator is often time-consuming. Exploring and comparing all
possible design points is impractical. Additionally, developers often need to adjust their de-
sign spaces on the basis of various performance constraints that involve trade-offs between
different performance metrics, and the manual exploration process may converge to local
optima. Therefore, an automated and efficient DSE method is crucial for designing RNN
hardware accelerators.

Recently, various DSE methods for hardware accelerators have been proposed.
For example, T. Pacini et al. determined the configurations of RNN hardware acceler-
ators by evaluating multiple user-defined constraints (such as accuracy and resource
usage), achieving a high level of control over the final design [8]. J. Jiang et al. performed
acceleration, fixed-point quantization, loop tiling, and piecewise linear approximation on
activation functions to achieve high parallelism, accelerating RNNs while reducing their
hardware resource usage levels and thereby achieving a throughput of 1223.53 GOP/s [9].
C. Zhang et al. quantified the computational throughputs and required memory band-
widths of potential design solutions and proposed a roofline model-based approach to
explore the optimal solutions among multiple CNN design schemes [10]. M. Motamedi et
al. developed a CNN analysis model to balance and utilize various parallelisms, achiev-
ing on-chip resource load balancing, generating the most efficient architecture for the
target platform, and maximizing the throughput [11]. S. Yang et al. proposed a new
strategy for searching within a hierarchical processing element (PE) mapping scheme,
enabling layer fusion and configuration splitting to optimize the PE mapping process [12].
H. Miomandre et al. proposed a DSE strategy that selects appropriate bit widths and stor-
age types for buffers to satisfy imposed constraints, reduces the memory usage of CNNs
while ensuring their output quality, and reduces the memory usage of the SqueezeNet
CNN by 58.6% [13]. M. R. Ahmed et al. used FPGA resources such as DSPs and LUTs as op-
timization objectives and integrated early failure prediction networks into a Bayesian
optimization (BO) algorithm to accelerate the DSE process, reducing the search time
70-fold [14]. The current state-of-the-art studies include those of L. Mei et al., who used a
genetic algorithm (GA) to explore deep neural networks (DNNs) and find 64% more energy-
efficient solutions [15]; L. Zaourar et al., who achieved a great reduction of design space
optimization by around 30% on the basis of an efficient implementation of a multi-objective
GA [16]; Z. Xie et al., who proposed a DSE framework based on the GA and reduced the
exploration time by up to 73.7× [17]; A. Raj et al., who used particle swarm optimization
(PSO) to solve complex optimization problems [18]; and H. Kuang, who used BO to find
Pareto-optimal designs in the vast configuration space of high-level synthesis [19].

Although these DSE methods have achieved some success, several issues remain.
Some methods are time-consuming, rely on experience, and may converge to local optima,
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whereas others fail to effectively balance multiple objectives. We summarize the existing
problems related to DSE for customized RNN accelerators as follows:

1. Most RNN accelerator designs rely on manual optimization, but the hardware design
space is vast, and manual explorations are time-consuming and inefficient. An efficient
automated DSE strategy is lacking.

2. Hardware DSE usually involves multiple conflicting objectives. These objectives may
have different levels of importance. Given the user-defined weights of objectives,
most strategies are unable to adjust their exploration strategies and solutions based
on the weights. They lack the ability to make reasonable trade-offs between them.
No strategy is capable of finding the optimal balance between different objectives.

3. In DSE, a modeling framework that maps the hardware accelerator design space to the
input space of the exploration algorithm to achieve efficient automated DSE is lacking.

To address these challenges, this paper proposes a GA- and reinforcement learning
(RL)-based multi-objective DSE (GRMD) strategy for customized RNN accelerators, aim-
ing to achieve efficient hardware resource allocation, find the optimal hardware design
scheme in a high-dimensional design space, attain improved design efficiency, and achieve
approximately optimal energy efficiency. The main contributions of this paper include
the following.

1. We propose an automated two-stage DSE strategy in which the latency, power, and
area of the target accelerator are used as optimization objectives. The strategy offers
an effective and efficient hardware DSE solution.

2. We employ a GA-based approach for the initial exploration process to narrow the
design space and reduce the impact of the area on the exploration results.

3. A subspace optimization scheme based on RL is designed to develop optimal resource
allocation strategies, simplifying the trade-offs between multiple objectives and at-
taining improved exploration efficiency. The RL algorithm learns the relationship
between resource allocation and accelerator performance through its actor and critic
networks then adjusts its output strategy and solutions to achieve multi-objective
trade-offs under imposed user constraints.

4. Experiments demonstrate that, compared with similar DSE algorithms, the proposed
strategy generates better solutions and can achieve latency, power, and area reductions
of 9.35%, 5.34%, and 11.95%, respectively.

The remainder of this article is organized as follows: Section 2 summarizes the back-
ground information and explains the motivations of this work. Section 3 introduces the
overall framework of the GRMD strategy. Section 4 provides the exploration details of
GRMD. Section 5 presents the experimental results and discussion, which are followed by
conclusions in Section 6.

2. Background and Motivation
2.1. Design Space Exploration

Hardware DSE involves two strategies: exploration and exploitation. Exploration
refers to trying new areas within the space and evaluating different combinations of
accelerator parameters to discover potentially superior solutions. This strategy emphasizes
exploring unknown regions and reduces reliance on the current optimal solutions, which
can prevent the DSE algorithm from getting stuck in local optima. It ensures thorough
searching of the design space to identify potential global optimal solutions. Exploitation
focuses on further optimizing the currently discovered superior solutions based on existing
exploration results. This strategy fine-tunes design points around the current optimal
solutions to make solutions approach the optimal direction, thus avoiding resource wastage.

In design space exploration, symmetrical exploration and exploitation are key to
finding the global optimal solution. Excessive exploration can consume a significant
amount of time, as the hardware design space has multiple dimensions, leading to a
vast number of design points, and evaluating each design point often takes considerable



Symmetry 2024, 16, 1546 4 of 20

time. Excessive exploitation, on the other hand, may cause exploration to get trapped in
local optima.

2.2. Design Space Exploration Algorithms

Traditional DSE usually uses meta-heuristics algorithms, such as GAs or PSO. In terms
of ML-based DSE, several studies leverage BO to find solutions. PSO has fewer parameters
and faster convergence speed, yet its efficiency is low and may converge to local optima
when exploring in high-dimensional hardware design space. BO effectively utilizes the
results of each evaluation through a surrogate model, making it suitable for expensive
objective function evaluations. However, its effectiveness depends on the selection of
model. In the hardware design space, the joint impact of different resources on the resulting
performance is not clear. Therefore, the surrogate model may not match well with the
hardware design space model, leading to reduced effectiveness. GAs can effectively
maintain population diversity through selection, crossover, and mutation operators, and
avoid getting stuck in local optima in high-dimensional space. However, in hardware DSE,
the process of evaluating an accelerator configuration to obtain its performance values
is time-consuming. Multiple iterations of GAs may result in excessively long running
time. RL uses Monte Carlo learning (MCL) and neural networks to reduce reliance on
models of the design space. The networks can also complete inference in a very short
amount of time, significantly reducing runtime. Furthermore, based on the rewards, RL
can learn the relationship between accelerator configurations and performance metrics,
thereby achieving effective multi-objective trade-offs.

2.3. Spatial Accelerators

This paper uses a custom spatial accelerator to accelerate RNNs. Its microarchitec-
ture is shown in Figure 1. Spatial accelerators have been successfully used to accelerate
various DNNs, including CNNs and RNNs. They can support multiple dataflows and
improve parallelism through data reuse, thereby accelerating computational tasks. The
custom spatial accelerator used in this paper consists of three basic parts: a 2D array of
PEs, a storage system, and a controller. The PE array is composed of several comput-
ing units that communicate via on-chip interconnections and form a 2D array to attain
large-scale parallelism. Each PE contains an ALU and registers to execute computational
tasks. The storage system consists of the local memory inside each PE and a scratchpad
shared by all PEs. The local memory is optional, while the scratchpad can be divided
into banks; more banks allow the scratchpad to support greater levels of concurrent
data access. The controller includes a direct memory access controller (DMAC) and an
instruction decoder (ID). The DMAC interacts with off-chip caches to handle large data
movements between the scratchpad of the accelerator and the external DRAM. The ID
retrieves and decodes instructions derived from the CPU core to control the PEs and
DMAC. Compared with commercial accelerators possessing more complex memory and
control structures, the custom accelerator used in this paper has a simple architecture,
high flexibility, and high efficiency, making it suitable for accelerating various RNNs.

The hardware design space is composed of all possible hardware resource configu-
rations contained in the space, where each design point includes the types and values of
different hardware resources. Based on the microarchitecture of the examined acceler-
ator, the design space can be represented as shown in Table 1, where WS and OS refer
to weight stationarity and output stationarity, respectively. In a dataflow with WS, the
weights are stored in PEs, and the calculation results flow between the PEs. In a dataflow
with OS, the calculation results are saved in PEs, while the weights flow between the
PEs, and the calculation results are updated.
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Figure 1. Microarchitecture of our custom spatial accelerators.

Table 1. Hardware design space.

Hardware Resources Description Values

x PE array size Integers within [4, 32]
local_capacity Capacity of the local memory Integers within [64, 256] (KB)

dataflow PE array dataflow “WS”, “OS”
sp_capacity Capacity of the scratchpad Integers within [128, 512] (KB)

sp_banks Number of scratchpad banks Integers within [1, 8]
dma_buswidth Bus width of the DMA Integers within [64, 128] (bps)
dma_maxbytes Maximum number of DMA bytes Integers within [64, 128]

dtype data type “int8”

2.4. Motivational Case Study

In this case study, we compare the latency, power, and area values of four GEMM
accelerators with different parameters to demonstrate the complex trade-offs between
different objectives. These accelerators have 4 × 4, 8 × 8, 16 × 16, and 32 × 32 PE arrays.
Other hardware parameters have similar impacts, but the PE array size has the most
significant effect, so we choose to compare the changes observed in this parameter. The
results are shown in Figure 2. As the PE array size gradually increases from 4 to 8, 16, and
32, the latency decreases, whereas the power and area significantly increase. Specifically, the
latency decreases by 50.6%, 30.5%, and 58.3%, while the power increases by approximately
3.1, 3.4, and 4.8 times and the area increases by 4.6, 7.4, and 11.2 times, respectively. The
order of magnitude of the area is much larger than those of the latency and power, and its
variation is the most significant. This finding indicates that when hardware accelerators are
evaluated, area has the greatest impact on the results, highlighting the complex trade-offs
among latency, power, and area.

Therefore, when exploring the hardware design space, we adopt a divide-and-conquer
approach. First, we take area as the objective and partially explore the design space. Then,
we take latency and power as objectives to explore the obtained subspace, generating a
Pareto solution set. By decomposing the DSE task into two parts, we can reduce the impact
of the area on the exploration results, thus simplifying the trade-offs between multiple
objectives and improving the efficiency of the proposed strategy.
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Figure 2. Latency, power, and area values of four GEMM accelerators with different PE arrays.

3. Overall Framework

Figure 3 shows the overall framework of GRMD. The DSE and optimization processes
for customized RNN accelerators are completed in three steps.

Figure 3. Overall framework of the DSE method.

Step 1: Input. The user specifies the workload and constraints to be imposed on the RNN
in the input module. In this paper, the FPGA resource constraints are the limits of
the available resources during DSE, whereas the constraints imposed on the latency,
power, and area of the hardware accelerator are the limits of performance metrics.
The RNN workloads are then converted into intermediate representations (IRs) to
generate hardware design spaces. Some RNN subworkloads are handled by the
accelerator, whereas the remaining parts are handled by software, which repeatedly
calls the accelerator. This paper focuses mainly on hardware DSE. The IRs and
hardware/software partitioning scheme are not discussed here.
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Step 2: Solution Generation. After generating the hardware design space, the design
space is explored to generate diverse solutions. GRMD is a two-stage hardware
DSE strategy, with a divide-and-conquer approach adopted. In the first stage,
GRMD uses a GA to partially explore the design space with the accelerator area
as its objective, thus reducing the design space. Then, in the second stage, it
uses an RL algorithm with latency and power as its objectives to optimize the
subspace generated by GA. In contrast, strategies based on a single algorithm
directly take latency, power, and area as objectives and explore the complete and
vast design space. The divide-and-conquer approach aims to help GRMD prioritize
the most impactful objectives, thereby simplifying multi-objective trade-offs. This
does not bring GRMD to find the Pareto optimal solution. The Pareto optimal
solutions are obtained through continuous exploration and exploitation of the
design space, along with comparisons of non-dominated relationships between
solutions. GRMD accepts the hardware design space generated in the first step and
the FPGA resource constraints as inputs and outputs the resource configurations
of the hardware accelerator. During exploration, GRMD checks whether the FPGA
resource constraints are satisfied after performing resource allocation. If not, it
adjusts the resource allocation scheme accordingly. The detailed process of DSE is
described in Section 4.

Step 3: Solution Tuning. After generating solutions, the framework evaluates these solu-
tions in order to obtain the performance metrics of the accelerator. It then iteratively
adjusts the solutions on the basis of these metrics to acquire Pareto optimal solutions.
Additionally, if the metrics violate the user-imposed constraints, GRMD attempts to
regenerate a new accelerator configuration. If GRMD cannot generate a configura-
tion that satisfies the performance constraints, it outputs the best solution among
the constraint-violating solutions for the user to choose from.

4. Design Space Exploration Strategy

In this work, the goal of hardware DSE is to generate hardware resource configurations
and minimize their latency, power, and area while satisfying the given constraints. The
hardware resource configurations include the PE array size, scratchpad capacity, local
memory capacity, hardware dataflow, number of scratchpad banks, DMA bandwidth,
maximum number of DMA bytes, and hardware data type parameters.

Traditional heuristic algorithms have achieved good results in hardware DSE scenarios.
For example, NSGA2 can effectively solve multi-objective optimization problems (MOPs)
and introduce randomness to avoid local optima. However, GAs still have several limita-
tions. First, a basic assumption of a GA is that the offspring generated via crossover and
mutation are usually better than their parents. This is not always the case in hardware DSE
because the relationships and impacts of resource allocation decisions are not clear, which
reduces the effectiveness of such algorithms. Second, a GA requires multiple iterations and
evaluations for each new problem to re-explore the design space and is unable to utilize pre-
vious experiences, leading to long exploration times and reduced efficiency. Additionally,
the multiple objectives involved in hardware DSE often have different importance levels,
necessitating trade-offs between the objectives. Although GAs can effectively address
MOPs via nondominated sorting and crowding distances, they cannot explicitly utilize the
trade-offs between multiple objectives, making them more suitable for general scenarios
rather than targeted applications with user constraints.

To address these issues, we introduce a DSE method based on the actor–critic RL
algorithm. RL is a machine learning method used for decision-making purposes. Since
hardware DSE can be formulated as a sequential decision-making problem, where values
are assigned to each hardware resource in sequence, it naturally falls into the realm of
RL. An RL problem consists of an agent, an environment, states, actions, and rewards.
The agent continuously learns and forms a policy that generates actions to maximize the
received rewards. Compared with GAs, RL has the following advantages and features:
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• Effectiveness: RL algorithms can actively learn resource allocation strategies through
balanced exploration and exploitation processes, addressing the issue that GAs may
not always be effective.

• Efficiency: After training, RL algorithms can quickly infer solutions within a few
seconds, even in vast design spaces, solving the inefficiency problem faced by GAs.

• Flexibility: With neural networks, RL can actively learn and leverage the trade-offs
between multiple objectives, generating hardware resource configurations on the basis
of user requirements and making them more suitable for targeted applications.

As mentioned before, the divide-and-conquer approach can be adopted when explor-
ing the hardware design space, thereby decomposing the exploration task into two parts to
reduce the impact of the accelerator area and simplify multi-objective trade-offs. Therefore,
the DSE strategy proposed in this paper combines a GA and RL to leverage the advantages
of both types of algorithms. When taking the area as the objective, the GA is used to
partially explore the space, which makes the RL training process easier and maintains
the diversity of the solutions by introducing randomness to avoid local optima. When
latency and power are taken as objectives, RL is used to explore the obtained subspace,
generating Pareto optimal solutions. RL can actively learn resource allocation strategies
and multi-objective trade-off strategies, quickly inferring solutions after completing the
training process and thus compensating for the inefficiencies of the GA.

4.1. Initial Design Space Exploration Based on a Genetic Algorithm

The hardware DSE problem based on a GA can be modeled as follows:
Input: Design space, X,; network structure S; FPGA resource limits LLUT, LDSP, LBRAM,

Lbandwidth; maximum number of iterations T; population size N.
Output: A set of hardware resource configurations with the area as the objective.
Optimization Objective: Area.
Constraints: area ≤ areamax.

where “area” refers to the area of the accelerator. The optimization objective is to sort the
areas in ascending order and output the top-N hardware resource configurations. Areamax
is a user constraint that represents the upper limit of the accelerator area. The FPGA
resource limits include the number of LUTs LLUT, the number of DSPs LDSP, the amount of
BRAM LBRAM, and the on-chip bandwidth Lbandwidth.

The mapping between the DSE process and the GA is as follows:
Gene G: The value of each hardware resource. For example, G1 = 8 indicates that the

PE array size of the accelerator is 8 × 8.
Chromosome C: A combination of hardware resource values (a combination of genes).

For example, C = {8, 128, 64, “WS”, 2, 64, 64, “int8”} represents a resource allocation scheme
for the accelerator in which the PE array size is 8 × 8, the scratchpad capacity is 128 KB, the
local memory capacity is 64 KB, the dataflow exhibits WS, the scratchpad is divided into
2 banks, the DMA bandwidth is 64 bps, the maximum number of DMA bytes is 64, and the
data type is int8.

Population P: A set of chromosomes, such as P = {C1, C2, . . ., CN}.
Elite E: A set of high-performance chromosomes.
Fitness F: The negation of the hardware evaluation metric, F = −area. The structure of

the accelerator is determined by the RNN structure S, and the accelerator is then evaluated
on the basis of the hardware resource values.

Algorithm 1 presents the overall DSE procedure based on the GA. It first initializes
a population P (line 1). Generating a diverse population is fundamental for conducting
hardware DSE. Therefore, a reasonable random probability density function must satisfy
the following two requirements: First, the function should be a discrete distribution that
conforms to the discrete values of hardware resources. Second, the function should gener-
ate a subspace that covers as many solutions as possible. Therefore, we choose the discrete
uniform distribution as the random probability density function for initializing the popula-
tion. The discrete uniform distribution variable is discrete, thus fitting the characteristics
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of hardware resource values (e.g., the size of the PE array can only be a positive integer).
Moreover, the probability value at each variable value is equal, ensuring the diversity of the
population genes without significant biases and thus avoiding convergence to local optima.

Algorithm 1 DSE process based on a GA

1: Initialize a population P ∈ X
2: for t = 1 to T do
3: Randomly select chromosomes from P to obtain P′

4: Obtain the offspring Q through crossover and mutation operations
5: while the number of required resources > L do
6: Reduce hardware resources
7: end while
8: Merge Q into P
9: Sort the chromosomes based on their fitness

10: Divide P into a Ps that satisfies the user constraints and a Pv that does not
11: Select chromosomes from Pv and Ps to obtain the new P
12: end for
13: if Ns ≥ N then
14: return x = {The first N chromosomes in Ps}
15: else
16: return x = Ps ∪ {The first N − Ns chromosomes in Pv}
17: end if

The algorithm then iteratively explores the design space until it reaches the maximum
number of iterations T (lines 2–12). In each iteration, the algorithm first randomly selects a
subset of chromosomes P’ from the population P (line 3) to perform an initial exploration
of the design space. For each chromosome C in P’, crossover and mutation operations
are implemented to obtain offspring populations Q (line 4). Crossover is a key step for
improving the quality of the genetic exploration process. Generally, it combines two chro-
mosomes (called “parents”) by exchanging their genes to form new chromosomes (called
“offspring”). By continuously applying crossover operations, superior genes are expected to
appear more frequently in the population and eventually converge to the optimal solution.
The available crossover methods can be divided into small-granularity crossover methods
based on genes and large-granularity crossover methods based on chromosomes, as shown
in Figure 4. Since the hardware resource values are discrete and independent of each other,
this paper uses small-granularity crossover based on genes and classifies the hardware
resources into two categories, applying different crossover operators accordingly. First,
for “Choice”-type resources that are completely discrete, such as the PE array size or the
dataflow (e.g., the possible dataflow values are “WS” and “OS”), the crossover operator
can be defined as follows:

Gchild
i = Gparent1

i γi + Gparent2
i (1 − γi) (1)

γi =

{
1, ui ≤ 0.5
0, ui > 0.5

(2)

where ui is a random number within [0, 1]. Second, for “Integer”-type resources such as
the number of scratchpad banks, which can be any integer within a range (e.g., any integer
from 1 to 8), the crossover operator is defined as shown below:

Gchild
i =

⌊
Gparent1

i γi + Gparent2
i (1 − γi)

⌋
(3)

where γi is a random number within [0, 1]. The advantage of small-granularity crossover
is that the genes of offspring can automatically adjust the crossover proportion of the
parent genes. Large-granularity crossover uses chromosomes as its crossover units, so
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the offspring chromosomes are similar to those of the parent with a higher crossover rate.
In contrast, small-granularity crossover allows for the use of different crossover rates for
different genes, enabling the offspring chromosomes to inherit varying proportions of their
parental characteristics. Therefore, small-granularity crossover can significantly increase
the diversity of gene variations and better maintain the overall stability of the chromosomes.
For example, for hardware configurations C1 = {8, 128, 128, “WS”, 2, 64, 256, “int8”} and
C2 = {32, 256, 64, “OS”, 6, 128, 64, “int8”}, the offspring chromosomes are {15, 130, 87, “OS”,
2, 69, 136, “int8”} and {15, 157, 113, “WS”, 2, 78, 211, “int8”}, respectively, assuming the
gene crossover rates of small-granularity crossover are {67%, 98%, 36%, 0%, 93%, 91%,
38%, 100%} and the chromosome crossover rate of large-granularity crossover is 77%. It
can be seen that the offspring generated by large-granularity crossover is more similar to
C1, while the offspring generated by small-granularity crossover have higher diversity.
The hardware resource values are independent of each other, and different resources can
be classified into different types. This makes small-granularity crossover more suitable
for DSE problems in this paper. Moreover, small-granularity crossover exchanges genes
between two parents to produce new chromosomes, helping to retain superior genes within
the population while also allowing for the exploration of new gene combinations, thus
achieving symmetry between exploration and exploitation.

Figure 4. An overview of small-granularity and large-granularity crossover.

Crossover operations enable offspring to inherit genes from their parents, which may
lead to the chromosomes in the population becoming similar and their gene sequences
tending to be the same. Therefore, after the crossover operations, mutation operations
are needed to reintroduce genetic diversity to the population. This effectively prevents
the DSE process from converging to a local optimum. Different mutation operators are
used for different categories of hardware resources. For “Choice”-type resources, the
genes randomly mutate to other possible values in the design space. For “Integer”-type
resources, polynomial mutation is adopted. Equation (4) shows the formula employed for
gene mutation:

Gchild
i = Gparent

i + δ(Gu − Gl) (4)

where Gu and Gl are the upper and lower bounds of the examined resource value, respec-
tively. δ is calculated as follows:
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δ =

[2u + (1 − 2u)(1 − δ1)
η+1]

1
η+1 − 1, u ≤ 0.5

1 − [2(1 − u) + 2(u − 0.5)(1 − δ2)
η+1]

1
η+1 , u > 0.5

(5)

where δ1 =
Gparent

i −Gl
Gu−Gl

and δ2 =
Gu−Gparent

i
Gu−Gl

represent the proportion of the distance (from the
gene value to the lower bound) to the total length of the range and the proportion of the
distance (to the upper bound) to the length of the range, respectively. η is a user-defined
distribution index (a nonnegative real number) that is used to indicate the intensity of the
mutation exhibited by an individual. u is a random number within (0, 1) that is used to
determine the gene value mutation range. By introducing the user-defined distribution
index and a random number, the value of a gene can be reasonably mutated, improving
the stability of the algorithm. Compared with traditional mutation operators (such as step
mutation), polynomial mutation helps improve the exploration efficiency and mutation
quality of the GA.

After the crossover and mutation operations, i.e., the completion of resource allocation,
the algorithm checks if the obtained solutions can satisfy the constraints imposed on
the FPGA resources (lines 5–7). If the required resources exceed the FPGA limits, then
the hardware resource values are gradually reduced to satisfy the constraints. These
adjustments are made based on the types of FPGA resources with three cases:

1. If the required LUTs exceed the limit LLUT or the required DSPs exceed the limit LDSP,
then the PE array size is reduced to decrease the number of PEs.

2. If the required BRAM exceeds the limit LBRAM, then the scratchpad capacity or the
local memory capacity of the Pes is reduced.

3. If the required bandwidth exceeds the on-chip bandwidth limit Lbandwidth, then the
DMA bandwidth is reduced.

After applying crossover, mutation, and constraint checking, i.e., at the end of each
iteration, different chromosomes need to compete with each other. The superior individ-
uals survive and reach the next iteration. To expand the sampling space, the offspring
populations Q are merged into the parent population P (line 8) to compete together via
an elite strategy. This helps the algorithm retain the superior individuals from the parent
population. By continuously selecting the fittest individuals, the best chromosomes emerge
at the end of the exploration process. Therefore, the chromosomes need to be sorted so that
superior individuals rank higher while inferior individuals rank lower. In this work, the
smaller the hardware area is, the greater the fitness of the corresponding chromosome, and
the higher its rank.

The new population P is obtained by sorting the chromosomes in descending order of
their fitness values (line 9). If the user specifies constraints to be imposed on the area of
the accelerator, then the sorted population P is divided into a part Ps that satisfies these
constraints and a part Pv that does not. If the number of chromosomes Ns contained in Ps
is not less than N, then the top N chromosomes in Ps are selected as the new population
P. Otherwise, after selecting individuals from Ps, the remaining N−Ns chromosomes are
selected from Pv to maintain the population size at N (lines 10–11).

After the maximum number of iterations is reached, the top N solutions that satisfy the
constraints, i.e., the hardware accelerator resource configurations with the smallest objective
function values, are returned. If the number of solutions that satisfy the constraints Ns
is less than N, then the solutions derived from Ps and the top N−Ns solutions acquired
from Pv are returned (lines 13–17). In this way, the solutions that do not satisfy the user
constraints are returned to the RL algorithm, even if no solutions do so, ensuring the
generation of solutions for the user reference and selection processes and thus enhancing
the stability of the algorithm.

We achieve symmetrical exploration and exploitation by combining various operators
and strategies. The crossover operator exchanges genes between the current good solutions,
leveraging existing beneficial traits while potentially generating new combinations. The
mutation operator randomly changes some genes in chromosomes, providing the algorithm
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with an opportunity to escape the current local optimum, thus avoiding early convergence
and promoting exploration. The elite strategy merges parents and offspring, then selects the
chromosomes with higher fitness, thereby directly preserving the current optimal solutions
and promoting exploitation.

4.2. Subspace Optimization Based on an Reinforcement Learning Algorithm

The hardware DSE problem based on an RL algorithm can be modeled as follows:
Input: Design space X; network structure S; FPGA resource limits LLUT, LDSP, LBRAM,

Lbandwidth; maximum number of episodes E; maximum number of timesteps T; objective
weights A and B; and network parameters θ and ω.

Output: Hardware resource configuration x that maximizes the received rewards.
Optimization Objective: F = A × latency + B × power
Constraints: latency ≤ latencymax, power ≤ powermax.
where “latency” and “power” refer to the latency and power of the accelerator, respec-

tively. The optimization objective is the weighted sum of these two parameters, where A
and B are the weights corresponding to the objectives. The latency max and power max are
user constraints that represent the upper limits of latency and power, respectively. The
FPGA resource limits include the number of LUTs LLUT, the number of DSPs LDSP, the
amount of BRAM LBRAM, and the on-chip bandwidth Lbandwidth. θ and ω are hyperparam-
eters for representing the network parameters.

The mapping between DSE and the RL algorithm is as follows:
States: The set of all possible states S. In this paper, the state St at time step t is a tuple

representing the allocation of hardware resources and the current hardware resource under
consideration. The allocated hardware resource values are stored in an array, whereas
the unallocated values are 0. For example, a possible state is {[8, 128, 0, “”, 0, 0, 0, “”],
“dataflow”}, where the array refers to the allocation of hardware resources, showing that the
PE array size is 8 × 8 and that the scratchpad capacity is 128 KB, whereas other resources
such as the dataflow and bandwidth are not allocated. The “dataflow” is the current
hardware resource under consideration: the dataflow.

Actions: The set of all possible actions A. In this paper, given the current state and
the hardware resource under consideration, action At taken at time step t allocates a value
to that hardware resource. For example, in the state {[8, 128, 0, “”, 0, 0, 0, “”], “dataflow”},
where the current resource under consideration is the dataflow, and the possible actions
include “WS” and “OS”, which represent dataflows with WS and OS, respectively.

State Transition: The probability distribution of the next state given a current state
and an action. In this paper, the next state is randomly selected from all possible states.

Reward: The immediate reward R for taking an action in a state. In this paper, the
intermediate rewards for all actions are 0, whereas the reward for the final action is the
negative weighted sum of the hardware latency and power values.

Algorithm 2 presents the overall procedure of DSE, which is based on the RL algorithm.
It first initializes the actor and critic networks (line 1). The algorithm uses weights θ and ω
to initialize the parameters of the actor and critic, respectively. In DSE, which is based on
sequence decisions, to obtain resource configurations with latency and power values that
are as small as possible, a policy function is needed to input the state and output the action
for completing the resource allocation process. Additionally, a value function is needed to
evaluate the resource allocation results. However, as mentioned before, the relationships
between resource allocation decisions are unclear, and the impact of allocating a resource
may not always be good. It is not possible to determine the exact policy function and
value function. Therefore, we use “actor” of the neural network to approximate the policy
function and the “critic” of the neural network to approximate the value function. Both
the actor and critic are 2-layer multilayer perceptrons (MLP) that include convolutional
layers for extracting feature vectors and fully connected layers. The actor network outputs
the probabilities of different actions on the basis of the current state, whereas the critic
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network evaluates the output of the actor. The actor then modifies its action output strategy
according to the evaluation of the critic.

Algorithm 2 DSE based on RL

1: Initialize actor and critic networks
2: for e = 1 to E do
3: Initialize state S
4: for t = 1 to T do
5: Obtain the outputs of the actor πθ(A|S) and the critic Vω(S)
6: Select an action At with the ϵ-greedy strategy
7: Obtain reward Rt+1
8: Obtain the next state St+1 based on the state transition function
9: end for

10: Check resources constraints
11: Update the parameters of the actor and critic network θ, ω
12: end for
13: return Pareto solutions inferred by the actor

The algorithm then iteratively explores the design space until it reaches the maximum
number of episodes E. In each episode, the algorithm initializes the state S by randomly
selecting a hardware resource from all possible resources to initially consider and learns
the appropriate hardware resource allocation strategy based on time steps (lines 2–12).
At time step t, the algorithm calculates πθ(A|S) and Vω(S) (line 5). π is the probability
distribution of the possible actions under state S, and V is the value of state S, which is
used to evaluate the state. These are provided by the actor network and critic network,
respectively. Next, the algorithm takes action At at the current time step based on the
probability distribution πθ(A|S) (line 6). To introduce randomness, thereby enabling the
algorithm to achieve symmetry between its exploration and exploitation of the design
space, we use the ϵ-greedy strategy and the decaying exploration rate strategy to guide the
action selection procedure. This means that the action with the highest π value is selected
with a probability of 1 − ϵ (exploitation); an action is randomly chosen from all possible
actions (including the action with the highest π value) with a probability of ϵ (exploration).
The decay exploration rate strategy sets a larger ϵ value during the early stage in order
to encourage more exploration and gradually reduces ϵ as training progresses in order to
increase the emphasis on exploitation. This ensures that all possible actions have a certain
chance of being selected under state S, thus continuously exploring and exploiting the
design space.

When action At is taken, the algorithm calculates the associated reward Rt and outputs
the next state St+1 based on the state transition function (line 7). The reward is critical for
RL, as it serves as the optimization goal. A higher reward indicates a smaller and closer-
to-optimal objective. The reward also evaluates the impact of the corresponding action,
helping the actor learn the optimal resource allocation strategy. Therefore, designing an
appropriate reward is crucial. Since the optimization goal of RL is to maximize the reward,
while the goal of hardware DSE is to minimize the function F = A × latency + B × power,
i.e., to maximize F′ = −F = −A × latency − B × power, considering the user constraints,
we define the reward as shown in (6).

Rt =

{
−A(latency − latencymax)− B(power − powermax), t = T
0, 0 < t < T

(6)

where A and B are hyperparameters that represent the relative importance levels of dif-
ferent performance metrics. The larger the weight is, the more emphasis is placed on the
corresponding objective during exploration, and vice versa. On the one hand, by defining
the reward as the negative weighted sum of the latency and power values and introducing
user constraints, we can map the optimization goal of hardware DSE to the optimization
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goal of the RL algorithm. This also enables automatic constraint checking. By changing the
weights of different objectives, the algorithm can find various trade-offs without violating
the imposed constraints and achieve flexible multi-objective optimization. On the other
hand, when t < T, the resources are not fully allocated, and setting the reward to 0 can
minimize the unknown impact of allocating a resource.

For the next state, the algorithm needs to select a hardware resource from all possible
resources as the next considered resources (line 8). Since different resources are relatively
independent, we use the function f (St+1|St) =

1
m as the state transition function, where m

is the number of resources yet to be allocated in state St. This ensures the independence of
the state transitions, thus satisfying the requirement of relatively independent resources.

At the end of an episode, MCL is used to update the parameters of the actor and critic
networks (line 11). MCL relies on learning from experience rather than on an environmental
model (e.g., state transition functions and reward functions) to improve its policy. It is a
model-free method that effectively leverages previous experiences, allowing the algorithm
to quickly generate suitable solutions even in a large design space or in cases when the
model is unclear. This enhances the efficiency of the algorithm. The parameters are updated
by (7) and (8) only at the end of an episode.

∆ω ∝
T

∑
i=1

δi∇ωVω(Si) (7)

∆θ ∝
T

∑
i=1

δi∇θ logπθ(Ai|Si) (8)

where δi is the cumulative advantage of the state, indicating the quality of the state. It is
calculated as follows:

δi = γT−iRT − Vω(Si) (9)

After reaching the maximum number of episodes, the actor learns the optimal policy
that maximizes the reward. Then, hardware configurations can be inferred by the actor in a
short period. Pareto solutions are found among these configurations and returned (line 13).

5. Experiment
5.1. Experiment Setup

Benchmarks. To evaluate the DSE strategy proposed in this paper, we use three
different network models as benchmarks: a vanilla RNN, an LSTM, and a GRU [20].
LSTM and the GRU are both representatives of RNN hardware accelerators. LSTM is an
advanced variant of RNNs that address the issue of capturing long-term dependencies.
Compared to standard RNN, LSTM models have proven to be more effective at retaining
and utilizing information over longer sequences. The GRU is another variant of the RNN
architecture that addresses the short-term memory issue. It offers a simpler alternative
to LSTM with fewer tensor operations, allowing for faster training. Both architectures
have their advantages and disadvantages and are suitable for different tasks. In this paper,
all three models are character prediction networks, and both the inputs and outputs are
one-hot encoded vectors of size 29 × 1 that represent characters. The hidden layer size is
set to 100 for all the models. The RNN has 3 layers, including an input layer, a hidden layer,
and an output layer. The LSTM has 8 components, including a forgetting gate, an input
gate, an output gate, candidate memory, 2 memory cell outputs, a hidden layer output, and
an output layer output. The GRU has 7 components, including a reset gate, 3 candidate
hidden states, an update gate, a hidden layer output, and an output layer output.

Methodology. We compare our strategy with a GA [15], PSO [18] and BO [19] from
four perspectives, their performance metrics, hypervolumes (HVs), solution speeds, and
performance metric trade-offs, to evaluate and illustrate the performance of our design.
The performance metrics are the optimization objectives in this paper, i.e., the latency,
power, and area of the hardware accelerator. The HV measures the overall performance of
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an algorithm, including the quality and diversity of its solutions. The performance metric
trade-offs illustrate the algorithms’ ability to adjust their solutions under imposed user
constraints. Experiments are performed on a Linux host with an Intel Core i7-10700 CPU
(2.90 GHz), Nvidia RTX 2060 GPUs and 16 GB memory. As for the parameters of the
algorithms, the size of population is set to 15 for GA. The cognitive coefficient and social
coefficient of PSO are 1.5 and 1.0, respectively. BO uses 5 samples as its prior.

Metrics. This paper uses the open-source Maestro microarchitecture [21] to model the
accelerator based on scratchpad memory, local PE memory, PE arrays, and PE interconnec-
tions. Maestro analyzes data reuse in terms of the temporal, computational, and memory
aspects to evaluate the latency, power, and area of the accelerator.

5.2. Experimental Results and Analysis
5.2.1. Performance Metrics Evaluation

To demonstrate the capabilities of GRMD, it is compared with the GA, PSO, and BO.
The GA and PSO are metaheuristic-based approaches that are widely applicable to many
DSE problems. Specifically, the GA is an evolutionary approach. PSO makes use of swarm
intelligence. BO uses a Gaussian process (GP) to estimate the objective function. Figure 5
shows the accelerator latency, power, and area values of different RNN models. The
area values of most solutions are concentrated within the range of [7.25 × 106, 7.75 × 106].
GRMD can always provide solutions with lower latency and power for the three RNN
models when the area differences are not significant. Specifically, compared with those
produced by the GA, PSO, and BO for the vanilla RNN, the latency is reduced by averages
of 5.19%, 9.35%, and 3.30%; the power is reduced by 2.63%, 4.98%, and 1.91%; and the area
is reduced by 6.93%, 11.08%, and 2.34%, respectively. For LSTM and the GRU, which have
more components, GRMD is generally better than the other three approaches in terms of
power and area, with power reductions of 2.77%, 5.34%, and 2.00% for LSTM and 3.71%,
5.03%, and 2.39% for the GRU, respectively. GRMD also provides area reductions of 8.59%,
11.19%, and 2.56% for the LSTM and 11.95%, 11.18%, and 1.69% for the GRU, respectively.
The minimum values are also lower than those given by the GA and PSO. This indicates
that for the three different RNNs, GRMD can provide solutions that are superior to those of
the other three algorithms. However, complex trade-offs are evident between the latency
and area and between the latency and power. For example, when the number of PEs
and the number of scratchpad banks possessed by the accelerator increase, the degree of
parallelism improves, leading to a significant reduction in latency but also a substantial area
increase. Conversely, when the area decreases, the latency increases. This is determined by
the characteristics of the hardware design space, where resources are often independent but
collectively influence the performance of the accelerator, making it challenging to provide
a nondominated solution.

These results demonstrate the great potential of RL for use in hardware DSE tasks.
GRMD interacts with hardware resources and performance metrics to gradually learn
the impacts of resources on the resulting performance. It uses actor and critic networks
to approximate the policy and value functions during the hardware resource allocation
process. By balancing the exploration and exploitation schemes, GRMD actively learns
suitable resource allocation strategies, reducing the uncertain impacts of various allocations;
thus, it can provide better solutions than those of the competing methods. In contrast, the
GA assumes that the offspring of two individuals in a population are generally better
than their parents, which is not the case in hardware DSE, leading to reduced algorithmic
effectiveness. Similarly, PSO is also a population-based stochastic optimization technique,
and the main difference between PSO and the GA is that PSO does not have evolution
operators. During the iterative process, the velocities and directions of the particles are
adjusted in accordance with their own historical optimal positions and that of the entire
population. However, this can lead to particles relying too much on historical optimal
solutions, causing them to become stuck in local optima, especially in hardware design
spaces, which are high-dimensional. BO uses models such as the stochastic process and
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GP to estimate the objective function, and its accuracy depends on the chosen model and
the input prior information. However, in the hardware design space, the joint impact of
different resources on the resulting performance is not clear; thus, BO is not always reliable.

Figure 5. Solutions found by GRMD, the GA, PSO, and BO for the vanilla RNN, LSTM, and the GRU.

To summarize, for the three different RNNs, GRMD can provide solutions that are
superior to those of the other three algorithms, achieving latency, power, and area reduc-
tions of 9.35%, 5.34%, and 11.95%, respectively. This fully demonstrates the effectiveness of
GRMD in hardware DSE. Users can obtain hardware accelerators with lower latency, lower
power, and smaller area.

5.2.2. Overall Algorithmic Performance Evaluation

We then compute the HVs and runtimes of the four algorithms to demonstrate their
overall performance. In MOPs, the Pareto optimal accelerator latency, power, and area
solutions form the Pareto front in space. When a solution moves along the Pareto front
toward a reduction in one metric, at least one other metric increases. By selecting a reference
point away from the front, a space between this point and the solutions is formed. The
smaller the latency, power, and area are, the closer the corresponding solution is to the
front, and the larger the space. We use the HV to represent the size of this space. The HV
measures the overall performance of an algorithm, including the quality and diversity of
its solutions. Table 2 shows the HVs and runtimes yielded by the four algorithms for three
RNNs. Compared with the GA, PSO, and BO, GRMD loses a small amount of HV, but its
runtime is significantly reduced. Specifically, the HV is reduced by averages of 6.33%, 6.32%,
and 0.67%; the runtime is reduced by averages of 18.11%, 14.94%, and 10.28%, respectively.

The HV is influenced not only by the distance from the design points to the Pareto
front but also by the distribution distances between the design points, i.e., the diversity
of the solutions. The solutions generated by the GA have greater diversity because this
algorithm actively introduces more randomness through evolution operators, allowing
more design points to be explored, whereas GRMD uses RL to learn hardware resource
allocation strategies, leading to less randomness when the neural network generates solu-
tions after completing the training process, which translates to lower diversity. PSO relies
on the historical optimal position to adjust the velocities and directions of the particles,
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which can result in them becoming trapped in local optima. However, GRMD requires
less time to generate better solutions because once trained, the neural networks used by
the RL algorithm can effectively utilize previous experience and infer solutions in a few
seconds without needing to re-explore and re-evaluate the space, significantly reducing
the solution time. Furthermore, GRMD uses MCL methods during training, making it
model-independent and capable of quickly generating solutions even when the model
changes, ensuring high solution quality. It is important to note that upon having the Pareto
front, it is not obligatory to choose one solution from it because GRMD aims to provide
diverse solutions for users to choose from. The selection of solutions depends on the specific
use case and problem at hand. For example, smart homes represent a typical low-power
scenario, while autonomous driving has strict constraints on latency.

In general, compared to GA, PSO, and BO, GRMD significantly reduces runtimes by
averages of 18.11%, 14.94%, and 10.28% due to the RL algorithm, thereby decreasing time
costs for users. Additionally, GRMD generates solutions more efficiently with an acceptable
loss of diversity on different models. This allows users to more easily apply GRMD to
other models.

Table 2. HVs and runtimes of GRMD, the GA, PSO, and BO with the vanilla RNN, LSTM, and
the GRU.

Benchmarks
Hypervolume (×1015) Running Time (s)

GRMD GA PSO BO GRMD GA PSO BO

RNN 5.5 5.6 5.6 5.5 1856.0 2194.1 2071.6 1943.3
LSTM 4.5 5.0 5.1 4.6 3779.7 4689.4 4488.3 4271.8
GRU 4.8 5.2 5.2 4.8 3085.5 3766.9 3693.7 3505.1

5.2.3. Multi-Objective Trade-Off Evaluation

As mentioned before, the trade-offs between different optimization objectives are
complex. We thus compare the abilities of RL and the GA to form a trade-off between latency
and power. In most cases, a change in either latency or power will result in an opposite
change in the other. For example, when the number of PEs increases, the computing
power of the accelerator improves, leading to a significant reduction in latency but also
a substantial power increase. Therefore, different objectives have different importance
depending on the specific use case. By setting different weights for the latency and power
parameters, we aim to achieve latency-first and power-first exploration. Ideally, as the
weight of latency increases, the latency values of the solutions decrease, and vice versa. The
same principle applies to power. The upper part of Figure 6 shows the latency and power
values yielded by GRMD for the three RNN models. When exploring the LSTM and GRU,
the latency-first solutions are concentrated in the lower right of the space, representing
lower latency but higher power, whereas the power-first solutions are concentrated in the
upper left, denoting lower power but higher latency. The lower part of Figure 6 shows the
latency and power values yielded by the GA for the different RNNs. Compared with the
latency-first solutions, the power-first solutions generally have much lower latency values
but higher power values, and the distribution of the solutions does not reflect the impact of
the weights on the resulting latency and power.

This finding indicates that when assigning different importance values to performance
metrics, the proposed DSE strategy can appropriately balance latency and power values,
whereas the GA does not effectively utilize the trade-offs between multiple objectives. This
is due to the RL algorithm used in GRMD, which learns the relationship between resource
allocation and accelerator performance through its actor and critic networks, achieving
multi-objective trade-offs under imposed user constraints. When GRMD explores the
vanilla RNN, the distribution of its solutions shows that the weights do not significantly
impact the latency and power. To explain this, we conduct ablation experiments to study
the impacts of different accelerator resource values on the achieved performance. The
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results are shown in Table 3. Under the area-first scenario, increasing the capacity of the
scratchpad in Group 2 or increasing the DMA bandwidth in Group 6 does not significantly
reduce the latency or power. This is because, with the vanilla RNN as the baseline, the
latency and power reach their optimal values when errors are considered. Our design finds
optimal or approximately optimal solutions, so the latency and power cannot decrease
significantly further. Therefore, the impact of the weights on the trade-offs between metrics
is minimal. This further verifies the performance of the hardware DSE strategy proposed
in this paper.

Figure 6. Trade-offs between the latency and power values determined by the GRMD and the GA.

Table 3. Impacts of hardware resource values on accelerator performance.

Hardware Resource
Group

Control Group 1 2 3 4 5 6 7

x 8 32 8 8 8 8 8 8
sp_capacity 128 128 512 128 128 128 128 128

local_capacity 64 64 64 256 64 64 64 64
dataflow WS WS WS WS OS WS WS WS
sp_banks 1 1 1 1 1 8 1 1

dma_buswidth 64 64 64 64 64 64 128 64
dma_maxbytes 64 64 64 64 64 64 64 128

Metrics
latency 850.92 249.41 873.69 869.06 1172.97 165.59 853.42 852.46
power 784.77 19,741.69 768.12 771.16 806.43 863.43 785.52 777.26

area (×106) 7.27 7.78 7.33 7.44 8.43 18.28 7.28 7.44

In conclusion, GRMD effectively balances the latency and power under varying weight
settings. When exploring vanilla RNNs, the influence of weight on latency and power is
minimal, indicating that our design reaches an optimal solution. GRMD provides users
with more flexibility in real-world application scenarios.
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6. Conclusions

This paper proposes a DSE strategy for customized RNN accelerators. The strategy
first uses a GA to partially explore the design space, with the accelerator area as the objective.
Then, it uses RL to find the optimal hardware configuration with latency and power as
its objectives, taking the narrowed design space as the input. The proposed strategy can
generate better solutions than those of competing methods and can achieve latency, power,
and area reductions of 9.35%, 5.34%, and 11.95%, respectively, demonstrating both the
effectiveness and efficiency of the hardware resource allocation process. Additionally, it can
make reasonable trade-offs between multiple objectives, offering great flexibility. In terms
of scalability, GRMD can be used to improve DSE for other complex neural networks that
have similar structures or computations. In future studies, we aim to explore how other
advanced RL techniques could enhance the GRMD strategy, such as multi-agent system,
hierarchical RL, and inverse RL. Additional comparison with recent methods employing
hybrid optimization approaches (e.g., a hybrid PSO and GA, a hybrid BO and RL) are also
required to show GRMD’s performance relative to these methods.
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